Let X be a closed, simply connected manifold of dimension m and LX the space of free loops on X. If (∧V, d) is the minimal Sullivan model of X where V is finite dimensional, then there is a Gerstenhaber algebra (∧V ∧s−1V #, d0 ), where V # is the graded dual of V, and its homology is isomorphic to the loop space homology H∗ (LX). In this paper we define a BV structure on (∧V ∧s−1V #, d0 ) which extends the Gerstenhaber bracket.
(2017). BV structure on the Hochschild cohomology of Sullivan algebras. Journal of the Egyptian Mathematical Society, 25(3), 333-336. doi: 10.1016/j.joems.2017.03.001
MLA
. "BV structure on the Hochschild cohomology of Sullivan algebras", Journal of the Egyptian Mathematical Society, 25, 3, 2017, 333-336. doi: 10.1016/j.joems.2017.03.001
HARVARD
(2017). 'BV structure on the Hochschild cohomology of Sullivan algebras', Journal of the Egyptian Mathematical Society, 25(3), pp. 333-336. doi: 10.1016/j.joems.2017.03.001
VANCOUVER
BV structure on the Hochschild cohomology of Sullivan algebras. Journal of the Egyptian Mathematical Society, 2017; 25(3): 333-336. doi: 10.1016/j.joems.2017.03.001