In this paper, we wish to define a 2-inner product, non-standard, possibly with weights, on p . For this purpose, we aim to obtain a different 2-norm ., . 2, v , w , which is not equivalent to the usual 2-norm ., . p on p (except with the condition p = 2 ), satisfying the parallelogram law. We discuss the properties of the induced 2-norm ., . 2, v , w and its relationships with the usual 2-norm on p . We also find that the 2-inner product ., .|. v , w is actually defined on a larger space.
Konca, S., Idris, M., & Gunawan, H. (2016). A new 2-inner product on the space of p -summable sequences. Journal of the Egyptian Mathematical Society, 24(2), 240-249. doi: 10.1016/j.joems.2015.07.001
MLA
Sükran Konca; Mochammad Idris; Hendra Gunawan. "A new 2-inner product on the space of p -summable sequences", Journal of the Egyptian Mathematical Society, 24, 2, 2016, 240-249. doi: 10.1016/j.joems.2015.07.001
HARVARD
Konca, S., Idris, M., Gunawan, H. (2016). 'A new 2-inner product on the space of p -summable sequences', Journal of the Egyptian Mathematical Society, 24(2), pp. 240-249. doi: 10.1016/j.joems.2015.07.001
VANCOUVER
Konca, S., Idris, M., Gunawan, H. A new 2-inner product on the space of p -summable sequences. Journal of the Egyptian Mathematical Society, 2016; 24(2): 240-249. doi: 10.1016/j.joems.2015.07.001