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. Introduction 

y � p = � p (R ) we denote the space of all p -summable sequences
f real numbers. For p � = 2, ( � p , ‖ x ‖ p ) is not an inner product

pace, since the usual norm ‖ x ‖ p = ( 
∑ ∞ 

k =1 | x k | p ) 
1 
p on � p does

ot satisfy the parallelogram law. One alternative is to define 
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 semi-inner product on � p as in [1] , but having a semi-inner
roduct is not as nice as having an inner product. 

In [2] , Gunawan defined a usual 2-norm ‖ ., . ‖ p on the space
f p -summable sequences of real numbers. The usual 2-norm 

 ., . ‖ p also is not a 2-inner product with p � = 2 because it does
ot satisfy the parallelogram law. 

In this paper, we eventually wish to define a 2-inner prod-
ct 〈 ., .|. 〉 v , w , non-standard, possibly with weights, on � p , so
hat orthogonality and many other notions on this space can be
efined. For this purpose, we aim to obtain a different 2-norm
 ., . ‖ 2, v , w , which is not equivalent to the usual 2-norm ‖ ., . ‖ p 
n � p (except with the condition p = 2 ), not only satisfies the
arallelogram law, but also it is non-standard. For p > 2, we
lso obtain a result which describes how the weighted 2-inner 
roduct space is associated to the weights. We discuss the prop-
rties of the induced 2 -norm ‖ ., . ‖ 2, v , w and its relationships with
duction and hosting by Elsevier B.V. This is an open access article 
nc-nd/4.0/ ). 
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the usual 2-norm on � p . We also find that the 2-inner product
〈 ., .|. 〉 v , w is actually defined on a larger space. 

2. Definitions and preliminaries 

Let X be a real vector space of dimension d ≥ 2. The real-valued
function 〈 ·, ·| · 〉 which satisfies the following properties on X 

3

is called 2-inner product on X, and the pair ( X , 〈 ·, ·| · 〉 ) is called
a 2-inner product space: 

1. 〈 x , x | z 〉 ≥ 0; 〈 x, x | z 〉 = 0 if and only if x and z are linearly
dependent, 

2. 〈 x, y | z 〉 = 〈 y, x | z 〉 , 
3. 〈 x, x | z 〉 = 〈 z, z | x 〉 , 
4. 〈 αx, y | z 〉 = α〈 x, y | z 〉 , for α ∈ R , 
5. 〈 x 1 + x 2 , y | z 〉 = 〈 x 1 , y | z 〉 + 〈 x 2 , y | z 〉 . 
The function ‖ ., . ‖ : X × X → [0, ∞ ), which follows four

properties, is called a 2-norm and the pair ( X , ‖ ·, ·‖ ) is called a
2-normed space: 

1. ‖ x, z ‖ = 0 if and only if x and z are linearly dependent, 
2. ‖ x, z ‖ = ‖ z, x ‖ , for x , z ∈ X , 
3. ‖ αx, z ‖ = | α| ‖ x, z ‖ , for x , z ∈ X and α ∈ R , 

4. ‖ x + y, z ‖ ≤ ‖ x, z ‖ + ‖ y, z ‖ , for x , y , z ∈ X . 

Definition 2.1. A sequence ( x 

( n ) ) in a linear 2-normed space
( X , ‖ ., . ‖ ) is called a Cauchy sequence, if for every y in X ,
lim n,m →∞ 

∥∥x 

(n ) − x 

(m ) , y 
∥∥ = 0 , [3] . 

Definition 2.2. Let { a 1 , a 2 } be a linearly independent set on
a 2-normed space ( X , ‖ ., . ‖ ). A sequence ( x 

( n ) ) in X is called
a Cauchy sequence with respect to the set { a 1 , a 2 } if ‖ x 

(n ) −
x 

(m ) , a 1 ‖ → 0 and ‖ x 

(n ) − x 

(m ) , a 2 ‖ → 0 as m , n → ∞ , [4] . 

Definition 2.3. A sequence ( x 

( n ) ) in a linear 2-normed space ( X ,
‖ ., . ‖ ) is called a convergent sequence, if there is an x in X such
that for every y in X , lim n →∞ 

∥∥x 

(n ) − x, y 
∥∥ = 0 , [4] . 

Definition 2.4. Let { a 1 , a 2 } be a linearly independent set on a
2-normed space ( X , ‖ ., . ‖ ). A sequence ( x 

( n ) ) in X is called a con-
vergent sequence with respect to the set { a 1 , a 2 } if there exists
an x ∈ X such that 

∥∥x 

( n ) − x, a 1 
∥∥ → 0 and 

∥∥x 

( n ) − x, a 2 
∥∥ → 0

as n → ∞ . 

Definitions 2.1 and 2.3 are clearly stronger than
Definitions 2.2 and 2.4 . But in some cases, like in finite
dimensional case and the standard case the respective two
definitions are equivalent, which is not clear in the infinite
dimensional case. But from the results in [5] , we understand
that the respective two definitions are still equivalent in the
spaces � p and L 

p (the space of p -integrable functions). 
As we work with sequence spaces of real numbers, we will use

the sum notation 

∑ 

k instead of 
∑ ∞ 

k =1 , for brevity. Throughout
the paper we will use the following inequalities, (see, [6] ): 

∑ 

k 

| a k + b k | p ≤
∑ 

k 

| a k | p + 

∑ 

k 

| b k | p ( 0 < p ≤ 1 ) . (2.1)

( 

n ∑ 

k =1 

| a k | 
) p 

≤ n p−1 
n ∑ 

k =1 

| a k | p ( p ≥ 1 ) . (2.2)

Note: The inequality (2.2) is a case of Hölder’s inequality in the

finite dimensional. 
3. Main results 

In this section, we begin with observation on � p , 1 ≤ p < ∞ . It
is well known that there exists x ∈ � q but x ∈ � p while 1 ≤ p < q
≤ ∞ . As sets, we have � p ⊆� q and the inclusion is strict. So, for 1
≤ p < q , � p can actually be considered as a subspace of � q . For
q = 2 , we know that the norm ‖ · ‖ 2 satisfies the parallelogram
law. Then we can equip � p , 1 ≤ p < 2, with ‖ · ‖ 2 , so that � p

became an inner product space with the inner product 

〈 x, y 〉 := 

∑ 

k 

x k y k . 

Similarly, we realize that � p is a subspace of ( � 2 , ‖ ., . ‖ 2 ). Here,
� p can be equipped with the 2-inner product 

〈 x, y | z 〉 := 

1 
2 

∑ 

k 1 

∑ 

k 2 

∣∣∣∣x k 1 x k 2 
z k 1 z k 2 

∣∣∣∣
∣∣∣∣y k 1 y k 2 
z k 1 z k 2 

∣∣∣∣
and the 2-norm 

‖ x, z ‖ 2 : = 

⎛ 

⎝ 

1 
2 

∑ 

k 1 

∑ 

k 2 

∣∣∣∣x k 1 x k 2 
z k 1 z k 2 

∣∣∣∣
2 
⎞ 

⎠ 

1 
2 

. 

We can check that the 2-norm ‖ ., . ‖ 2 satisfies the parallelogram
law: 

‖ x + y, z ‖ 2 2 + ‖ x − y, z ‖ 2 2 = 2 ‖ x, z ‖ 2 2 + 2 ‖ y, z ‖ 2 2 

for every x , y , z ∈ � p . 
Next, we work on � p , 2 < p < ∞ . We note that the

space � p is now larger than � 2 . Consequently, the usual
2-inner product and 2-norm on � 2 are not used for all sequences
in � p . Here, we present a new definition of 2-inner product
and 2-norm on � p , which satisfies the parallelogram law, using
weights. 

For arbitrary v = (v k ) ∈ � p , v k > 0 ( ∀ k ∈ N ), set of � 2 v is de-
fined by 

� 2 v := 

{ 

x = ( x k ) : 
∑ 

k 

v p−2 
k x 2 k < ∞ , v = (v k ) ∈ � p , v k > 0 (∀ k ∈ N ) 

} 

. 

As set, we observe � p ⊂ � 2 v and the inclusion is strict. It is also
known that v is not unique. Thus we have V p , the collection of
all sequences v = (v k ) ∈ � p where v k > 0 for every k ∈ N . Let v , w
be in V p , then v and w are equivalent , write v ∼ w , if and only if
there exists a constant C > 0 such that 

1 
C 

v k ≤ w k ≤ C v k 

for every k ∈ N . 

Let v ∼ w and | v k 1 w k 1 
v k 2 w k 2 

| � = 0 if k 1 � = k 2 . Next we define the

mapping which maps every triple of sequences x = (x k ) , y =
(y k ) and z = (z k ) from � p to 

〈 x, y | z 〉 v,w := 

1 
2 

∑ 

k 1 

∑ 

k 2 

∣∣∣∣∣
∣∣∣∣∣v k 1 w k 1 

v k 2 w k 2 

∣∣∣∣∣
∣∣∣∣∣

p−2 ∣∣∣∣∣x k 1 z k 1 
x k 2 z k 2 

∣∣∣∣∣
∣∣∣∣∣y k 1 z k 1 
y k 2 z k 2 

∣∣∣∣∣ (3.1)
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4

I  

a  

s  
nd the mapping ‖ ., . ‖ 2, v , w which maps every pair of sequences
 = (x k ) and z = (z k ) from � p to 

 x, z ‖ 2 ,v,w := 

⎡ 

⎣ 

1 
2 

∑ 

k 1 

∑ 

k 2 

∣∣∣∣∣
∣∣∣∣∣v k 1 w k 1 

v k 2 w k 2 

∣∣∣∣∣
∣∣∣∣∣

p−2 ∣∣∣∣∣x k 1 z k 1 
x k 2 z k 2 

∣∣∣∣∣
2 
⎤ 

⎦ 

1 
2 

. (3.2) 

e observe that the mappings are well-defined on � p . Indeed, 
or x = (x k ) , y = (y k ) and z = (z k ) in � p , it follows from Hölder’s
nequality that 

1 
2 

∑ 

k 1 

∑ 

k 2 

∣∣∣∣∣
∣∣∣∣∣v k 1 w k 1 

v k 2 w k 2 

∣∣∣∣∣
∣∣∣∣∣

p−2 ∣∣∣∣∣x k 1 z k 1 
x k 2 z k 2 

∣∣∣∣∣
∣∣∣∣∣y k 1 z k 1 
y k 2 z k 2 

∣∣∣∣∣
∣∣∣∣∣∣

≤
⎡ 

⎣ 

1 
2 

∑ 

k 1 

∑ 

k 2 

∣∣∣∣∣
∣∣∣∣∣v k 1 w k 1 

v k 2 w k 2 

∣∣∣∣∣
∣∣∣∣∣

p 
⎤ 

⎦ 

p−2 
p 

×
⎡ 

⎣ 

1 
2 

∑ 

k 1 

∑ 

k 2 

∣∣∣∣∣
∣∣∣∣∣x k 1 z k 1 
x k 2 z k 2 

∣∣∣∣∣
∣∣∣∣∣

p 
2 
∣∣∣∣∣
∣∣∣∣∣y k 1 z k 1 
y k 2 z k 2 

∣∣∣∣∣
∣∣∣∣∣

p 
2 

⎤ 

⎦ 

2 
p 

≤ ‖ v, w ‖ p−2 
p 

⎡ 

⎣ 

1 
2 

∑ 

k 1 

∑ 

k 2 

∣∣∣∣∣
∣∣∣∣∣x k 1 z k 1 
x k 2 z k 2 

∣∣∣∣∣
∣∣∣∣∣

p 
⎤ 

⎦ 

1 
p 

×
⎡ 

⎣ 

1 
2 

∑ 

k 1 

∑ 

k 2 

∣∣∣∣∣
∣∣∣∣∣y k 1 z k 1 
y k 2 z k 2 

∣∣∣∣∣
∣∣∣∣∣

p 
⎤ 

⎦ 

1 
p 

. (3.3) 

hus the two mappings are defined on � p . Moreover, we have 
he following proposition, whose proof is left to the reader. 

roposition 3.1. The mappings in (3.1) and (3.2) define a weighted 
 -inner product and a weighted 2 -norm, respectively, on � p . 

From (3.3) , we see that the following inequality 

 x, z ‖ 2 ,v,w ≤ ‖ v, w ‖ 
p−2 

2 
p ‖ x, z ‖ p (3.4)

olds for every x , z ∈ � p . It is then tempting to ask whether
he two 2-norms are equivalent on � p . The answer, however, is
egative, due to the following result. 

roposition 3.2. There is no constant C > 0 such that 

 x, z ‖ p ≤ C ‖ x, z ‖ 2 ,v,w 

or every x , z ∈ � p . 

roof. Let { z 1 , z 2 } be a linearly independent set where z 1 =
1 , 0 , . . . ) and z 2 = (0 , 1 , 0 , . . . ) . Suppose that such a constant
xists. Then, for x := e n = (0 , . . . , 0 , 1 , 0 , . . . ) , where the 1 is the
 th term, we have 

 ≤ C | v i w n − w i v n | 
p−2 

2 

or each n ∈ N and for each i = 1 , 2 , since ‖ x, z i ‖ p = 1 and

 x, z i ‖ 2 ,v,w = | v i w n − w i v n | 
p−2 

2 . But this cannot be true, since v n , 
 n → 0 as n → ∞ . �

According to Proposition 3.2 , it is possible to find a sequence 
n � p which is divergent with respect to the 2-norm ‖ ., . ‖ p , but
onvergent with respect to the 2-norm ‖ ., . ‖ 2, v , w . 
xample 3.1. Let x 

( n ) := e n ∈ � p , where e n = (0 , . . . , 0 , 1 , 0 , . . . )
the 1 is the n th term) and let { z 1 , z 2 } be a linearly inde-
endent set where z 1 = (1 , 0 , . . . ) and z 2 = (0 , 1 , 0 , . . . ) , then
x 

( n ) − x 

( m ) , z i 
∥∥

p = 2 
1 
p � 0 as m , n → ∞ . Since ( x 

( n ) ) is not a
auchy sequence with respect to ‖ ., . ‖ p , it is not convergent with

espect to ‖ ., . ‖ p . However, 
∥∥x 

( n ) , z i 
∥∥

2 ,v,w = | v i w n − w i v n | 
p−2 

2 → 0

s n → ∞ , since v n , w n → 0 as n → ∞ . Hence, ( x 

( n ) ) is conver-
ent with respect to the 2-norm ‖ ., . ‖ 2, v , w . 

If we wish, we can also define another weighted 2-norm 

 ., . ‖ β, v , w on � p , where 1 ≤ β ≤ p < ∞ , by 

 x, z ‖ β,v,w := 

⎡ 

⎣ 

1 
2 

∑ 

k 1 

∑ 

k 2 

∣∣∣∣
∣∣∣∣v k 1 w k 1 
v k 2 w k 2 

∣∣∣∣
∣∣∣∣

p−β ∣∣∣∣
∣∣∣∣x k 1 z k 1 
x k 2 z k 2 

∣∣∣∣
∣∣∣∣
β

⎤ 

⎦ 

1 
β

. 

ere p may be less than 2. Note that if β = p, then ‖ ., . ‖ β,v,w =
 ., . ‖ p . 

The following proposition gives a relationship between two 

uch weighted 2-norms on � p . 

roposition 3.3. Let 1 ≤ β < γ ≤ p. Then we have 

 x, z ‖ β,v,w ≤ ‖ v, w ‖ 
p(γ−β) 

γ β
p ‖ x, z ‖ γ ,v,w 

or every x , z ∈ � p . 

roof. Suppose x , z ∈ � p we compute 

 x, z ‖ ββ,v,w = 

1 
2 

∑ 

k 1 

∑ 

k 2 

∣∣∣∣
∣∣∣∣v k 1 w k 1 
v k 2 w k 2 

∣∣∣∣
∣∣∣∣

p−β ∣∣∣∣
∣∣∣∣x k 1 z k 1 
x k 2 z k 2 

∣∣∣∣
∣∣∣∣
β

= 

1 
2 

∑ 

k 1 

∑ 

k 2 

∣∣∣∣
∣∣∣∣v k 1 w k 1 
v k 2 w k 2 

∣∣∣∣
∣∣∣∣

p ( γ−β) 
γ

∣∣∣∣
∣∣∣∣v k 1 w k 1 
v k 2 w k 2 

∣∣∣∣
∣∣∣∣

( p−γ ) β
γ

∣∣∣∣
∣∣∣∣x k 1 z k 1 
x k 2 z k 2 

∣∣∣∣
∣∣∣∣
β

≤ 1 
2 

⎡ 

⎣ 

∑ 

k 1 

∑ 

k 2 

∣∣∣∣
∣∣∣∣v k 1 w k 1 
v k 2 w k 2 

∣∣∣∣
∣∣∣∣

p 
⎤ 

⎦ 

γ−β
γ

×
⎡ 

⎣ 

∑ 

k 1 

∑ 

k 2 

∣∣∣∣
∣∣∣∣v k 1 w k 1 
v k 2 w k 2 

∣∣∣∣
∣∣∣∣

p−γ ∣∣∣∣
∣∣∣∣x k 1 z k 1 
x k 2 z k 2 

∣∣∣∣
∣∣∣∣
γ

⎤ 

⎦ 

β
γ

= ‖ v, w ‖ 
p(γ−β) 

γ
p ‖ x, z ‖ βγ ,v,w . 

Taking βth roots of both sides, we obtain ‖ x, z ‖ β,v,w ≤
 v, w ‖ 

p(γ−β) 
γ β

p ‖ x, z ‖ γ ,v,w . �

orollary 3.4. If 1 ≤ β < 2 < γ ≤ p. Then there are constants
 1 , C 2 > 0 such that 

 1 ‖ x, z ‖ β,v,w ≤ ‖ x, z ‖ 2 ,v,w ≤ C 2 ‖ x, z ‖ γ ,v,w 

or every x , z ∈ � p . 

. Further results 

n the main result, we have � p ⊂ � 2 v (as sets), for 2 < p < ∞ ,
nd the inclusion is strict. With respect to the 2-norms on these
paces as we have seen in the beginning of this section, for every
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1 2 
x , z ∈ � p we have ‖ x , z ‖ 2, v , w < ∞ . This suggests that � p lives
inside a larger space, consisting all x , z with ‖ x , z ‖ 2, v , w < ∞ . 

Proposition 4.1. 

1. If x , z ∈ � p with ‖ x , z ‖ p < ∞ , then x, z ∈ � 2 v with ‖ x , z ‖ 2, v , w <

∞ . 
2. The converse is not true. 

Proof. Let x , z ∈ � p with ‖ x , z ‖ p < ∞ . It follows from (3.4)

that ‖ x, z ‖ 2 ,v,w ≤ ‖ v, w ‖ 
p−2 

2 
p ‖ x, z ‖ p , which means that x, z ∈ � 2v 

with ‖ x , z ‖ 2, v , w < ∞ . To show that the converse is not true, we
need to find ‖ x , z ‖ 2, v , w < ∞ but ‖ x, z ‖ p = ∞ . We know that
v k > 0, w k > 0 for all k ∈ N , and v k → 0 , w k → 0 as k →
∞ . So, choose m 1 ∈ N such that v p−2 

m 1 < 

1 
2 and w 

p−2 
m 1 < 

1 
3 , m 2

> m 1 such that v p−2 
m 2 < 

1 
2 2 

and w 

p−2 
m 2 < 

1 
3 2 

, m 3 > m 2 such that

v p−2 
m 3 < 

1 
2 3 

and w 

p−2 
m 3 < 

1 
3 3 

, and so on. Since the process never
stops, we obtain an increasing sequence of nonnegative integers
( m j ) such that v p−2 

m j < 2 − j and w 

p−2 
m j < 3 − j for every j ∈ N . Now

put x k = 1 for k = m 1 , m 2 , m 3 , . . . and x k = 0 otherwise. Let
{ e 1 , e 2 } be a linearly independent set where e 1 = (1 , 0 , . . . ) and
e 2 = (0 , 1 , 0 , . . . ) . We will give the proof for 1 < p − 2 < ∞ , by
using the inequality (2.2) and the triangle inequality. The proof
for 0 < p − 2 ≤ 1 can be done similarly by using the inequality
(2.1) and the triangle inequality. Hence for i = 1 , 2 , we have 

‖ x, e i ‖ 2 2 , v,w = 

1 
2 

∑ 

k 1 

∑ 

k 2 

∣∣∣∣
∣∣∣∣v k 1 w k 1 
v k 2 w k 2 

∣∣∣∣
∣∣∣∣

p−2 ∣∣∣∣
∣∣∣∣x k 1 e i k 1 
x k 2 e i k 2 

∣∣∣∣
∣∣∣∣
2 

≤ 1 
2 

∑ 

k 

( | w i | | v k | + | v i | | w k | ) p−2 | x k | 2 

+ 

1 
2 

∑ 

k 

( | v i | | w k | + | v k | | w i | ) p−2 | x k | 2 

≤ 2 p−3 v i p−2 
∑ 

j 

w m j 
p−2 + 2 p−3 w i 

p−2 
∑ 

j 

v m j 
p−2 

< 2 p−3 v i p−2 
∑ 

j 

1 
3 j 

+ 2 p−3 w i 
p−2 

∑ 

j 

1 
2 j 

= 2 p−4 v i p−2 + 2 p−3 w i 
p−2 < ∞ , 

where i = 1 , 2 

‖ x, e i ‖ p p = 

1 
2 

∑ 

k 1 

∑ 

k 2 

∣∣∣∣
∣∣∣∣x k 1 e ik 1 
x k 2 e ik 2 

∣∣∣∣
∣∣∣∣

p 

= ∞ . 
�

Theorem 4.2. The space 
(
� 2 v , ‖ ., . ‖ 2 ,v,w 

)
is a 2 -Banach space.

Accordingly, 
(
� 2 v , 〈 ., . | . 〉 v,w 

)
is a 2 -Hilbert space. 

Proof. It is easy to see that the space 
(
� 2 v , ‖ ., . ‖ 2 ,v,w 

)
is a linear

2-normed space, so we omit the details. To prove the complete-
ness, let ( x 

( n ) ) be any Cauchy sequence in the space 
(
l 2 v , ‖ ., . ‖ 2 ,v,w 

)
where x 

( n ) = 

(
x 

( n ) 
k 

)
= 

(
x 

( n ) 
1 , x 

( n ) 
2 , . . . 

)
. Then for every nonzero

z ∈ � 2 v , for every ε > 0 there is an n 0 ∈ N such that for all n , m >

n 0 ∥∥x 

( n ) − x 

( m ) , z 
∥∥

2 ,v,w 

= 

⎛ 

⎝ 

1 
2 

∑ 

k 1 

∑ 

k 2 

∥∥∥∥v k 1 w k 1 
v k 2 w k 2 

∥∥∥∥
p−2 

∣∣∣∣∣x 

( n ) 
k 1 

− x 

( m ) 

k 1 
z k 1 

x 

( n ) 
k 2 

− x 

( m ) 

k 2 
z k 2 

∣∣∣∣∣
2 
⎞ 

⎠ 

1 
2 

< 

ε 

2 
. 

(4.1)
Since this is true for every nonzero z ∈ l 2 v , then we can choose
privately, u = u k := ( −1 ) k z k . The vectors u and z are clearly lin-
early independent. Then from the definition of Cauchy sequence
in a 2-normed space, we have 

∥∥x 

( n ) − x 

( m ) , z 
∥∥2 

2 ,v,w 

= 

1 
2 

∑ 

k 1 

∑ 

k 2 

∥∥∥∥v k 1 w k 1 
v k 2 w k 2 

∥∥∥∥
p−2 

∣∣∣∣∣x 

( n ) 
k 1 

− x 

( m ) 

k 1 
z k 1 

x 

( n ) 
k 2 

− x 

( m ) 

k 2 
z k 2 

∣∣∣∣∣
2 

< 

ε 2 

4 
(4.2)

and ∥∥x 

( n ) − x 

( m ) , u 
∥∥2 

2 ,v,w 

= 

1 
2 

∑ 

k 1 

∑ 

k 2 

∥∥∥∥v k 1 w k 1 
v k 2 w k 2 

∥∥∥∥
p−2 

∣∣∣∣∣x 

( n ) 
k 1 

− x 

( m ) 

k 1 
u k 1 

x 

( n ) 
k 2 

− x 

( m ) 

k 2 
u k 2 

∣∣∣∣∣
2 

< 

ε 2 

4 
. (4.3)

From (4.2) and (4.3) we can write 

I 1 + I 2 := 

1 
2 

∑ 

k 1 
k 1 + k 2 = odd 

∑ 

k 2 

∥∥∥∥v k 1 w k 1 
v k 2 w k 2 

∥∥∥∥
p−2 

×
[ (

x 

( n ) 
k 1 

− x 

( m ) 

k 1 

)
z k 1 −

(
x 

( n ) 
k 2 

− x 

( m ) 

k 2 

)
z k 2 

] 2 
+ 

1 
2 

∑ 

k 1 
k 1 + k 2 = even 

∑ 

k 2 

∥∥∥∥v k 1 w k 1 
v k 2 w k 2 

∥∥∥∥
p−2 

×
[ (

x 

( n ) 
k 1 

− x 

( m ) 

k 1 

)
z k 1 −

(
x 

( n ) 
k 2 

− x 

( m ) 

k 2 

)
z k 2 

] 2 
< 

ε 2 

4 

and 

H 1 + H 2 := 

1 
2 

∑ 

k 1 
k 1 + k 2 = odd 

∑ 

k 2 

∥∥∥∥v k 1 w k 1 
v k 2 w k 2 

∥∥∥∥
p−2 

×
[ (

x 

( n ) 
k 1 

− x 

( m ) 

k 1 

)
u k 1 −

(
x 

( n ) 
k 2 

− x 

( m ) 

k 2 

)
u k 2 

] 2 
+ 

1 
2 

∑ 

k 1 
k 1 + k 2 = even 

∑ 

k 2 

∥∥∥∥v k 1 w k 1 
v k 2 w k 2 

∥∥∥∥
p−2 

×
[ (

x 

( n ) 
k 1 

− x 

( m ) 

k 1 

)
u k 1 −

(
x 

( n ) 
k 2 

− x 

( m ) 

k 2 

)
u k 2 

] 2 
< 

ε 2 

4 
. 

Clearly, I 1 + H 1 < 

ε 2 

4 + 

ε 2 

4 = 

ε 2 

2 , that is; 

1 
2 

∑ 

k 1 
k 1 + k 2 = odd 

∑ 

k 2 

∥∥∥∥∥v k 1 w k 1 

v k 2 w k 2 

∥∥∥∥∥
p−2 ([ (

x ( n ) k 1 
− x ( m ) k 1 

)
z k 2 −

(
x ( n ) k 1 

− x ( m ) k 1 

)
z k 1 

] 2 

+ 

[ (
x ( n ) k 1 

− x ( m ) k 1 

)
u k 1 −

(
x ( n ) k 2 

− x ( m ) k 2 

)
u k 2 

] 2 )

< 

ε 2 

2 
. (4.4)

Now, check H 1 . If k 1 + k 2 is odd, then we have two cases: 

1. If k 1 is odd and k 2 is even; 
2. If k is even and k is odd. 
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T

B

W  

2

S

a

T

∥∥∥∥
a

∥∥∥∥
H  

N

ε

C  

(  

g  

t  

x
f  

i
c  

p  

p
a

S  

�

f

P  

p

P
�  

s  

t  

a  

s  

p  

a  

c  

g  
For both cases, we obtain the following. 

1 
2 

∑ 

k 1 
k 1 + k 2 = odd 

∑ 

k 2 

∥∥∥∥v k 1 w k 1 
v k 2 w k 2 

∥∥∥∥
p−2 

×
[ (

x 

( n ) 
k 1 

− x 

( m ) 

k 1 

)
u k 2 −

(
x 

( n ) 
k 2 

− x 

( m ) 

k 2 

)
u k 1 

] 2 
= 

1 
2 

∑ 

k 1 
k 1 + k 2 = odd 

∑ 

k 2 

∥∥∥∥v k 1 w k 1 
v k 2 w k 2 

∥∥∥∥
p−2 

×
[ (

x 

( n ) 
k 1 

− x 

( m ) 

k 1 

)
( −1 ) k 2 z k 2 −

(
x 

( n ) 
k 2 

− x 

( m ) 

k 2 

)
( −1 ) k 1 z k 1 

] 2 
= 

1 
2 

∑ 

k 1 
k 1 + k 2 = odd 

∑ 

k 2 

∥∥∥∥v k 1 w k 1 
v k 2 w k 2 

∥∥∥∥
p−2 

×
[ (

x 

( n ) 
k 1 

− x 

( m ) 

k 1 

)
z k 2 + 

(
x 

( n ) 
k 2 

− x 

( m ) 

k 2 

)
z k 1 

] 2 
. 

hen for every k 1 and k 2 , we conclude that 

1 
2 

∑ 

k 1 
k 1 + k 2 = odd 

∑ 

k 2 

∥∥∥∥v k 1 w k 1 
v k 2 w k 2 

∥∥∥∥
p−2 

×
[ (

x 

( n ) 
k 1 

− x 

( m ) 

k 1 

)
u k 2 −

(
x 

( n ) 
k 2 

− x 

( m ) 

k 2 

)
u k 1 

] 2 
= 

1 
2 

∑ 

k 1 
k 1 + k 2 = odd 

∑ 

k 2 

∥∥∥∥v k 1 w k 1 
v k 2 w k 2 

∥∥∥∥
p−2 

×
[ (

x 

( n ) 
k 1 

− x 

( m ) 

k 1 

)
z k 2 + 

(
x 

( n ) 
k 2 

− x 

( m ) 

k 2 

)
z k 1 

] 2 
. (4.5) 

y (4.4) and (4.5) , we obtain 

1 
2 

∑ 

k 1 
k 1 + k 2 = odd 

∑ 

k 2 

∥∥∥∥v k 1 w k 1 
v k 2 w k 2 

∥∥∥∥
p−2 

×
([ (

x 

( n ) 
k 1 

− x 

( m ) 

k 1 

)
z k 2 −

(
x 

( n ) 
k 1 

− x 

( m ) 

k 1 

)
z k 1 

] 2 
+ 

[ (
x 

( n ) 
k 1 

− x 

( m ) 

k 1 

)
z k 2 + 

(
x 

( n ) 
k 1 

− x 

( m ) 

k 1 

)
z k 1 

] 2 )

< 

ε 2 

2 
. (4.6) 

e know that, for every a, b ∈ R we have ( a − b ) 2 + ( a + b ) 2 =
 a 2 + 2 b 2 . Then from (4.6) , for all n , m > n 0 we obtain 

1 
2 

∑ 

k 1 
k 1 + k 2 = odd 

∑ 

k 2 

∥∥∥∥v k 1 w k 1 
v k 2 w k 2 

∥∥∥∥
p−2 ([ (

x 

( n ) 
k 1 

− x 

( m ) 

k 1 

)
z k 2 

] 2 

+ 

[ (
x 

( n ) 
k 1 

− x 

( m ) 

k 1 

)
z k 1 

] 2 )
< 

ε 2 

4 
. 

ince for all n , m > n 0 

1 
2 

∑ 

k 1 
k 1 + k 2 = odd 

∑ 

k 2 

∥∥∥∥v k 1 w k 1 
v k 2 w k 2 

∥∥∥∥
p−2 (

x 

( n ) 
k 1 

− x 

( m ) 

k 1 

)2 
z 2 k 2 

< 

ε 2 

4 
nd 

1 
2 

∑ 

k 1 
k 1 + k 2 = odd 

∑ 

k 2 

∥∥∥∥v k 1 w k 1 
v k 2 w k 2 

∥∥∥∥
p−2 (

x 

( n ) 
k 2 

− x 

( m ) 

k 2 

)2 
z 2 k 1 

< 

ε 2 

4 
. 

hen for every k 1 , k 2 ∈ N and for every n , m > n 0 we have 

v k 1 w k 1 
v k 2 w k 2 

∥∥∥∥
p−2 (

x 

( n ) 
k 1 

− x 

( m ) 

k 1 

)2 
z 2 k 2 

< 

ε 2 

4 

nd 

v k 1 w k 1 
v k 2 w k 2 

∥∥∥∥
p−2 (

x 

( n ) 
k 2 

− x 

( m ) 

k 2 

)2 
z 2 k 1 

< 

ε 2 

4 
. 

ence for every n , m > n 0 and for every k 1 , k 2 ∈
 | x 

( n ) 
k 1 

− x 

( m ) 

k 1 
| 2 < ε 2 C 

2 
1 ( k 1 , k 2 ) 

= ε 1 and | x 

( n ) 
k 2 

− x 

( m ) 

k 2 
| 2 < 

 

2 C 

2 
2 ( k 1 , k 2 ) 

= ε 2 where C 

2 
1 ( k 1 , k 2 ) 

= 

1 

4 

∥∥∥∥∥v k 1 w k 1 
v k 2 w k 2 

∥∥∥∥∥
p−2 

z 2 k 2 

and 

 

2 
2 ( k 1 , k 2 ) 

= 

1 

4 

∥∥∥∥∥v k 1 w k 1 
v k 2 w k 2 

∥∥∥∥∥
p−2 

z 2 k 1 

. Thus for each fixed k 1 , k 2 ∈ N ,

 x 

( n ) 
k ) is a Cauchy sequence of real numbers. Hence it is conver-

ent, say x 

( n ) 
k → x k as n → ∞ for each k = k 1 , k 2 ∈ N . Using

hese infinitely many limits x 1 , x 2 , . . . , we define the sequence
 := ( x 1 , x 2 , . . . ) . Then we have constructed a candidate limit 

or the sequence ( x 

( n ) ) . However, so far, we only have that each
ndividual component of x 

(n ) converges to the corresponding 
omponent of x , i.e., ( x 

( n ) ) converges componentwise to x . To
rove that ( x 

( n ) ) converges to x in 2-norm, we go back (4.1) and
ass it to the limit m → ∞ . We obtain for every nonzero z ∈ l 2 v 
nd for all n > n 0 ∥∥x 

( n ) − x, z 
∥∥

2 ,v,w 

= 

⎛ 

⎝ 

1 
2 

∑ 

k 1 

∑ 

k 2 

∥∥∥∥v k 1 w k 1 
v k 2 w k 2 

∥∥∥∥
p−2 

∣∣∣∣∣x 

( n ) 
k 1 

− x k 1 
z k 1 

x 

( n ) 
k 2 

− x k 2 
z k 2 

∣∣∣∣∣
2 
⎞ 

⎠ 

1 
2 

< 

ε 

2 
. 

ince the space l 2 v is linear, we also get x = ( x − x 

( n ) ) + x 

( n ) ∈
 

2 
v . This completes the proof. �

The following proposition tells us that � p is not “too far”
rom � 2 v . 

roposition 4.3. As a subspace of � 2 v , ( � 
p , ‖ ., . ‖ 2, v , w ) is not com-

lete, but dense in � 2 v . 

roof. Since 
(
� 2 v , ‖ ., . ‖ 2 ,v,w 

)
is complete, it suffices to show that 

 

p is not closed in � 2 v . As in the proof of Proposition 4.1 , we con-
truct an increasing sequence of non-negative integers ( k j ) such
hat v p−2 

k j 
< 2 − j and w 

p−2 
k j 

< 3 − j for every j ∈ N . Next, for each

j ∈ N , we define x 

( n ) = ( x 

( n ) 
k ) by x 

( n ) 
k = 1 for k = k 1 , k 2 , . . . , k n 

nd x 

( n ) 
k = 0 otherwise. Let { e 1 , e 2 } be a linearly independent

et where e 1 = (1 , 0 , . . . ) and e 2 = (0 , 1 , 0 , . . . ) . We will give the
roof for the case 1 < p − 2 < ∞ , by using the inequality (2.2)
nd the triangle inequality. The proof for the case 0 < p − 2 ≤ 1
an be done similarly by using the inequality (2.1) and the trian-
le inequality. Then we see that ( x 

( n ) ) forms a Cauchy sequence
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in � 2 v since for m > n we have 

∥∥x 

( n ) − x 

( m ) , e i 
∥∥2 

2 ,v,w 

= 

1 
2 

∑ 

k 1 

∑ 

k 2 

∣∣∣∣
∣∣∣∣v k 1 w k 1 
v k 2 w k 2 

∣∣∣∣
∣∣∣∣

p−2 
∣∣∣∣∣
∣∣∣∣∣x 

( n ) 
k 1 

− x 

( m ) 

k 1 
e i k 1 

x 

( n ) 
k 2 

− x 

( m ) 

k 2 
e i k 2 

∣∣∣∣∣
∣∣∣∣∣
2 

≤ 1 
2 

∑ 

k 

( | w i | | v k | + | v i | | w k | ) p−2 
∣∣∣x 

( n ) 
k − x 

( m ) 

k 

∣∣∣2 

+ 

1 
2 

∑ 

k 

( | v i | | w k | + | v k | | w i | ) p−2 
∣∣∣x 

( n ) 
k − x 

( m ) 

k 

∣∣∣2 

≤ 2 p−3 
m ∑ 

j= n +1 

( w i 
p−2 v p−2 

k j 
+ w 

p−2 
k j 

v i p−2 ) 

+ 2 p−3 
m ∑ 

j= n +1 

( v i p−2 w 

p−2 
k j 

+ v p−2 
k j 

w i 
p−2 ) 

= 2 p−3 v i p−2 
m ∑ 

j= n +1 

1 
3 j 

+ 2 p−3 w i 
p−2 

m ∑ 

j= n +1 

1 
2 j 

→ 0 

as m , n → ∞ for each i = 1 , 2 . Since � 2 v is complete, ( x 

( n ) ) is
convergent and we know that the limit is the sequence x =
( x k ) where x k = 1 for k = k 1 , k 2 , k 3 , . . . and x k = 0 otherwise.
While x 

( n ) ∈ � p for every n ∈ N , the limit x �∈ � p . This shows
that � p is not closed in (� 2 v , ‖ ., . ‖ 2 ,v,w ) . The fact that � p is dense
in 

(
� 2 v , ‖ ., . ‖ 2 ,v,w 

)
is easy to see, since every x = ( x k ) ∈ � 2 v can

be approximated by x 

( n ) := ( x 1 , x 2 , . . . , x n , 0 , 0 , . . . ) for suffi-
ciently large values of n ∈ N with 

∥∥x 

( n ) − x, e 1 
∥∥

2 ,v,w → 0 and∥∥x 

( n ) − x, e 2 
∥∥

2 ,v,w → 0 as n → ∞ . �

Proposition 4.1 motivates us to study � 2 v further as the ambi-
ent space, replacing � p . So far, we have fixed the weights v = ( v k )
and w = ( w k ) . We now would like to know how the space � 2 v de-
pends on the choice of pairs ( v , w ). 

Let V p be the collection of all sequences. Let v = ( v k )
and w = ( w k ) ∈ � p with v k > 0, w k > 0 for every k ∈ N and

| | v k 1 w k 1 
v k 2 w k 2 

| | � = 0 if k 1 � = k 2 . Let v 1 , w 1 , v 2 , w 2 ∈ V p . We say that

the pairs ( v 1 , w 1 ) and ( v 2 , w 2 ) are equivalent, write ( v 1 , w 1 ) ∼ ( v 2 ,
w 2 ), if and only if there exists a constant C > 0 such that 

1 
C 

∣∣∣∣
∣∣∣∣v 1 k 1 w 1 k 1 
v 1 k 2 w 1 k 2 

∣∣∣∣
∣∣∣∣ ≤

∣∣∣∣
∣∣∣∣v 2 k 1 w 2 k 1 
v 2 k 2 w 2 k 2 

∣∣∣∣
∣∣∣∣ ≤ C 

∣∣∣∣
∣∣∣∣v 1 k 1 w 1 k 1 
v 1 k 2 w 1 k 2 

∣∣∣∣
∣∣∣∣

for every k 1 , k 2 ∈ N . 

Theorem 4.4. Let v 1 , w 1 , v 2 , w 2 ∈ V p . Then, the following state-
ments are equivalent: 

1. ( v 1 , w 1 ) ∼ ( v 2 , w 2 ) . 
2. There exists a constant C > 0 such that 

1 
C 

‖ x, z ‖ 2 ,v 1 ,w 1 ≤ ‖ x, z ‖ 2 ,v 2 ,w 2 ≤ C ‖ x, z ‖ 2 ,v 1 ,w 1 x, z ∈ � p . 

Proof. (1) ⇒ (2): Let x , z ∈ � p and ( v 1 , w 1 ) ∼ ( v 2 , w 2 ), then 

‖ x, z ‖ 2 ,v 2 ,w 2 = 

⎡ 

⎣ 

1 
2 

∑ 

k 1 

∑ 

k 2 

∣∣∣∣
∣∣∣∣v 2 k 1 w 2 k 1 
v 2 k 2 w 2 k 2 

∣∣∣∣
∣∣∣∣

p−2 ∣∣∣∣
∣∣∣∣x k 1 z k 1 
x k 2 z k 2 

∣∣∣∣
∣∣∣∣
2 
⎤ 

⎦ 

1 
2 
≤
⎡ 

⎣ 

1 
2 

∑ 

k 1 

∑ 

k 2 

C 

p−2 
∣∣∣∣
∣∣∣∣v 1 k 1 w 1 k 1 
v 1 k 2 w 1 k 2 

∣∣∣∣
∣∣∣∣

p−2 ∣∣∣∣
∣∣∣∣x k 1 z k 1 
x k 2 z k 2 

∣∣∣∣
∣∣∣∣
2 
⎤ 

⎦ 

1
2

= C 

p−2 
2 ‖ x, z ‖ 2 ,v 1 ,w 1 . 

On the other hand, we have 

‖ x, z ‖ 2 ,v 2 ,w 2 = 

⎡ 

⎣ 

1 
2 

∑ 

k 1 

∑ 

k 2 

∣∣∣∣
∣∣∣∣v 2 k 1 w 2 k 1 
v 2 k 2 w 2 k 2 

∣∣∣∣
∣∣∣∣

p−2 ∣∣∣∣
∣∣∣∣x k 1 z k 1 
x k 2 z k 2 

∣∣∣∣
∣∣∣∣
2 
⎤ 

⎦ 

1 
2 

≥
⎡ 

⎣ 

1 
2 

∑ 

k 1 

∑ 

k 2 

1 

C 

p−2 

∣∣∣∣
∣∣∣∣v 1 k 1 w 1 k 1 
v 1 k 2 w 1 k 2 

∣∣∣∣
∣∣∣∣

p−2 ∣∣∣∣
∣∣∣∣x k 1 z k 1 
x k 2 z k 2 

∣∣∣∣
∣∣∣∣
2 
⎤ 

⎦ 

1
2

= 

1 

C 

p−2 
2 

‖ x, z ‖ 2 ,v 1 ,w 1 . 

Hence, the implication (1) ⇒ (2) holds. 
(2) ⇒ (1): Let x , z ∈ � p and 

1 
C ‖ x, z ‖ 2 ,v 1 ,w 1 ≤ ‖ x, z ‖ 2 ,v 2 ,w 2 ≤

 ‖ x, z ‖ 2 ,v 1 ,w 1 where C > 0. Take x = e n = (0 , . . . , 0 , 1 , 0 , . . . )
and z = e m 

= (0 , . . . , 0 , 1 , 0 , . . . ) , n, m ∈ N , where the 1 is the
n th and m th term, respectively. Then x , z ∈ � p , so that x, z ∈ � 2 v . 

‖ x, z ‖ 2 ,v 1 ,w 1 = 

∣∣∣∣
∣∣∣∣v 1 n v 1 m 

w 1 n w 1 m 

∣∣∣∣
∣∣∣∣

p−2 
2 

and 

‖ x, z ‖ 2 ,v 2 ,w 2 = 

∣∣∣∣
∣∣∣∣v 2 n v 2 m 

w 2 n w 2 m 

∣∣∣∣
∣∣∣∣

p−2 
2 

. 

Hence, from our assumption, we obtain 

1 
C 

∣∣∣∣
∣∣∣∣v 1 n v 1 m 

w 1 n w 1 m 

∣∣∣∣
∣∣∣∣

p−2 
2 

≤
∣∣∣∣
∣∣∣∣v 2 n v 2 m 

w 2 n w 2 m 

∣∣∣∣
∣∣∣∣

p−2 
2 

≤ C 

∣∣∣∣
∣∣∣∣v 1 n v 1 m 

w 1 n w 1 m 

∣∣∣∣
∣∣∣∣

p−2 
2 

, 

and this holds for every n, m ∈ N . Taking the ( p−2 
2 ) th roots, we

conclude that ( v 1 , w 1 ) ∼ ( v 2 , w 2 ). �
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