In this article, we present a survey of some new results obtained in [2,8]. First, we give a geometric Paley–Wiener theorem for the Dunkl transform in the crystallographic case. Next we describe more precisely the support of the distribution associated to Dunkl translations in higher dimension. We also investigate the Lp fi Lq boundedness properties of the Riesz potentials Ija and the related fractional maximal function Mj,a associated to the Dunkl transform. Finally we prove the Lp-boundedness, (1 < p< 1) of the Riesz transforms in the Dunkl setting.
Sif, M., Amri, B., Anker, J., Hassani, S., & Mustapha, S. (2011). Some results on Dunkl analysis : A survey. Journal of the Egyptian Mathematical Society, 19(1), 78-81. doi: 10.1016/j.joems.2011.09.001
MLA
M. Sif; B. Amri; J-Ph Anker; S. Hassani; S. Mustapha. "Some results on Dunkl analysis : A survey", Journal of the Egyptian Mathematical Society, 19, 1, 2011, 78-81. doi: 10.1016/j.joems.2011.09.001
HARVARD
Sif, M., Amri, B., Anker, J., Hassani, S., Mustapha, S. (2011). 'Some results on Dunkl analysis : A survey', Journal of the Egyptian Mathematical Society, 19(1), pp. 78-81. doi: 10.1016/j.joems.2011.09.001
VANCOUVER
Sif, M., Amri, B., Anker, J., Hassani, S., Mustapha, S. Some results on Dunkl analysis : A survey. Journal of the Egyptian Mathematical Society, 2011; 19(1): 78-81. doi: 10.1016/j.joems.2011.09.001