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Abstract In this article, we present a survey of some new results obtained in [2,8]. First, we give a

geometric Paley—Wiener theorem for the Dunkl transform in the crystallographic case. Next we

Dunkl operator;
Paley—Wiener theorem;
Generalized translations;
Riesz potentials;

Riesz transforms

describe more precisely the support of the distribution associated to Dunkl translations in higher
dimension. We also investigate the L7 — LY boundedness properties of the Riesz potentials I}
and the related fractional maximal function M, , associated to the Dunkl transform. Finally we
prove the I”-boundedness, (1 < p < oo) of the Riesz transforms in the Dunkl setting.
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1. Introduction

Dunkl theory generalizes classical Fourier analysis on R". It
started twenty years ago with Dunkl’s seminal work [6] and
was further developed by several mathematicians. See for in-
stance the surveys [15,7] and the references cited therein.

In this setting, the Paley—Wiener theorem is known to hold
for balls centered at the origin. In [9], a Paley—Wiener theorem
was conjectured for convex neighborhoods of the origin, which
are invariant under the underlying reflection group, and was
partially proved.
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Our first result in Section 2, is a proof of this conjecture in
the crystallographic case, following the third approach in [9].

Generalized translations were introduced in [14] and further
studied in [19,16,17]. Apart from their abstract definition, we
lack precise information, in particular about their integral
representation

(N0 = [ AN, ),

which was conjectured in [14] and established in few cases, for
instance in dimension N = 1 or when f'is radial.

Our second result in Section 2 deals with the support of the
distribution 7, , in higher dimension, that we determine rather
precisely in the crystallographic case.

For 0 < o < 2y, + d, the Riesz potential I;f'is defined on
S(RY) (the class of Schwartz functions) by (see [18])

) = @y [ R, 0

where

f — 2—;-K—d/2+o< F(%) .
. Iy +4%

It is easy to see that the Riesz potentials operate on the
Schwartz class S(R"), as integral operators, and it is natural
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to inquire about their action on the spaces L”(R‘ A’). The
main problem can be formulated as follows. Given
o €10,2y, + d for what pair (p,q) is it possible to extend (1)
to a bounded operator from L”(R? i) to L!(RY,#2)? That is
when do we have the inequality

15/ leq < Cllc,p- (2)

The notation |
LP(RY, 1),

K

A necessary condition is given in [18]. This condition says
that (2) holds only if
1 1 o

P a4 . +d

«p 18 used here to denote the norm of

3)

Thangavelu and Xu proved also in [18] that the condition
(3) is sufficient to ensure the boundedness of I, (save for
p = 1 where a weak-type estimate holds) if one assumes that
the reflection group G is Z¢ or if f are radial functions and
p < 2 (see [18, Theorem 4.4]).

We will show that it is possible to remove this restrictive
hypothesis and prove that (3) is a sufficient condition for all
reflection groups.

On RY, the ordinary Riesz transform R;, j=1...Nis de-
fined as the multiplier operator

— c

RN (&) = ~it ],

<]
It can also be defined by the principal value of the singular
integral

EeRY.

e—0

ri(x — y)f(y)dy,

bize

where 7; is the singular Riesz kernel given by
N+1 ]
) = (P52 )ty b,

whose Fourier transform (in the sense of distributions) is

R(&) = —i&,/|¢).

It is a classical result in harmonic analysis that the Riesz trans-
forms are bounded on L’ for all 1 < p < oo.

In Dunkl setting the Riesz transforms (see [18]) are the
operators R;, j = 1...d defined on L*(R, i) by

() () T ),
Jpy|>e [yl
where ¢; = 220 (y 4 (d+1)/2)/v/mand m = 2y, + d + 1.

The study of the L”-boundedness of Riesz transforms for
Dunkl transform on R" goes back to the work of Thangavelyu
and Xu [18] where they established boundedness result only in
a very special case of N = 1. Recently Amri [1] proves this re-
sult in more general case.

As applications, we will prove the generalized Riesz and
Sobolev inequalies.

R;(f)(x) = ¢;lim x € R

£—

2. New results about Dunkl analysis
2.1. A geometric Paley—Wiener theorem

In this subsection, we state a geometric version of the
Paley—Wiener theorem, which was looked for in [9,19,10],

under the assumption that G is crystallographic. The proof
which was given in [2] consists merely in resuming the third ap-
proach in [9] and applying it to the convex sets considered in
[3-5] instead of the convex sets considered in [11]. Recall that
the second family consists of the convex hulls

C" =co(G - A)

of G-orbits G-A in R", while the first family consists of the po-
lar sets

Cy={xeR"(x,g-4) < Vg € G}.

Before stating the geometric Paley—Wiener theorem, let us
make some remarks about the sets C*! and C,.

Firstly, they are convex, closed, G-invariant and the follow-
ing inclusion holds.

Cct c A Cy.

Secondly, we may always assume that 4 = A belongs to the
closed positive chamber T, and, in this case, we have

C/‘ﬂF_+=F_+ﬂ<A—F),

CaNTT = {x e TH(A,x) < 1}.

Thirdly, on one hand, every G-invariant convex subset in R is
a union of sets C*! while, on the other hand, every G-invariant
closed convex subset in R is an intersection of sets C,. For

instance,
U= ¢

[A|=R |A|=R"!

B(0,R) =

Fourthly, we shall say that A € T, is admissible if the follow-
ing equivalent conditions are satisfied:

(1) A4 has nonzero projections in each irreducible compo-
nent of (R",R),
(ii) ¢ is a neighborhood of the origin,
(iii)) C, is bounded.

In this case, we may consider the gauge

74(¢) = max,ec, (x, &) = min{r € [0, +00)|¢ € rC"}

on RV,

Theorem 1. Assume that A € T, is admissible. Then the Dunkl
transform is a linear isomorphism between the space of smooth
functions f on RN with supp f< C, and the space of entire
functions h on CN such that

sup (1 + |€))Me M |p(&)] < 400 VM € N. (4)
cecV

Following [9], this theorem is first proved in the trigono-
metric case, which explains the restriction to crystallographic
groups, and next obtained in the rational case by passing to
the limit. The proof of Theorem 1 in the trigonometric case
is similar to the proof of the Paley—Wiener Theorem in
[11,12], and actually to the initial proof of Helgason for the
spherical Fourier transform on symmetric spaces of the non-
compact type. The limiting procedure, as far as it is concerned,
is described thoroughly in [9] and needs no further
explanation.
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Since every G-invariant convex compact neighborhood of
the origin in RY is the intersection of admissible sets C,, The-
orem 1 generalizes as follows.

Corollary 1 (Geometric Paley—Wiener Theorem). Let C be a G-
invariant convex compact neighborhood of the origin in RN and
(&) = max,cKx,&) the dual gauge. Then the Dunkl transform
is a linear isomorphism between the space C¥(R") of smooth
functions f on RY with suppfc C and the space HX(CN) of
entire functions h on CV such that

sup (1 + [€)Ye ™I |A(E)| < +00 VM €N,

cech

2.2. A support theorem for generalized translations
Dunkl translations are defined on S(RY) by
1 o s g Ly
(N0 = [ PROEGEEE D@ Wy R,
R

As mentioned in the introduction, we lack information
about Dunkl translations in general. In this subsection, we lo-
cate more precisely the support of the distribution

e = (2N W),

which is known [19] to be contained in the closed ball of radius
I+ 1)l

Theorem 2.

(i) The distribution .., is supported in the spherical shell
{z € RY|lIx] = [yl < Iz < [x] + [y]}-

(i) If G is crystallographic, then the support of 7., is more
precisely contained in

{Z € IRN|Z+<X+ + Y 20my, + g-xpandx, +g0~y+}~

Here gy denotes the longest element in G, which interchanges the
chambers I and —T ., and X the partial order on RN associ-

ated to the cone I't: __
ab < b—acTl".

Remark 1. In [2], we have also established that

{rik+Hy
dy, ,(2)| < A = V2———_27
/R| (2] < A Ik +Hrk+3)
Actually there is equality if x = y € R*. Moreover A4, SV2as
k— + .
This result improves earlier bounds obtained in [13] and
[17], which were respectively 4 and 3.

2.3. Riesz potentials

In this subsection, we will give the answer to question 2, for
more details about the proof one can see [8].

Theorem 3. Let o be a real number such that 0 < o < 2y, + d
and let (p,q) be a pair of real numbers such that

1 _1_ _ o .
I1<p<gc< ooandl—]—p ST Then:

@) If p > 1, then the mapping f — I fcan be extended to a
bounded operator from LF(R?,h%) to LY(R?, k%) and

||1';fH7c.q g AI’-“|m|7c,p7 fe Lp(Rd7 hi)?

where A, , > 0 depends only on p and o.
(i) If p = 1, f — I.,f can be extended to a mapping of weak-
type (1,q) and

/ hi(x)dx < A, (M!"’l
{5 f()|> 2} A

where A, > 0 depends only on o.

q
) . fe YRR,

The boundedness of Riesz potentials can be used to estab-
lish the boundedness properties of the fractional maximal
operator associated to Dunkl transform.

For 0 < o« <2y, + d and f€ L"(R),]}), 1 <p < oo, we

define the fractional maximal M, ,f function by

. 1 .
M, of(x) = sup —>— /R e (k. (v)dy, xeR?,

>0 Myl

where

a5
m, = (6/127"+‘2’1F <yw + g+ 1)>

and where y, denotes the characteristic function of the ball B,
of radius r centered at 0. We have the following corollary of
Theorem 3.

Corollary 2. Let o be a real number such that 0 < o < 2y, + d
and let (p,q) be a pair of real numbers such that 1<
p < q < oo and satisfying (3). Then:

() The maximal operator M., is bounded from LP(R?, hf) to
LY(RY,K) for p > 1.
(i) M., is of weak type (1,q), that is, for f € L'(R?, k)

q
/ R (x)dx < cx<“ﬂ|“) . A>0,
(- Myaf3)>7} A

where ¢, > 0 depends only on a.

Remark 2. Finally one should observe that (3) is also neces-
sary for the boundedness of the maximal fractional operator
M, from the spaces L’ (R?, i) to the space L/(R? /%) when
p > 1 and for the weak-type estimate of M, , when p = 1.

2.4. Applications

In this subsection, we will state the L”-boundedness of the
Riesz transforms in the Dunkl setting and prove the general-
ized Riesz and Sobolev inequalies.

Theorem 4 (See [1]). The Riesz transform R;, j=1...d
extended to a bounded operator from LP(RY, hi) into it self for
all 1 < p < .

Theorem 5 (Generalized Riesz inequalities). Forall1 < p < oo
there exists a constant C, such that

1T, < ClIAAI,,»  for all f€ S(RY). (5)
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Proof. One can see that

TT5(f) = RR,(=A)(), .d, feSR).
Then (5) is concluded by Theorem 4.2 in [1]. O

ij=1..

Theorem 6 (Generalized Sobolev inequality). For all 1 < p <

q < 2y + dwith ] 1— [—] - 2y,\+(1 we have
Hﬂ|x.q < C]N['lvﬂ‘l\‘,p (6)
Sor all f € CF(RY).

Here Sf = (T4f,.... Taf) and V| = (i T

Proof. For all /€ C¥(RY), we write

718y == 3> T2 (ifte)) = - %g%(m )

Then (6) follows from Theorem 1. [
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