A simple graph G = (V, E) is said to be k-Zumkeller graph if there is an injective function f from the vertices of G to the natural numbers N such that when each edge xy ∈ E is assigned the label f(x)f(y), the resulting edge labels are k distinct Zumkeller numbers. In this paper, we show that the super subdivision of path, cycle, comb, ladder, crown, circular ladder, planar grid and prism are k-Zumkeller graphs.
Basher, M. (2021). k‑Zumkeller labeling of super subdivision of some graphs. Journal of the Egyptian Mathematical Society, 29(1), 1-16. doi: 10.1186/s42787-021-00121-y
MLA
M. Basher. "k‑Zumkeller labeling of super subdivision of some graphs", Journal of the Egyptian Mathematical Society, 29, 1, 2021, 1-16. doi: 10.1186/s42787-021-00121-y
HARVARD
Basher, M. (2021). 'k‑Zumkeller labeling of super subdivision of some graphs', Journal of the Egyptian Mathematical Society, 29(1), pp. 1-16. doi: 10.1186/s42787-021-00121-y
VANCOUVER
Basher, M. k‑Zumkeller labeling of super subdivision of some graphs. Journal of the Egyptian Mathematical Society, 2021; 29(1): 1-16. doi: 10.1186/s42787-021-00121-y