In this paper, we study the persistence, boundedness, convergence, invariance and global asymptotic behavior of the positive solutions of the second-order diference system xn+1 = α1 + ae−xn−1 + byne−yn−1 , yn+1 = α2 + ce−yn−1 + dxne−xn−1 n = 0, 1, 2, ... where α1, α2, a, b, c, d are positive real numbers and the initial conditions x−1, x0, y−1, y0 are arbitrary nonnegative numbers.
Dilip, D. S., & Mathew, S. M. (2021). Dynamics of a second‑order nonlinear diference system with exponents. Journal of the Egyptian Mathematical Society, 29(1), 1-10. doi: 10.1186/s42787-021-00119-6
MLA
D. S. Dilip; Smitha Mary Mathew. "Dynamics of a second‑order nonlinear diference system with exponents", Journal of the Egyptian Mathematical Society, 29, 1, 2021, 1-10. doi: 10.1186/s42787-021-00119-6
HARVARD
Dilip, D. S., Mathew, S. M. (2021). 'Dynamics of a second‑order nonlinear diference system with exponents', Journal of the Egyptian Mathematical Society, 29(1), pp. 1-10. doi: 10.1186/s42787-021-00119-6
VANCOUVER
Dilip, D. S., Mathew, S. M. Dynamics of a second‑order nonlinear diference system with exponents. Journal of the Egyptian Mathematical Society, 2021; 29(1): 1-10. doi: 10.1186/s42787-021-00119-6