We give an upper bound of the number of edges of a permutation graph. We introduce some necessary conditions for a graph to be a permutation graph, and we discuss the independence of these necessary conditions. We show that they are altogether not sufficient for a graph to be a permutation graph.
Seoud, M., & Mahran, A. (2012). On permutation graphs. Journal of the Egyptian Mathematical Society, 20(2), 57-63. doi: org/10.1016/j.joems.2012.08.008
MLA
M. A. Seoud; A. E.A. Mahran. "On permutation graphs", Journal of the Egyptian Mathematical Society, 20, 2, 2012, 57-63. doi: org/10.1016/j.joems.2012.08.008
HARVARD
Seoud, M., Mahran, A. (2012). 'On permutation graphs', Journal of the Egyptian Mathematical Society, 20(2), pp. 57-63. doi: org/10.1016/j.joems.2012.08.008
VANCOUVER
Seoud, M., Mahran, A. On permutation graphs. Journal of the Egyptian Mathematical Society, 2012; 20(2): 57-63. doi: org/10.1016/j.joems.2012.08.008