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Abstract We give an upper bound of the number of edges of a permutation graph. We introduce

some necessary conditions for a graph to be a permutation graph, and we discuss the independence

of these necessary conditions. We show that they are altogether not sufficient for a graph to be a

permutation graph.
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1. Introduction

Hegde and Shetty [1] define a simple graph G with n vertices to
be a permutation graph if its vertices can be labeled with dis-

tinct integers 1, 2, . . . , n such that when each edge uv, where
u > v, is labeled with uPv, the induced edge labels will be dis-
tinct. They prove that Kn is a permutation graph if and only
if n 6 5. Throughout this paper, we use the basic notations

and conventions in graph theory as in [2], and in number the-
ory as in [3] and [4]. We use ŒAŒ to denote the size of the set A,
i.e., its number of its elements,

Qi¼n
i¼1Ai to denote the cartesian

product of the sets A1, A2, . . . , An, and A � B to denote the
usual difference between the sets A and B. All graphs here
are simple, i.e., containing no loops or multiple edges.
(M.A. Seoud), a.e.a.mahran@

tian Mathematical Society.
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2. Some necessary conditions

2.1. Properties of permutation graphs

Definition 2.1.1 [5]. A simple graph G with n vertices to be a
permutation graph if its vertices can be labeled with distinct

integers 1, 2, . . . ,n such that when each edge uv, where u> v, is
labeled with uPv, the induced edge labels will be distinct. A
graph which is not a permutation graph is said to be a non-
permutation graph.

Definition 2.1.2. A maximal permutation graph of n vertices is
a permutation graph such that adding any new edge yields a
non-permutation graph.

Remark 1. The maximal permutation graph is not unique (i.e.,

there are many non-isomorphic maximal permutation graphs
of the same number of vertices). So, we denote them by
Rk(n), where the first graph is denoted by R1(n), and so on . . .

Example 2.1.1. The following graphs are the maximal permu-
tation graphs of six vertices.
g by Elsevier B.V. Open access under CC BY-NC-ND license.
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Considering the four previous graphs without labeling, we
see that the first graph is isomorphic to the third and the sec-
ond graph is isomorphic to the fourth.

Definition 2.1.3 [3]. A positive integer n „ 1 is said to be prime

if it has no divisors other than 1 and n, while it is said to be
composite if it is not prime.

The following lemmas are immediate.

Now, we give two theorems. The first gives an upper bound

for the number of edges of a permutation graph of n vertices,
which is easily calculated, and the second gives a formula of
the exact number of edges of a maximal permutation graph of

n vertices, but it takes very long time to be calculated.

Theorem 2.1.1. If G is a graph of n P 10 vertices, with a number
of edges more than

�kðnÞ ¼ nðn� 1Þ
2

� 2
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 4nÞ

p
2

$ % !

Then G is a non-permutation graph.

Proof. Since i(i + 1)P1 =
i + 1P2, it follows that for every

i(i + 1) 6 n, the two edges connecting the vertices having the

labels 1, i(i+ 1) and i + 1,2 have the same edge label, so, they

cannot co-exist in a permutation graph. Also, we have
iðiþ1ÞPi2�1 ¼ iðiþ1Þ�1Pi2 for every i(i + 1) 6 n. So, the two edges

connecting the vertices having the labels i(i + 1), i2 � 1 and

i(i + 1) � 1, i2 have the same edge label, so, they cannot co-

exist in a permutation graph. Hence, for every i(i+ 1) 6 n we

have two repetitions in the edge labels. To get an upper bound

for the number of edges of a permutation graph we should elim-

inate two edges from the complete graph of n vertices for every i

satisfying i(i + 1) 6 n, it remains to calculate the number of i’s

satisfying i(i + 1) 6 n. The condition iðiþ1ÞPi2�1 ¼ iðiþ1Þ�1Pi2

requires i P 2. The solution of the inequality i2 + i � n 6 0 is

normally
�1�

ffiffiffiffiffiffiffiffiffiffi
ð1þ4nÞ
p
2

6 i 6
�1þ

ffiffiffiffiffiffiffiffiffiffi
ð1þ4nÞ
p
2

. However, since we also

need i P 2, and i has to be an integer, we immediately obtain

the solution 2 6 i 6
�1þ

ffiffiffiffiffiffiffiffiffiffi
ð1þ4nÞ
p
2

� �
, which is valid for n P 6.

So, �kðnÞ ¼ nðn�1Þ
2
� 2

�1þ
ffiffiffiffiffiffiffiffiffiffi
ð1þ4nÞ
p
2

� �
� 1

� �
. To improve the upper

bound �kðnÞ we eliminate ‘‘�1’’ and put the condition n P 10.

Hence for n P 10 we have

�kðnÞ ¼ nðn� 1Þ
2

� 2
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 4nÞ

p
2

$ % !

The following theorem gives the exact number of edges of a
maximal permutation graph.
Theorem 2.1.2. The maximal permutation graph of n vertices

has k(n) edges, where

kðnÞ ¼ nðn� 1Þ
2

þ
Xn
s¼4

Xs�3
r¼1
�

Xs�2
k¼rþ1

Xs�1
m¼kþ1

dðsPr;
mPkÞ

n

66666664

77777775
such that dðx; yÞ ¼ 1; if x ¼ y

0; Otherwise

�

Proof. Let l(n) = k(n) � k(n � 1) which is the number of
edges having non-repeated labels incident to the vertex having
the label n in a maximal permutation graph of n vertices. Then

kðnÞ ¼
Xn
s¼2

lðsÞ

To obtain a formula of l(n) consider the edge labels

2P1
3P1

4P1 � � � n � 1P1
n P

1
3P2

4P2 � � � n � 1P2
n P

2
4P3 � � � n � 1P3

n P
3

Æ Æ
Æ Æ
n � 1Pn�2

n P
n�2

n P
n�1
If sPr is a repetition of a permutation which has appeared in
an earlier column, then the number of such repetitions is

Xs�2
k¼rþ1

Xs�1
m¼kþ1

dðsPr;
mPkÞ

which is less than n, since 3Pr „ 2P1 for every r. So,

0 6
Xs�2
k¼rþ1

Xs�1
m¼kþ1

dðsPr;
mPkÞ < n

Thus

0 6

Xs�2
k¼rþ1

Xs�1
m¼kþ1

dðsPr;
mPkÞ

n
< 1

Hence

�
Ps�2

k¼rþ1
Ps�1

m¼kþ1dðsPr;
mPkÞ

n

$ %
¼
�1; if sPr repeated

0; otherwise

�

So

lðsÞ ¼ s� 1þ
Xs�3
r¼1
�
Ps�2

k¼rþ1
Ps�1

m¼kþ1dðsPr;
mPkÞ

n

$ %

Finally we get

kðnÞ ¼ nðn� 1Þ
2

þ
Xn

s¼4

Xs�3

r¼1
�
Ps�2

k¼rþ1
Ps�1

m¼kþ1dðsPr;
mPkÞ

n

$ %
�
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Corollary 2.1.3 (Condition 1). If G is a graph of n vertices,
which has number of edges more than k(n), then G is a non-per-
mutation graph, where

kðnÞ ¼ nðn� 1Þ
2

þ
Xn

s¼4

Xs�3

r¼1
�
Ps�2

k¼rþ1
Ps�1

m¼kþ1dðsPr;
mPkÞ

n

$ %

Note 1. Since kðnÞ < kðnÞ, it follows that the previous corol-

lary is valid also for kðnÞ.

On permutation graphs
Table 2.1.1 This table presents a comparison between the

values of kðnÞ and kðnÞ.
n k(n) �kðnÞ �kðnÞ�kðnÞ

kðnÞ

10 41 41 0

11 51 51 0

12 60 60 0

13 72 72 0

14 85 85 0

15 97 99 0.02061856

16 112 114 0.01785714

17 128 130 0.01562500

18 145 147 0.01379310

19 163 165 0.01226994

20 180 182 0.01111111

21 200 202 0.01000000

22 221 223 0.00904977

23 243 245 0.00823045

24 264 268 0.01515152

25 288 292 0.01388889

26 313 317 0.01277955

27 339 343 0.01179941

28 366 370 0.01092896

29 394 398 0.01015228

30 421 425 0.00950119

31 451 455 0.00886918

32 482 486 0.00829876

33 514 518 0.00778210

34 547 551 0.00731261

35 581 585 0.00688468

36 616 620 0.00649351

37 652 656 0.00613497

38 689 693 0.00580552

39 727 731 0.00550206

40 766 770 0.00522193

41 806 810 0.00496278

42 845 849 0.00473373

43 887 891 0.00450958

44 930 934 0.00430108

45 974 978 0.00410678

46 1019 1023 0.00392542

47 1065 1069 0.00375587

48 1112 1116 0.00359712

49 1160 1164 0.00344828

50 1209 1213 0.00330852

Table 2.2.1 The values in this table facilitates the calculations

in the next examples.

n k(n) d(n) t(n) 1 + v(n)

2 1 1 2 3

3 3 2 3 4

4 6 3 4 5

5 10 3 3 6

6 13 4 3 6

7 19 5 4 7

8 26 6 5 8

9 34 7 6 9

10 41 7 5 10

11 51 8 6 11

12 60 9 5 11
The following table gives a comparison between k(n) and
kðnÞ (see Table 2.1.1)

Condition 2. If the minimum degree of a graph G of n vertices
is greater than the largest minimum degree in all corresponding

maximal permutation graphs d(n), then the graph is a non-per-
mutation graph.
Condition 3. If G is a graph on n vertices, whose number of ver-

tices of degree n � 1 ismore than t(n), where t(n) is themaximum
number of vertices of degree n � 1 in all maximal permutation
graphs of n vertices, then G is a non-permutation graph.

Lemma 2.1.4. If m is a prime number, then t(m) =

t(m � 1) + 1, where t(n) is the maximum number of vertices
of degree n � 1 in all maximal permutation graphs of n vertices,
and d(m) = d(m � 1) + 1, where d(n) is the largest minimum

degree in all maximal permutation graphs of n vertices.

Proof. Since the labels of the edges incident to the vertex hav-
ing the prime label m in any maximal permutation graph of m
vertices is not repeated, it follows that all the edges incident to

the vertex having the label m exist in any maximal permutation
graph of m vertices. Hence, the vertex having the label m in any
maximal permutation graph of m vertices has degree m � 1,

hence t(m) = t(m � 1) + 1, and d(m) = d(m � 1) + 1. h

Condition 4. If G is a graph of n vertices, and K1+v(n) ˝ G,
where v(n) is the order of the largest complete subgraph in
all maximal permutation graphs on n vertices, then G is a

non-permutation graph.
2.2. Independence of some necessary conditions

Now, we show that the four necessary conditions for permuta-
tion graphs are independent, and they are altogether not suffi-
cient for a graph to be a permutation graph by using the

following table, which we obtained by drawing all maximal
permutation graphs on n vertices as we did Example 2.1.1
(see Table 2.2.1).

Example 2.2.1. Only Condition 1 proves that the following

graph with n = 10 vertices is a non-permutation graph.
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For Condition 2: the minimum degree of the graph equals

7 = d(10). For Condition 3: the number of vertices of
degree 9 = 5 = t(10). For Condition 4: K10 = K1+v(10) � G.
But for Condition 1: the number of edges of

Gm = 42 > 41 = k(10).

Example 2.2.2. Only Condition 3 proves that the following
graph with n = 10 vertices is a non-permutation graph.
For Condition 1: The number of edges of G is m = 40 <
41 = k(10). For Condition 3: the number of vertices of degree
9 = 0 < 5 = t(10). For Condition 4: K10 = K1+v(10) � G. But
For Condition 2 : the minimum degree of the graph equals

8 > 7 = d(10).

Example 2.2.3. Only Condition 3 proves that the following
graph G ¼ K6 þ K4 with n = 10 is a non-permutation graph.
For Condition 1: The number of edges of G is m = 39 <
41 = k(10). For Condition 2: the minimum degree of the graph
equals 6 < 7 = d(10). For Condition 4: K10 = K1+v(10) � G.

But for Condition 3 : the number of vertices of degree
9 = 6 > 5 = t(10).

Example 2.2.4. Only Condition 4 proves that the following

graph G ¼ K11 [ K1 with n= 12 is a non-permutation graph.
For Condition 1: The number of edges of G is m = 55 <

60 = k(12). For Condition 2: the minimum degree of the graph
equals 0 < 9 = d(12). For Condition 3: the number of vertices
of degree 11 = 0 < 5 = t(12). But For Condition 4: K11 =

K1+v(12) j G.

Example 2.2.5. Here we give an example of a non-permutation
graph with n = 12 vertices, but the four conditions fail to
decide that it is a non-permutation graph, i.e., they are alto-

gether not sufficient for a graph to be a non-permutation graph.
For Condition 1: The number of edges of G is m = 59 <
60 = k(12). For Condition 2 : the minimum degree of the
graph equals 7 < 9 = d(12). For Condition 3: the number of

vertices of degree 11 = 4 < 5= t(12). For Condition 4:
K11 = K1+v(12) � G.

It remains to show that the graph G is a non-permutation
graph.

We notice that K10 � G, but among all the 64 maximal per-
mutation graphs of 12 vertices the following graph is the only
maximal permutation graph containing K10 as a subgraph.

So, our graph may be a subgraph only of this maximal
permutation graph. But the number of vertices of degree

greater than 9 in this maximal permutation graph is 9, and
since the number of vertices of degree greater than 9 in our
graph equals 10, it follows that our graph is not a subgraph of
any maximal permutation graph of 12 vertices. Hence it is non-

permutation.
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2.3. Other necessary conditions

Definition 2.3.1. For Any two different positive integers 1 6 i,
j 6 n, we define the set Vn

p :¼ fðk;mÞ : kPm ¼ p; and 1 6 m <
k 6 ng.

For example, if n = 6, V6
6P1
¼ V6

3P2
¼ V6

6 ¼ fð6; 1Þ; ð3; 2Þg,
and V6

6P3
¼ V6

5P4
¼ V6

120 ¼ fð6; 3Þ; ð5; 4Þg.

Definition 2.3.2. A set theoretic operation

Let A1, A2, . . . , Am be disjoint sets satisfying that for each i,

ŒAiŒ > 1, we define the operation
Qm

i¼1Ai :¼ [mi¼1Ai

� 	
�



[mi¼1faig : ai 2 Aig.

Example 2.3.1. If A1 = {a,b,c}, A2 = {d,e}, A3 = {f,g}, thenQ3
i¼1Ai ¼ ffb;c;e;gg;fb;c;e; fg;fb;c;d;gg;fb;c;d; fg;fa; c;e;gg;
fa; c; e; fg;fa; c;d;gg;fa;c;d; fg;fa;b; e;gg;fa;b;e; fg;fa;b;d;gg;
fa;b;d; fgg.

Lemma 2.3.1. The operation
Qm

i¼1Ai is well-defined.

Proof. The well definition of the operation
Qm

i¼1Ai is a direct
consequence of the well definition of the union and
difference. h

Remark 2. After calculating all the sets Vn
iPj

satisfying that

Vn
iPj

��� ��� > 1, and calculating
Q

2P16
iPj6

nPn�1 ;jVn
iPj
j>1V

n
iPj
, we notice

that, for each element E 2
Q

2P16
iPj6

nPn�1 ;jVn
iPj
j>1V

n
iPj
, we

construct a maximal permutation graph by deleting all edges

connecting the vertices having the labels k, m for all (k,m) in

the set E from the complete graph of n vertices.

Now, we calculate the degree of the vertex labeled i in the

maximal permutation graph associated with an element

E 2
Q

2P16
iPj6

nPn�1 ;jVn
iPj
j>1V

n
iPj

by the following lemma.

Lemma 2.3.2. The degree of the vertex labeled t in the

maximal permutation graph associated with an element

E 2
Q

2P16
iPj6

nPn�1 ;jVn
iPj
j>1V

n
iPj

is given by the following function

Fðt;EÞ ¼ n� 1�
P
ðr;sÞ2Ehtðr; sÞ, where

htðr; sÞ ¼
1 ; if r ¼ t or s ¼ t

0 ; otherwise

�

Definition 2.3.3. Let G be a given graph of n vertices. We
define the following three sequences:

(1) The sequence of the distinct degrees of vertices in a maximal

permutation graph arranged in an ascending order, we call it

the maximal degree sequence. In fact we have many different

sequences of such type due to the existence of non-isomorphic

maximal permutation graphs. We denote such a sequence by

DRk ðnÞ ¼ dk
i

� 	
, where dk

i is the ith degree of vertices in the kth

maximal permutation graph.
(2) The sequences CRk ðnÞ ¼ ck
i

� 	
, where ck

i is defined to be the

number of vertices of degree at most dk
i in the kth maximal

permutation graph, we call them the maximal permutation

sequences.

(3) For the given graph G, the graph sequences Bk
G ¼ bk

i

� 	
, where bk

i

is defined to be the number of vertices of degree at most dk
i in G.

Example 2.3.2. For n= 6, V6
6P1
¼ V6

3P2
¼ V6

6 ¼ fð6; 1Þ; ð3; 2Þg,
and V6

6P3
¼ V6

5P4
¼ V6

120 ¼ fð6; 3Þ; ð5; 4Þg. So,
Q

2P16
iPj6

6P5 ;

jV6
iPj
j > 1V6

iPj
¼ ffð6; 1Þ; ð6; 3Þg; fð6; 1Þ; ð5; 4Þg; fð3; 2Þ; ð6; 3Þg;

fð3; 2Þ; ð5; 4Þgg.

The corresponding graphs are R1(6), R2(6), R3(6), R4(6) are

shown in Example 2.1.1, their distinct sequences are
DR2ð6Þ ¼DR4ð6Þ ¼f4;5g;CR2ð6Þ ¼CR4ð6Þ ¼f4;6g, DR1ð6Þ ¼DR3ð6Þ ¼
f3;4;5g;CR1ð6Þ ¼CR3ð6Þ ¼f1;3;6g, and hence d(6) = 4,t(6) = 3.

Theorem 2.3.3 (Condition 5). Let G be a simple graph for

which there exists ik0 such that bkik
0
< ck

ik
0

; for every k, then G is
a non-permutation graph.

Proof. For a fixed k, suppose that there exists ik0 such that

bik
0
< cik

0
, i.e., the number of vertices of degree at most dik

0
in

G is less than the number of vertices of degree at most dik
0
in

the corresponding kth maximal permutation graph, which is

equal to the number of the labels of those vertices in the cor-

responding kth maximal permutation graph. Then, to distrib-

ute these labels on the vertices of G we must put them on

vertices of degrees at most dik
0
, this implies that there exists

at least one label, say rk0, on a vertex of degree at most dik
0
in

the corresponding kth maximal permutation graph must be

given to a vertex of degree more than dik
0
in G, say vk0, then there

exist three vertices wk
0; uk0; zk0, where wk

0 is adjacent with vk0,

and has label, say mk
0, also, the two vertices uk0 and zk0 are adja-

cent having labels, say sk0 and tk0, satisfying rk0 �mk
0 ¼ sk0 � tk0.

Hence the graph G is not a subgraph of the kth maximal per-

mutation graph. Since it happens for each k, it follows that G is

not a subgraph of any maximal permutation graph. Hence G is

a non-permutation graph.

Now, we’ll show that Condition 5 is stronger than Condi-
tions 1–3 in the sense that every non-permutation graph by these

conditions is a non-permutation graph by Condition 5. h

Corollary 2.3.4. If G is a graph of n vertices and m edges such
that, m> k(n), then for each k, there exists ik0 such that

bkik
0
< ck

ik
0

.

Proof. Suppose that m, the number of edges of G, is equal to

1 + k(n), and by deleting an edge we get a permutation graph,

i.e., G becomes a maximal permutation graph. Suppose that

the edge which causes G to be a non-permutation graph with

respect to the kth maximal permutation graph is one of gk,

hk, connecting the vertices vkr ; w
k
s and ykt ; z

k
u respectively, hav-

ing the labels r, s, t, u, such that r P
s =

t P
u, then the degree of
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vkr after removing the edge gk is qðrÞ ¼ dikr and before removing

gk the degree is dikr þ 1, then the number of vertices of degree at

most dikr in G is less than that number in the corresponding kth

maximal permutation graph, i.e., there exists ik0 ¼ ikr such that

bkik
0
< ck

ik
0

. h

Corollary 2.3.5. If the minimum degree of the graph is greater

than d(n), which is defined in Condition 2, then for every k, there
exists i0 such that bki0 < cki0 .

Proof. Since the minimum degree of the graph is greater than

d(n), the largest minimum degree in all corresponding maximal
permutation graphs, then for every k, the number of vertices of
degree at most dk1 in the graph equals zero which is less than
the number of vertices of degree at most dk1 in the correspond-

ing kth maximal permutation graph, and it is clear that i0 = 1,
which satisfies for every k; 0 ¼ bki0 < cki0 . h

Corollary 2.3.6. If a graph G of n vertices has a number of ver-

tices of degree n � 1 more than t(n) – which is defined in Con-
dition 3 –, then there exists i0 such that bki0 < cki0 , for each k.

Proof. Suppose that the number of vertices of degree n � 1 in
G is greater than t(n), which is defined in Condition 3, then the

number of vertices of degree less than n � 1 in G is n � t(n),
which is less than this number in all corresponding maximal
permutation graphs. Then there exists i0 (the second to the last

term) such that bki0 < cki0 , for every k.

Here we give two examples to show that Conditions 4 and 5

are independent, in the sense that none of them implies the
other.
Example 2.3.3. Condition 4 proves that the following graph
G= K11 [ K1 with n= 12 vertices is a non-permutation
graph, while Condition 5 fails to decide that it is a non-

permutation graph.
For Condition 5: the following graph is a maximal
permutation graph having the sequences DRkð12Þ ¼ f7; 10; 11g,
CRkð12Þ ¼ f1; 9; 12g.

Also, the corresponding graph sequence is Bk
G ¼ f1; 12; 12g.

Hence there exists k satisfies that bki P cki , for every i. But For
Condition 4: K1+v(12) = K11 j G.
Example 2.3.4. Condition 5 proves that the following graph
with n = 10 vertices is a non-permutation graph, while Condi-
tion 4 fails to decide that it is a non-permutation graph.

For Condition 4: K10 = K1+v(10) � G. But for Condition 5:
from Table 2.3.1, the corresponding distinct sequences are
DR1ð10Þ ¼ f7; 8; 9g; CR1ð10Þ ¼ f2; 6; 10g.

DR2ð10Þ ¼ f6; 7; 8; 9g; CR2ð10Þ ¼ f1; 2; 5; 10g.
DR3ð10Þ ¼ f5; 8; 9g; CR3ð10Þ ¼ f1; 5; 10g.
DR4ð10Þ ¼ f7; 8; 9g; CR4ð10Þ ¼ f1; 7; 10g.
DR5ð10Þ ¼ f7; 8; 9g; CR5ð10Þ ¼ f3; 5; 10g.
DR6ð10Þ ¼ f6; 8; 9g; CR6ð10Þ ¼ f1; 6; 10g.

Also, their corresponding graph sequences are B1
G ¼

f0;10;10g; B2
G¼f0;0;10;10g; B3

G¼f0;10;10g; B4
G¼f0;10;10g;

B5
G¼ f0;10;10g; B6

G¼f0;10;10g.

Here we give an example of a non-permutation graph with
n= 12 vertices, but Conditions 4 and 5 fail to decide that it is
a non-permutation graph, i.e., they are altogether not sufficient
for a graph to be a non-permutation graph.



Table 2.3.1 This table gives the distinct sequences of all

maximal permutation graphs of n vertices.

n 1 + v(n) DRiðnÞ CRiðnÞ

6 6 {4,5} {4,6}

{3,4,5} {1,3,6}

7 7 {5,6} {4,7}

{4,5,6} {1,3,7}

8 8 {6,7} {4,8}

{5,6,7} {1,3,8}

9 9 {7,8} {4,9}

{6,7,8} {1,3,9}

10 10 {7,8,9} {2,6,10}

{6,7,8,9} {1,2,5,10}

{5,8,9} {1,5,10}

{7,8,9} {1,7,10}

{7,8,9} {3,5,10}

10 {6,8,9} {1,6,10}

11 11 {8,9,10} {2,6,11}

{7,8,9,10} {1,2,5,11}

{6,9,10} {1,5,11}

{8,9,10} {1,7,11}

{8,9,10} {3,5,11}

{7,9,10} {1,6,11}

12 11 {9,10,11} {4,8,12}

{8,9,10,11} {1,3,8,12}

{7,10,11} {1,9,12}

{9,10,11} {3,9,12}

{9,10,11} {2,10,12}

{8,9,10,11} {1,2,9,12}

{8,9,10,11} {1,4,7,12}

{7,9,10,11} {1,2,8,12}

{9,10,11} {1,11,12}

{7,9,10,11} {1,3,7,12}

12 11 {9,10,11} {5,7,12}
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In the following table we give the distinct sequences of all
maximal permutation graphs of n vertices. h
Example 2.3.5.

For Condition 4: K1+v(12) = K11 � G. For Condition 5: from
Table 2.3.1, the following graph is a maximal permutation

graph having the sequences DRkð12Þ ¼ f7; 9; 10; 11g; CRkð12Þ ¼
f1; 2; 8; 12g.
Also, the corresponding graph sequence is Bk
G¼f2;2;8;12g.

Hence there exists k satisfies that bki P cki , for every i. But from

Example 2.2.5. G is a non-permutation graph.
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