We consider a definition of interpolation, called O-interpolation, that includes the possibility of sequences that are not uniformly separated. We prove that the density condition used to describe classical interpolation sequences is actually sufficient to give O-interpolation.
Schuster, A., & Wertz, T. (2013). Interpolation on non-uniformly separated sequences in a weighted Bergman space. Journal of the Egyptian Mathematical Society, 21(2), 97-102. doi: 10.1016/j.joems.2013.01.004
MLA
Alexander Schuster; Tim Wertz. "Interpolation on non-uniformly separated sequences in a weighted Bergman space", Journal of the Egyptian Mathematical Society, 21, 2, 2013, 97-102. doi: 10.1016/j.joems.2013.01.004
HARVARD
Schuster, A., Wertz, T. (2013). 'Interpolation on non-uniformly separated sequences in a weighted Bergman space', Journal of the Egyptian Mathematical Society, 21(2), pp. 97-102. doi: 10.1016/j.joems.2013.01.004
VANCOUVER
Schuster, A., Wertz, T. Interpolation on non-uniformly separated sequences in a weighted Bergman space. Journal of the Egyptian Mathematical Society, 2013; 21(2): 97-102. doi: 10.1016/j.joems.2013.01.004