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We consider a definition of interpolation, called O-interpolation, that includes the pos-
sibility of sequences that are not uniformly separated. We prove that the density condition used to
describe classical interpolation sequences is actually sufficient to give O-interpolation.
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1. Introduction

Interpolation sequences in the weighted Bergman spaces were
characterized by Seip [5], Berndtsson and Ortega-Cerda [2],
and Ortega-Cerda and Seip [3]. In all of these papers, the def-
inition of interpolation sequence was such that every interpo-
lation sequence has to be uniformly separated, that is, there
is a positive lower bound on the distance between pairs of
points in the sequence. Ostrovsky [4] considered a notion of
interpolation that does not require uniform separation. He
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proved that the density condition given in the above articles
is sufficient to give this generalized interpolation in the setting
of the Bargmann-Fock space. The purpose of this note is to
show how this can be done in the weighted Bergman space.

Let ¢ be C?> and subharmonic in D satisfying
0<m< Adp <M where 4= (1-|z[") GL;, Denote by A?ﬂ
the set of functions analytic in D satisfying

1l = </ )P

where do = dA/rn is normalized Lebesgue measure.

For z,{ € D, let ¢,(z) = ﬁ We define the pseudohyper-
bolic metric p(z,() = | (pg(z)| and the pseudohyperbolic disk
D(z,r)={{eD:p(z,{) <r}.

Let I" be a sequence of points in D. For any y € I', we define
o, = infy.,p(y,7), and we let p, = 2. The sequence I' is said to
be uniformly separated if there is a positive constant ¢ such
that o, > ¢ for all y € I'. Let n, = #(I' N D(y,1)).

2

()

e
L=z’

do(z))i < 00,
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We say that a sequence I' = {y} is an O-interpolation se-
quence for A(Zp if for any sequence {a,} of complex numbers
satisfying

26’ —0(7)
Z|a;| (-

el

y) < oo, (1
there is a function f € Afo such that f{y) = a,.

Note that if I" is uniformly separated, then the denominator
in (1) is bounded above and below by constants. Thus (1) holds
if and only if Y2 la,[*e*0) (1 — [3]*) < o0

The invariant convolution of a measure u and a measurable
function g is defined by the formula

. )(0) = (2) D)
#00 = [ sl ¥

whenever the integral exists.

For a sequence I' in the unit disk, define the measure
v=my o (1 - |y|2)25~,,, where 0, is the Dirac delta measure
at the point y.

For 1 < r < 1, define the function

T WS
£ = ¢, log % if 3<[¢ <,
0 otherwise,

where the constant ¢, is chosen so that

da({)
G55 = 1. (2)
/ (1—1[¢?
It can be shown that ¢, log]%r—d as r — 1. Define also

o =@*E.
Our goal in this paper is to prove

Theorem 1 (Main Theorem). Let I' be a sequence of points in
D. Suppose that A is uniformly bounded in D. If there exists
r < 1andd > 0 such that

(v &)(z2) < Agda  &,(z) — & (3)
for all z € D, then I' is an O-interpolation sequence for Ai.

2. Interpolation

O-interpolation is closely related to the classical notion of
interpolation. A sequence I is said to be interpolating for A(zp
if whenever

Sla e (1 ) <

yel

there is a function f € Ai such that f{y) = a, for all y. It fol-
lows from an argument involving the closed graph theorem
that every interpolation sequence for Afp is uniformly sepa-
rated. On the other hand, by the remark in the previous sec-
tion, we see that when I is uniformly separated,
interpolation is equivalent to O-interpolation.

It is proved in [1] and [2] that uniformly separated se-
quences satisfying the condition in Theorem 1 are interpolating
for Ai. It is also shown that the condition is necessary,
although technically this was proved only in the setting of
the Bargmann-Fock space in [3]. The authors note that similar
arguments should work in the Bergman space.

Note that we are making no claim regarding the necessity
direction for O-interpolation, although we do not believe that
the condition is necessary for O-interpolation..

Similar theorems regarding interpolation in the setting of
the Bargmann-Fock space were proved in [5,6,2] and [3]. Ost-
rovsky [4] introduced O-interpolation in the Bargmann-Fock
space and proved an analoge of our Main Theorem.

Versions of interpolation involving non-uniformly sepa-
rated sequences exist in the setting of the Hardy space, the
set of bounded analytic functions and the Payley-Wiener
space. (See [7] for references.) In these cases interpolation se-
quences are not described by density conditions and are qual-
itatively different from interpolating sequences in the Bergman
and Bargmann-Fock spaces.

Luecking [8] considers interpolation on non-uniformly sep-
arated sequences in the Bergman spaces with standard radial
weights. We do not know whether his methods could be mod-
ified to work in the more general setting.

Our proof is modeled after the proofs of Theorems 3 and 4
in [2], as well as the proof in [4]. For the sake of clarity, we will
use notation similar to the one employed in [2].

3. Preliminaries

The following result appears in one form or another in many
of the papers cited above. We do not know if it is available
in precisely the form we require, so we provide a proof here.

Lemma 3.1. Let ¢ be as above, z€ D, and 0 < r < 1. Then
there exists a holomorphic function H_ defined in D(z,r), with
H.(z) = 0, and a constant C, independent of z, such that
lo(z) — (w) +2RH.(w)| < C

for all w € D(z,r).

Proof. Define /.(w) in D(z,r) to be
h.(w) = o(w) — o(2)

+ / (log 2o ¢
D(z,r) 1 -

w—¢&
& 1 —wé

LdA(S).
(4)

Note that 4.(z) = 0. To see that /. is harmonic, it is enough to
show that

) A9(¢)
(1-

-1
ff‘ &%)

al [ woE| _Aeld) o
A <./D(z‘,«) log 1—we| (1 - |P)? dA(@) = Ado(w).
Now,
w—¢ Z(p(y)
5 dA
[)(; o8 1 —w¢ ( ‘f‘ ) (‘5)

o g0

= / log
D(zr)

= [, tozhw—cla0@aae) - [ oxl
— Wl Ag(E)dA()
[ w0ne -6 olae@d@) ~ [ togl
D) P
— WE|Ap(E)dA(E),

where  is harmonic in D(z,r) and G is a Green’s function for
this disk. Then, since y and log |1 — w¢| are harmonic in w, and
by the reproducing property of Green’s functions, we have
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A(/n(_w[ww,o Gln ONap(E)dA(E) ~ [ toxl —weldo(E)ad(s >>

- Z(/DM G(w, &) A@(E)dA(E )) = do(w).

Thus 4. is harmonic, and so there exists a holomorphic func-
tion H. such that 7. = 2RH..

We now seek to establish bounds on the integral in (4). To do
this, we will consider the terms in this integral separately. Since

¢ is subharmonic, and log ’ﬁ) < 0 for ¢ € D(z,r), we have

/ lo
D(z,r)

Moreover,

/ log
D(z,r)

=M

D(z,r)

de(d)
(1— ey

z—¢

1 -z

———5dA(&) <0.

Ap(?)
(1— &Py
z—¢
1_z¢

z=¢
1—z¢

LdA(S)
dA(%)

(1’

Transform this last integral by applying the change of vari-

N
ables ¢ =% (we also have dA(¢) = (ll:l‘jF) dA(w)), and

our integral becomes

Ap(?)
1 _SVAS)
/D<z‘r> £ (117

4
1
> M/ log |w|{ ————= | dA(w)
D(0.r) 1 —|w|
" loglp
= M/ ———pdp
o (1-p?*

We now consider the second term in the integral (4). Let
Dy, = D(z,r) N D(w,r) and D, = D(z,r) — D(w,r). Then

z—¢
1-z¢

dA(¢)

= —C,M.

_ | w—¢ Ma’
/)(z‘r) BIT- wE (1 — 1) A(¢)
— - w—&| o) B
= /D log L= we (1- ¢[) ———35dA(&) /D2
w—c| e
X 1-— ﬂ’é (] _ |é|2)2 dA(i)

Note that the preceding calculations also give us

w— ¢ Zq;(f)
()g*\/D1 lOgl_wé md/l(f)
w—¢ Zqo(é) )
ST : —| 55 dA(E) < G M.
/D(IVJ) © 1 - 1175 (1 _ |é‘2)2 (C)

Furthermore, for & € D,,r < 1‘:& < 1«2542 since ¢ ¢ D(z,r) and
w € D(z,r). So
w—¢ Z(p(é)

— lo ————dA

/DZ IS T EE

A dA(¢
< —/ logr(p—(ézzd/l(f) <—-M- logr/ %
Ds (1=1¢r) i) (1= 1¢%)
_ r’logr
N =7’

and

w—¢ Z(p(é)
— lo ———r = dA
Azgl—Wfa—m¥ ©
~ 21 2r
> _/ log Zrz%dA(cf) > _m.Lglzﬂ‘z. 0
D, 1+ (1 — & 1—r

Recall that invariant Laplacian A is defined for functions
fe (D) by

~ . 1 '
Af(z) = (1 = |21")fe(2) = (- 21*)*41(z),
where A is the standard Laplacian. The definition of the invari-
ant Laplacian can be extended using the theory of distributions.

In particular, if /4 is subharmonic, then there is a positive
measure p such that

= ey
M

/D Zl//(z)h(z

for all Yy € C°°( ) It is customary to express this relationship
by the equation A% = u. When h € C*(ID), that notation con-
flicts with the ordinary interpretation of the invariant Lapla-
cian as a function f'= 4h. The conflict is resolved by
identifying f* with the absolutely continuous measure u for
which du = fdo. Then we will write, with abuse of notation,
Ah=fdo.

We let E(z) = 2log 4. It follows from the reproducing
property of Green’s function, as well as Fubini’s Theorem, that
if u is a measure for which u * E is well-defined, then

Aus E) = (5)

Note also that if / is a function that is harmonic on a disk

D(z,r), then
dell)
[ etout 1—m AL iy
_ ol do({)
chmmmmajﬁy

= h(z).

This follows from the mean value property of harmonic

functions and the fact that % is a radial unit measure.

Recall that ¢'(z) = ¢ * £.(2).

Lemma 3.2. There is a constant C  such that

lo(z) —¢"(z)] <C forall zeD.

Proof.
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The inequality follows from Lemma 3.1, and the last line
follows from (2). The other direction of the inequality is
proved similarly. [

It follows immediately from Lemma 3.2 that a sequence I is
an O-interpolation sequence for A2 if and only if it is an O-
interpolation sequence for A2

We will first prove:

Theorem 2. Let I be a sequence of points in D. Suppose that Z(p
is uniformly bounded in D. If there exists r < 1 and 6 > 0 such
that

(v+&)(z) < Adg(z) = (6)
for all z € D, then I is an O-interpolation sequence for AiA

Assume now that we have proven Theorem 2 and that the
hypothesis of Theorem 1 holds, i.e. that there exists » < 1 and
0 > 0 such that
(v &)(2) < Adpdo * &,(z) — & (7)

for all z € D. Since Aopdo * &(z) = A(pdo * &) (z) = Ag'(2),
we see by Theorem 2 that I is O-interpolating for Az,, which
implies by the above that I' is O-interpolating for A2 (Here we
have used the fact that Ago is uniformly bounded, a fact that
follows from the identity A(¢pdo x &) = Agdo * &..)

For 0 < r < 1, define the function

v, = (v — (vp % &,)do) % E.

It is shown in [9] that v, is well defined and has the property
v(z) <0 in D. It follows from (5) that

Av, = vp — (vp % &)do. (8)
It is also shown in [9] that

) =2 Z {logle,(2)| — I(y,1,2)}

yED(z,r)

= ZZ{log 0, (=

where
1(y,r,2) /é dotl)
(1=
Foryer, deﬁneT—{zelD LE

—1(,r,2)},

loglo. (Ol — 55

Y

1-zy

3p.,
< T’}-
Lemma 3.3. There is a constant C, such that

v.(z) = n,log p2 — Cunr(z,r)
forallzeT,

Proof. Let z € T,. Then

-2
e S
B 1— —zy
5ernD(z,r) Fe(rnp(z)n(rap(y4))
-2
z—7
1
Y el

se(rn(n)—(rp(14))

P\ 1
> n,log (%) +log <6 4) (nr(z.r) =)
> n,logpf, —Cny(z,r),

where C is a positive constant. Note that the first part of the first

inequality holds since p(z,7) < 3’7’ and p(y,7) = p, imply that
- 3p, py

p(z,9) = p, — < -1

Here we have used the fact that p(y,9) >

of the first inequality holds since p(y,7) =

which implies

- 1 3p, 1
p(z,7) = 5—79 3

p The second part
yand p(z,7) <

Here we have used the fact that p, < %
Since 1(7,r,z) < 0, we have for z € T,

v,(z) = n,log p2 - Cap(z,r). O

4. Main result

We proceed now to prove Theorem 2 and assume that there ex-
ists ¥ < 1 and 6 > 0 such that

(vx&)(z) < do(z) — & 9)

for all z € D.
Let

Zlazl

For each y € I', let H, be a function satisfying the conclusion
of Lemma 3.1, with r = p,. Define F,:D(y,p,) — C by
F,(z) = a,e. Then F, is holomorphic in D(y, p,), F,(7) = a,,
and

he ﬁo(n

%) < oo,

p2(1— )’
X 2
;1]
< Cla, e D p2 (1 =[] (10)
The first and second lines follow from Lemma 3.1. The
third line follows from the fact that for each r > 0, there exists
constants C; and C, such that
1—|w?
1 X o
1P
for all w,{ € D(z,r), where z € D is arbitrary. The fourth line
follows from the formula for the area of a pseudohyperbolic

disk, found in [9], for example. The fifth line is a consequence
of the inequality p, < 1.
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Similarly,

/ IE,(0)Pe
D(y,p,)

:/ |a, PO~ (1 — ¢ ) do (£)
D(y,p,

*O(1 — [¢[)da(0)

< Clg,

240t / (1 - |P)do(0)
D(y.p,)

< Cla['e (1= [P)D0, p,)|
o1 = )’
1—p2yf?
e tWp2 (1= ') < Clafe @ (1= pf)'pl. (11)
Let 7:[0,00) — [0, 1] be a smooth function that is identically

1 on [0,4] and identically 0 on [}, c0). Define F: D — C by

)= 2R ()

where 5, = 11((“’ ) ) Note that if p(z,7) > p, forall y € T,

= Cla,[’e (1 = ")

< Clg,

then #,(z) = 0 for all y. Thus Fis supported on U ,crD(y, p,).

Moreover, if y' #y and z € D(y, p,), then, since p, < "('T") and

Py <”(" , we have
pY) o p0) _p0h2) o p0) Py o PGY) P01
oy Py Py Py Py Py 2p,
_rY)
2,07,/ ’

which implies, in particular, that n,(z) =0 if z € D(y,p,).
Thus, if z€ D(y,p,), F( z) = F,(z)n,(z), and in particular,

F(/) = a.
We have
% -rp(g da( ) _ o e
J e (=1 /( DY ACIHEIE
« o0
(I=1r)
- F,(On, (¢ 2e=0(0)
Z/’)(A»',p;‘)' ( )n ( )| €
x 2o0)
(r=1¢r)

< C2|a.},|ze_(”(”")p$(1 -y
C2|a [Peot — ) <

The first inequality follows from (10).
Therefore F is a smooth solution to this problem. Our last
step is to correct F to produce a holomorphic solution. Let

v, =v+ 0.
By Lemma 3.3, we have that
e < % Cnr(r) g-0(2)
2
for all z € T,. It follows from arguments in Chapter 6 of [9]

that if (9) holds, then there is a constant C such that
nr(z,r) < C(1 — 1)~ for all z € D and r < 1. We thus have

e_l//r(z) < Cp”—2n7.€—(p(z) (12)

forall ze T,.
Note that OF is supported on U,T,, from which we have

o~ . dg _ ~ .
AFE ()2 © _: / M (OPIF()Pe
[DI (©Fe - § r.,| n, (OFIF(O]e

N da({)z.
1=
For z € D(y, p,), we have

NG
2|3 (%(2))2 20,(2))(2)
= |on
py py

1 1
P (=P

The first line follows from the chain rule and the third fol-
lows from the identity

(1= lo)
(=P’

|0 (2)I”

p?

v

<C

|on, (2)|

(13)

X

oL ()|} =

Therefore,

[10F@re

01— ¢ da(£)

:Z/T |§’77(€)‘2|ﬁ(C)|2e*Wr(§)(1
- |C|2)do(g)

1
<Cy ———
Zpﬁ(lflvlz)z

y

x / I, (Q) e 01
TT

- ICIZ)dJ(C)

2 : 2+2n

fv)

/ (O e O (1= [¢*)da(0)
<CZ;
S (=)
<[ E@re
D(y.p,)
—1¢P)da(0)
1 ’
O —mr———slale (1
zy:pffz (=P
— )’ p?
7Z\a\ ) T < o0,

The first inequality follows from (13), the second from (12)
and the fourth from (11).
By (9) and (8) we have

A, = Av,+ A =vp — (vp % E)(2) + Ao
>vr = (vrx&)(2) + (vrx&)(2) +0 = 6.

This allows us to apply the following variant of Hérmand-
er’s Theorem, which is due to Ohsawa [10].
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Theorem 3. Let  be any subharmonic function in the disk such
that Ay > 6> 0. Then there is a solution U to the equation
oU = g such that

e e

So there is a function U such that U = dF and

/|U fevio L2, ICI /\8F W

Since e~ is not locally integrable at any y € I', we must have
that U(y) = 0. Moreover,
2 PR

fweremosis e [uoreto ;i <

Now, define the function F = F— U. Then Ky) = a, and Fis
holomorphic. Since both F and U have finite L2 norms, so
does F.

/ g2 (1 — |¢) da(?).

—[¢)da (L)
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