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Abstract We consider a definition of interpolation, called O-interpolation, that includes the pos-

sibility of sequences that are not uniformly separated. We prove that the density condition used to

describe classical interpolation sequences is actually sufficient to give O-interpolation.
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1. Introduction

Interpolation sequences in the weighted Bergman spaces were
characterized by Seip [5], Berndtsson and Ortega-Cerdà [2],
and Ortega-Cerdà and Seip [3]. In all of these papers, the def-
inition of interpolation sequence was such that every interpo-

lation sequence has to be uniformly separated, that is, there
is a positive lower bound on the distance between pairs of
points in the sequence. Ostrovsky [4] considered a notion of

interpolation that does not require uniform separation. He
(A. Schuster), tmwertz@

tian Mathematical Society.

g by Elsevier

ical Society. Production and hostin

1.004
proved that the density condition given in the above articles
is sufficient to give this generalized interpolation in the setting

of the Bargmann-Fock space. The purpose of this note is to
show how this can be done in the weighted Bergman space.

Let u be C2 and subharmonic in D satisfying

0 < m 6 eDu 6M where eD ¼ ð1� jzj2Þ2 @2

@z@�z
. Denote by A2

u

the set of functions analytic in D satisfying

kfk ¼
Z

D

jfðzÞj2 e�uðzÞ

1� jzj2
drðzÞ

 !1
2

<1;

where dr = dA/p is normalized Lebesgue measure.

For z; f 2 D, let ufðzÞ ¼ f�z
1��fz

. We define the pseudohyper-
bolic metric q(z,f) = Œuf(z)Œ and the pseudohyperbolic disk
Dðz; rÞ ¼ ff 2 D : qðz; fÞ < rg.

Let C be a sequence of points in D. For any c 2 C, we define
rc ¼ infc0–cqðc; c0Þ, and we let qc ¼

rc

2
. The sequence C is said to

be uniformly separated if there is a positive constant r such
that rc P r for all c 2 C. Let nc ¼ # C \D c; 1

2

� �� �
.
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We say that a sequence C = {c} is an O-interpolation se-
quence for A2

u if for any sequence {ac} of complex numbers
satisfyingX
c2C
jacj2

e�uðcÞ

q2nc
c

ð1� jcj2Þ <1; ð1Þ

there is a function f 2 A2
u such that f(c) = ac.

Note that if C is uniformly separated, then the denominator
in (1) is bounded above and below by constants. Thus (1) holds
if and only if

P
c2Cjacj2e�uðcÞð1� jcj2Þ <1.

The invariant convolution of a measure l and a measurable

function g is defined by the formula

ðl � gÞðfÞ ¼
Z

D

gðufðzÞÞ
dlðzÞ
ð1� jzj2Þ2

whenever the integral exists.

For a sequence C in the unit disk, define the measure
m ¼ p

P
c2Cð1� jcj

2Þ2dc, where dc is the Dirac delta measure
at the point c.

For 1
2
< r < 1, define the function

nrðfÞ ¼
cr log 1

jfj2 if 1
2
< jfj < r;

0 otherwise;

(
where the constant cr is chosen so thatZ

D

nrðfÞ
drðfÞ
ð1� jfj2Þ2

¼ 1: ð2Þ

It can be shown that cr log 1
1�r! 1 as r fi 1. Define also

ur = u * nr.
Our goal in this paper is to prove

Theorem 1 (Main Theorem). Let C be a sequence of points in

D. Suppose that eDu is uniformly bounded in D. If there exists
r< 1 and d > 0 such that

ðm � nrÞðzÞ < eDudr � nrðzÞ � d ð3Þ

for all z 2 D, then C is an O-interpolation sequence for A2
u.
2. Interpolation

O-interpolation is closely related to the classical notion of

interpolation. A sequence C is said to be interpolating for A2
u

if wheneverX
c2C
jacj2e�uðcÞð1� jcj2Þ <1;

there is a function f 2 A2
u such that f(c) = ac for all c. It fol-

lows from an argument involving the closed graph theorem
that every interpolation sequence for A2

u is uniformly sepa-
rated. On the other hand, by the remark in the previous sec-

tion, we see that when C is uniformly separated,
interpolation is equivalent to O-interpolation.

It is proved in [1] and [2] that uniformly separated se-

quences satisfying the condition in Theorem 1 are interpolating
for A2

u. It is also shown that the condition is necessary,
although technically this was proved only in the setting of

the Bargmann-Fock space in [3]. The authors note that similar
arguments should work in the Bergman space.

Note that we are making no claim regarding the necessity

direction for O-interpolation, although we do not believe that
the condition is necessary for O-interpolation..
Similar theorems regarding interpolation in the setting of
the Bargmann-Fock space were proved in [5,6,2] and [3]. Ost-
rovsky [4] introduced O-interpolation in the Bargmann-Fock

space and proved an analoge of our Main Theorem.
Versions of interpolation involving non-uniformly sepa-

rated sequences exist in the setting of the Hardy space, the

set of bounded analytic functions and the Payley-Wiener
space. (See [7] for references.) In these cases interpolation se-
quences are not described by density conditions and are qual-

itatively different from interpolating sequences in the Bergman
and Bargmann-Fock spaces.

Luecking [8] considers interpolation on non-uniformly sep-
arated sequences in the Bergman spaces with standard radial

weights. We do not know whether his methods could be mod-
ified to work in the more general setting.

Our proof is modeled after the proofs of Theorems 3 and 4

in [2], as well as the proof in [4]. For the sake of clarity, we will
use notation similar to the one employed in [2].

3. Preliminaries

The following result appears in one form or another in many
of the papers cited above. We do not know if it is available

in precisely the form we require, so we provide a proof here.

Lemma 3.1. Let u be as above, z 2 D, and 0 < r< 1. Then
there exists a holomorphic function Hz defined in D(z, r), with
Hz(z) = 0, and a constant C, independent of z, such that

juðzÞ � uðwÞ þ 2RHzðwÞj 6 C

for all w 2 D(z, r).

Proof. Define hz(w) in D(z, r) to be

hzðwÞ ¼ uðwÞ � uðzÞ

þ
Z
Dðz;rÞ

log
z� n
1� �zn

���� ����� log
w� n
1� �wn

���� ����� � eDuðnÞ
ð1� jnj2Þ2

dAðnÞ:

ð4Þ
Note that hz(z) = 0. To see that hz is harmonic, it is enough to
show that

eD Z
Dðz;rÞ

log
w� n
1� �wn

���� ���� eDuðnÞ
ð1� jnj2Þ2

dAðnÞ
 !

¼ eDuðwÞ:

Now,Z
Dðz;rÞ

log
w� n
1� �wn

���� ���� eDuðnÞ
ð1� jnj2Þ2

dAðnÞ

¼
Z
Dðz;rÞ

log
w� n
1� �wn

���� ����DuðnÞdAðnÞ

¼
Z
Dðz;rÞ

log jw� njDuðnÞdAðnÞ �
Z
Dðz;rÞ

log j1

� �wnjDuðnÞdAðnÞ

¼
Z
Dðz;rÞ
½wðw; nÞ � Gðw; nÞ�DuðnÞdAðnÞ �

Z
Dðz;rÞ

log j1

� �wnjDuðnÞdAðnÞ;

where w is harmonic in D(z, r) and G is a Green’s function for
this disk. Then, since w and log j1� �wnj are harmonic in w, and

by the reproducing property of Green’s functions, we have
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eD Z
Dðz;rÞ
½wðw; nÞ � Gðw; nÞ�DuðnÞdAðnÞ �

Z
Dðz;rÞ

log j1� �wnjDuðnÞdAðnÞ
 !

¼ eD Z
Dðz;rÞ
�Gðw; nÞDuðnÞdAðnÞ

 !
¼ eDuðwÞ:

Thus hz is harmonic, and so there exists a holomorphic func-
tion Hz such that hz ¼ 2RHz.

We now seek to establish bounds on the integral in (4). To do
this, we will consider the terms in this integral separately. Since

u is subharmonic, and log z�n
1��zn

��� ��� 6 0 for n 2 D(z, r), we have

Z
Dðz;rÞ

log
z� n
1� �zn

���� ���� eDuðnÞ
ð1� jnj2Þ2

dAðnÞ 6 0:

Moreover,Z
Dðz;rÞ

log
z� n
1� �zn

���� ���� eDuðnÞ
ð1� jnj2Þ2

dAðnÞ

P M

Z
Dðz;rÞ

log
z� n
1� �zn

���� ���� dAðnÞ
ð1� jnj2Þ2

:

Transform this last integral by applying the change of vari-

ables n ¼ z�w
1��zw

(we also have dAðnÞ ¼ 1�jzj2

1�jwj2

� �2
dAðwÞ), and

our integral becomesZ
Dðz;rÞ

log
z� n
1� �zn

���� ���� eDuðnÞ
ð1� jnj2Þ2

dAðnÞ

P M

Z
Dð0;rÞ

log jwj 1

1� jwj2

 !4

dAðwÞ

¼M

Z r

0

log jqj
ð1� q2Þ4

q dq ¼ �CrM:

We now consider the second term in the integral (4). Let
D1 = D(z, r) \ D(w, r) and D2 = D(z, r) � D(w, r). Then

�
Z
Dðz;rÞ

log
w� n
1� �wn

���� ���� eDuðnÞ
ð1� jnj2Þ2

dAðnÞ

¼ �
Z
D1

log
w� n
1� �wn

���� ���� eDuðnÞ
ð1� jnj2Þ2

dAðnÞ �
Z
D2

� log
w� n
1� �wn

���� ���� eDuðnÞ
ð1� jnj2Þ2

dAðnÞ:

Note that the preceding calculations also give us

0 6 �
Z
D1

log
w� n
1� �wn

���� ���� eDuðnÞ
ð1� jnj2Þ2

dAðnÞ

6 �
Z
Dðw;rÞ

log
w� n
1� �wn

���� ���� eDuðnÞ
ð1� jnj2Þ2

dAðnÞ 6 CrM:

Furthermore, for n 2 D2; r 6
w�n
1��wn

��� ��� 6 2r
1þr2 since n R D(z, r) and

w 2 D(z, r). So

�
Z
D2

log
w� n
1� �wn

���� ���� eDuðnÞ
ð1� jnj2Þ2

dAðnÞ

6 �
Z
D2

log r
eDuðnÞ
ð1� jnj2Þ2

dAðnÞ 6 �M � log r
Z
Dðz;rÞ

dAðnÞ
ð1� jnj2Þ2

¼ �Mr2 log r

1� r2
;

and
�
Z
D2

log
w� n
1� �wn

���� ���� eDuðnÞ
ð1� jnj2Þ2

dAðnÞ

P �
Z
D2

log
2r

1þ r2

eDuðnÞ
ð1� jnj2Þ2

dAðnÞP �m �
r2 log 2r

1þr2

1� r2
: �

Recall that invariant Laplacian eD is defined for functions

f 2 C2ðDÞ by

eDfðzÞ ¼ ð1� jzj2Þ2fz�zðzÞ ¼
1

4
ð1� jzj2Þ2DfðzÞ;

where D is the standard Laplacian. The definition of the invari-
ant Laplacian can be extended using the theory of distributions.

In particular, if h is subharmonic, then there is a positive
measure l such thatZ

D

eDwðzÞhðzÞ drðzÞ
ð1� jzj2Þ2

¼
Z

D

wðzÞ dlðzÞ
ð1� jzj2Þ2

for all w 2 C10 ðDÞ. It is customary to express this relationship

by the equation eDh ¼ l. When h 2 C2ðDÞ, that notation con-
flicts with the ordinary interpretation of the invariant Lapla-
cian as a function f ¼ eDh. The conflict is resolved by

identifying f with the absolutely continuous measure l for
which dl = fdr. Then we will write, with abuse of notation,eDh ¼ f dr.

We let E(z) = 2logŒzŒ. It follows from the reproducing
property of Green’s function, as well as Fubini’s Theorem, that
if l is a measure for which l * E is well-defined, theneDðl � EÞ ¼ l: ð5Þ

Note also that if h is a function that is harmonic on a disk
Dðz; rÞ, thenZ

D

nrðuzðfÞÞhðfÞ
drðfÞ
ð1� jfj2Þ2

¼
Z

D

nrðfÞhðuzðfÞÞ
drðfÞ
ð1� jfj2Þ2

¼
Z
Dð0;rÞ

nrðfÞhðuzðfÞÞ
drðfÞ
ð1� jfj2Þ2

¼ hðzÞ:

This follows from the mean value property of harmonic

functions and the fact that nrðfÞdrðfÞ
ð1�jfj2Þ2 is a radial unit measure.

Recall that ur(z) = u * nr(z).

Lemma 3.2. There is a constant C such that
Œu(z) � ur(z)Œ 6 C for all z 2 D.

Proof.

uðzÞ � urðzÞ ¼ uðzÞ � udr � nrðzÞ

¼ uðzÞ �
Z

D

nrðuzðfÞÞuðfÞ
drðfÞ
ð1� jfj2Þ2

6 uðzÞ þ C

Z
D

nrðuzðfÞÞ
drðfÞ
ð1� jfj2Þ2

� uðzÞ

�
Z

D

nrðuzðfÞÞ
drðfÞ
ð1� jfj2Þ2

� 2

�
Z

D

nrðuzðfÞÞRHzðfÞ
drðfÞ
ð1� jfj2Þ2

¼ C:
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The inequality follows from Lemma 3.1, and the last line

follows from (2). The other direction of the inequality is
proved similarly. h

It follows immediately from Lemma 3.2 that a sequence C is
an O-interpolation sequence for A2

u if and only if it is an O-
interpolation sequence for A2

ur .

We will first prove:

Theorem 2. Let C be a sequence of points in D. Suppose that eDu
is uniformly bounded in D. If there exists r < 1 and d > 0 such
that

ðm � nrÞðzÞ < eDuðzÞ � d ð6Þ

for all z 2 D, then C is an O-interpolation sequence for A2
u.

Assume now that we have proven Theorem 2 and that the
hypothesis of Theorem 1 holds, i.e. that there exists r < 1 and
d > 0 such that

ðm � nrÞðzÞ < eDudr � nrðzÞ � d ð7Þ

for all z 2 D. Since eDudr � nrðzÞ ¼ eDðudr � nrÞðzÞ ¼ eDurðzÞ,
we see by Theorem 2 that C is O-interpolating for A2

ur , which

implies by the above that C is O-interpolating for A2
u. (Here we

have used the fact that eDur is uniformly bounded, a fact that
follows from the identity eDðudr � nrÞ ¼ eDudr � nr.)

For 0 < r < 1, define the function

vr ¼ ðmC � ðmC � nrÞdrÞ � E:

It is shown in [9] that vr is well defined and has the property
vr(z) 6 0 in D. It follows from (5) thateDvr ¼ mC � ðmC � nrÞdr: ð8Þ

It is also shown in [9] that

vrðzÞ ¼ 2
X

c2Dðz;rÞ
flog jucðzÞj � Iðc; r; zÞg

¼ 2
X

c

flog jucðzÞj � Iðc; r; zÞg;

where

Iðc; r; zÞ ¼
Z

D

nrðucðfÞÞ log juzðfÞj
drðfÞ
ð1� jfj2Þ2

:

For c 2 C, define Tc ¼ z 2 D :
qc

4
6

z�c
1��zc

��� ��� 6 3qc

4

n o
.

Lemma 3.3. There is a constant Cr such that

vrðzÞP nc logq2
c � CrnCðz; rÞ

for all z 2 Tc.

Proof. Let z 2 Tc. Then

X
~c2C\Dðz;rÞ

log
z�~c
1� �z~c

���� ����2¼ X
~c2ðC\Dðz;rÞÞ\ C\D c;12ð Þð Þ

log
z�~c
1� �z~c

���� ����2

þ
X

~c2ðC\Dðz;rÞÞ� C\D c;12ð Þð Þ
log

z�~c
1� �z~c

���� ����2
P nc log

qc

4

� �2
þ log

1

64

� �
ðnCðz;rÞ�ncÞ

P nc logq2
c �CnCðz;rÞ;
where C is a positive constant. Note that the first part of the first

inequality holds since qðz; cÞ 6 3qc

4
and qðc;~cÞP qc imply that

qðz;~cÞP qc �
3qc

4
¼

qc

4
:

Here we have used the fact that qðc;~cÞP qc. The second part

of the first inequality holds since qðc;~cÞP 1
2
and qðz; cÞ 6 3qc

4
,

which implies

qðz;~cÞP 1

2
�
3qc

4
P

1

8
:

Here we have used the fact that qc <
1
2
.

Since Ið~c; r; zÞ 6 0, we have for z 2 Tc

vrðzÞP nc log q2
c � CrnCðz; rÞ: �
4. Main result

We proceed now to prove Theorem 2 and assume that there ex-
ists r< 1 and d > 0 such that

ðm � nrÞðzÞ < eDuðzÞ � d ð9Þ

for all z 2 D.

LetX
i

jaij2
e�uðciÞ

q
2nci
ci

ð1� jcij
2Þ <1:

For each c 2 C, let Hc be a function satisfying the conclusion

of Lemma 3.1, with r = qc. Define Fc : Dðc; qcÞ ! C by
FcðzÞ ¼ ace

HcðzÞ. Then Fc is holomorphic in D(c,qc), Fc(c) = ac,
andZ
Dðc;qcÞ

jFcðfÞj2e�uðfÞ drðfÞ
1� jfj2

¼
Z
Dðc;qcÞ

jacj2e2RHcðfÞ�uðfÞ

� drðfÞ
1� jfj2

6 Cjacj2e�uðcÞ
Z
Dðc;qcÞ

drðfÞ
1� jfj2

6 Cjacj2e�uðcÞ

� 1

1� jcj2
jDðc; qcÞj

¼ Cjacj2e�uðcÞ 1

1� jcj2

�
q2

cð1� jcj
2Þ2

1� q2
c jcj

2

6 Cjacj2e�uðcÞq2
cð1� jcj

2Þ: ð10Þ

The first and second lines follow from Lemma 3.1. The
third line follows from the fact that for each r > 0, there exists
constants C1 and C2 such that

C1 6
1� jwj2

1� jfj2
6 C2

for all w,f 2 D(z, r), where z 2 D is arbitrary. The fourth line
follows from the formula for the area of a pseudohyperbolic

disk, found in [9], for example. The fifth line is a consequence
of the inequality qc 6

1
2
.
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Similarly,Z
Dðc;qcÞ

jFcðfÞj2e�uðfÞð1� jfj2ÞdrðfÞ

¼
Z
Dðc;qcÞ

jacj2e2RHcðfÞ�uðfÞð1� jfj2ÞdrðfÞ

6 Cjacj2e�uðcÞ
Z
Dðc;qcÞ

ð1� jfj2ÞdrðfÞ

6 Cjacj2e�uðcÞð1� jcj2ÞjDðc; qcÞj

¼ Cjacj2e�uðcÞð1� jcj2Þ
q2

cð1� jcj
2Þ2

1� q2
c jcj

2

6 Cjacj2e�uðcÞq2
cð1� jcj

2Þ3 6 Cjacj2e�uðcÞð1� jcj2Þ3q2
c : ð11Þ

Let g:[0,1) fi [0,1] be a smooth function that is identically
1 on 0; 1

4

	 

and identically 0 on 3

4
;1
�	
. Define bF : D! C bybFðzÞ ¼X

c

FcðzÞgcðzÞ;

where gc ¼ g
ucðzÞ
qc

� �2� �
. Note that if q(z,c) P qc for all c 2 C,

then gc(z) = 0 for all c. Thus bF is supported on [ c2CD(c,qc).

Moreover, if c0 „ c and z 2 D(c,qc), then, since qc 6
qðc;c0Þ

2
and

qc0 6
qðc;c0Þ

2
, we have

qðz; c0Þ
qc0

P
qðc; c0Þ

qc0
� qðc; zÞ

qc0
P

qðc; c0Þ
qc0

�
qc

qc0
P

qðc; c0Þ
qc0

� qðc; c0Þ
2qc0

¼ qðc; c0Þ
2qc0

P 1;

which implies, in particular, that gc0 ðzÞ ¼ 0 if z 2 D(c,qc).
Thus, if z 2 D(c,qc), bFðzÞ ¼ FcðzÞncðzÞ, and in particular,bFðcÞ ¼ ac.

We haveZ
D

j bFðfÞj2e�uðfÞ drðfÞ
ð1� jfj2Þ

¼
Z
[c2CDðc;qcÞ

j
X
c02C

Fc0 ðfÞgc0 ðfÞj
2
e�uðfÞ

� drðfÞ
ð1� jfj2Þ

¼
X

c

Z
Dðc;qcÞ

jFcðfÞncðfÞj2e�uðfÞ

� drðfÞ
ð1� jfj2Þ

6 C
X

c

jacj2e�uðcÞq2
cð1� jcj

2Þ

6 C
X

c

jacj2e�uðcÞq�2nc
c ð1� jcj2Þ <1:

The first inequality follows from (10).

Therefore bF is a smooth solution to this problem. Our last
step is to correct bF to produce a holomorphic solution. Let

wr ¼ vr þ u:

By Lemma 3.3, we have that

e�wrðzÞ 6
1

q2nc
c

eCrnCðz;rÞe�uðzÞ

for all z 2 Tc. It follows from arguments in Chapter 6 of [9]

that if (9) holds, then there is a constant C such that
nC(z, r) 6 C(1 � r)�1 for all z 2 D and r < 1. We thus have
e�wrðzÞ 6 Cq�2nc
c e�uðzÞ ð12Þ

for all z 2 Tc.

Note that �@ bF is supported on ¨cTc, from which we haveZ
D

j �@ bFðfÞj2e�wrðfÞ drðfÞ
1� jfj2

¼
X

c

Z
Tc

j �@gcðfÞj
2j bFðfÞj2e�wrðfÞ

� drðfÞ
1� jfj2

:

For z 2 D(c,qc), we have

j �@gcðzÞj
2 ¼ �@g

ucðzÞ
qc

� �2
 !

2ucðzÞu0cðzÞ
qc

�����
�����
2

6 C
ju0cðzÞj

2

q2
c

6 C
1

q2
c

1

ð1� jcj2Þ2
: ð13Þ

The first line follows from the chain rule and the third fol-
lows from the identity

ju0fðzÞj
2 ¼
ð1� jufðzÞj

2Þ2

ð1� jfj2Þ2
:

Therefore,Z
D

j �@ bFðfÞj2e�wrðfÞð1�jfj2ÞdrðfÞ¼
X

c

Z
Tc

j �@gcðfÞj
2j bFðfÞj2e�wrðfÞð1

�jfj2ÞdrðfÞ

6C
X

c

1

q2
cð1�jcj

2Þ2

�
Z
Tc

jFcðfÞj2e�wrðfÞð1

�jfj2ÞdrðfÞ

6Cr

X
c

1

q2þ2nc
c ð1�jcj2Þ2

�
Z
Tc

jFcðfÞj2e�uðfÞð1�jfj2ÞdrðfÞ

6Cr

X
c

1

q2þ2nc
c ð1�jcj2Þ2

�
Z
Dðc;qcÞ

jFcðfÞj2e�uðfÞð1

�jfj2ÞdrðfÞ

6C
X

c

1

q2þ2nc
c ð1�jcj2Þ2

jacj2e�uðcÞð1

�jcj2Þ3q2
c

¼
X

c

jacj2e�uðcÞð1�jcj2Þq�2nc
c <1:

The first inequality follows from (13), the second from (12)

and the fourth from (11).
By (9) and (8) we have

eDwr ¼ eDvr þ eDu ¼ mC � ðmC � nrÞðzÞ þ eDu

> mC � ðmC � nrÞðzÞ þ ðmC � nrÞðzÞ þ d P d:

This allows us to apply the following variant of Hörmand-

er’s Theorem, which is due to Ohsawa [10].
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Theorem 3. Let w be any subharmonic function in the disk such

that eDw > d > 0. Then there is a solution U to the equation
�@U ¼ g such thatZ
D

jUðfÞj2 e�wðfÞ

1� jfj2
drðfÞ 6 C

Z
D

jgj2e�wðfÞð1� jfj2Þ drðfÞ:

So there is a function U such that �@U ¼ �@ bF andZ
D

jUðfÞj2e�wrðfÞ drðfÞ
1� jfj2

6 C

Z
D

j �@ bFðfÞj2e�wrðfÞð1� jfj2ÞdrðfÞ

<1:

Since e�wrðfÞ is not locally integrable at any c 2 C, we must have

that U(c) = 0. Moreover,Z
D

jUðfÞj2e�uðfÞ drðfÞ
1� jfj2

6 C

Z
D

jUðfÞj2e�wrðfÞ drðfÞ
ð1� jfj2Þ

<1:

Now, define the function F ¼ bF �U. Then F(c) = ac and F is

holomorphic. Since both bF and U have finite L2
u norms, so

does F.
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