In the present work, we introduce the notion of a generalized Jordan triple derivation associated with a Hochschild 2–cocycle, and we prove results which imply under some conditions that every generalized Jordan triple derivation associated with a Hochschild 2–cocycle of a prime ring with characteristic different from 2 is a generalized derivation associated with a Hochschild 2–cocycle.
Ezzat, O., & Nabiel, H. (2019). Generalized Jordan triple derivations associated with Hochschild 2–cocycles of rings. Journal of the Egyptian Mathematical Society, 27(1), 1-8. doi: 10.1186/s42787-019-0003-3
MLA
O. H. Ezzat; H. Nabiel. "Generalized Jordan triple derivations associated with Hochschild 2–cocycles of rings", Journal of the Egyptian Mathematical Society, 27, 1, 2019, 1-8. doi: 10.1186/s42787-019-0003-3
HARVARD
Ezzat, O., Nabiel, H. (2019). 'Generalized Jordan triple derivations associated with Hochschild 2–cocycles of rings', Journal of the Egyptian Mathematical Society, 27(1), pp. 1-8. doi: 10.1186/s42787-019-0003-3
VANCOUVER
Ezzat, O., Nabiel, H. Generalized Jordan triple derivations associated with Hochschild 2–cocycles of rings. Journal of the Egyptian Mathematical Society, 2019; 27(1): 1-8. doi: 10.1186/s42787-019-0003-3