In this paper, we introduce and study an explicit iterative method to approximate a common solution of split generalized vector equilibrium problem and fixed point problem for a finite family of nonexpansive mappings in real Hilbert spaces using the viscosity Cesa`ro mean approximation. We prove a strong convergence theorem for the sequences generated by the proposed iterative scheme. Further we give a numerical example to justify our main result. The results presented in this paper generalize, improve and unify the previously known results in this area.
Kazmi, K., Rizvi, S., & Farid, M. (2015). A viscosity Cesa`ro mean approximation method for split generalized vector equilibrium problem and fixed point problem. Journal of the Egyptian Mathematical Society, 23(2), 362-370. doi: 10.1016/j.joems.2014.05.001
MLA
K.R. Kazmi; S.H. Rizvi; Mohd. Farid. "A viscosity Cesa`ro mean approximation method for split generalized vector equilibrium problem and fixed point problem", Journal of the Egyptian Mathematical Society, 23, 2, 2015, 362-370. doi: 10.1016/j.joems.2014.05.001
HARVARD
Kazmi, K., Rizvi, S., Farid, M. (2015). 'A viscosity Cesa`ro mean approximation method for split generalized vector equilibrium problem and fixed point problem', Journal of the Egyptian Mathematical Society, 23(2), pp. 362-370. doi: 10.1016/j.joems.2014.05.001
VANCOUVER
Kazmi, K., Rizvi, S., Farid, M. A viscosity Cesa`ro mean approximation method for split generalized vector equilibrium problem and fixed point problem. Journal of the Egyptian Mathematical Society, 2015; 23(2): 362-370. doi: 10.1016/j.joems.2014.05.001