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In this paper, we introduce and study an explicit iterative method to approximate a com-
mon solution of split generalized vector equilibrium problem and fixed point problem for a finite
family of nonexpansive mappings in real Hilbert spaces using the viscosity Cesaro mean approxi-
mation. We prove a strong convergence theorem for the sequences generated by the proposed iter-
ative scheme. Further we give a numerical example to justify our main result. The results presented
in this paper generalize, improve and unify the previously known results in this area.
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1. Introduction

Throughout the paper unless otherwise stated, let H; and H,
be real Hilbert spaces with inner product (-,-) and norm
|l |l. Let C and Q be nonempty closed convex subsets of H,
and H,, respectively. Let Y be a Hausdorff topological space
and P be a pointed, proper, closed and convex cone of Y with
intP # ().
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In 1994, Blum and Oettli [1] introduced and studied the fol-
lowing equilibrium problem (in short, EP): Find x € C such
that

F] (X,y) 2 07 V_}’ € C7 (11)

where F; : C x C — R is a bifunction. We denote the solution
set of EP(1.1) by sol(EP(1.1)).

In the last two decades, EP(1.1) has been generalized and
extensively studied in many directions due to its importance;
see for example [2-10] for the literature on the existence and
iterative approximation of solution of the various generaliza-
tions of EP(1.1). Recently, Kazmi and Rizvi [11] considered
the following pair of equilibrium problems in different spaces,
which is called split equilibrium problem (in short, SEP): Let
Fi:CxC—Rand F,: Q x Q — R be nonlinear bifunctions
and let 4: Hy — H, be a bounded linear operator then the
split equilibrium problem (SEP) is to find x* € C such that
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Fi(x*,x) 20, VxeC, (1.2)

and such that

V' =Ax" € Q solves Fr,(y*,y) =0, VyeOQ. (1.3)

They introduced and studied some iterative methods for find-
ing the common solution of SEP(1.2) and (1.3), variational
inequality and fixed point problems. We denote the solution
set of SEP(1.2) and (1.3) by sol(SEP(1.2) and
(1.3)) := {p € sol(EP(1.2)) : Ap € sol(EP(1.3))}. For related
work, see [12,14].

In this paper, we introduce and study the following class of
split generalized vector equilibrium problems (in short,
SGVEP):

Let F1:CxC—Y and F,: Q0 x Q — Y be nonlinear
bimappings and let ¢, : C— Y, ¢,: Q — Y be nonlinear
mappings, then SGVEP is to find x* € C such that

Fi(x",x) + ¢y(x) — ¢y (x") € P, Vx€C, (1.4)
and such that

V' =Ax" € Q solves F>,(y",y)+ ¢,(y) — d,(v) € P, Vye Q.
(1.5)

When looked separately, (1.4) is the generalized vector equilib-
rium problem (GVEP) and we denote its solution set by sol(G-
VEP(1.4)). The SGVEP(1.4) and (1.5) constitutes a pair of
generalized vector equilibrium problems which have to be
solved so that the image y* = Ax" under a given bounded lin-
ear operator A, of the solution x* of the GVEP(1.4) in H, is the
solution of another GVEP(1.5) in another space H,, we denote
the solution set of GVEP(1.5) by sol(GVEP(1.5)). The solution
set of SGVEP(1.4) and (1.5) is denoted by I' = {p € sol
(GVEP(1.4)) : Ap € sol(GVEP(1.5))}. GVEP(1.4) has been
studied by Kazmi and Farid [19] in Banach spaces.

SGVEP(1.4) and (1.5) generalize multiple-sets split feasibil-
ity problem. It also includes as special case, the split varia-
tional inequality problem [15] which is the generalization of
split zero problems and split feasibility problems, see for detail
[33,34,15-17].

If ¢, = ¢, =0, then SGVEP(1.4) and (1.5) reduces to the
split vector equilibrium problem (in short, SVEP): Find
x* € C such that

Fi(x*,x)e P, VxeC, (1.6)
and such that

V' =Ax" € Q solves Fr,(y",y) € P, VyeQ, (1.7)

which appears to be new and is the vector version of SEP(1.2)
and (1.3) [11]. Further, if H; = H,, C = Q, and F, = F,, then
SVEP(1.6) and (1.7) reduces to the strong vector equilibrium
problem (in short, VEP) of finding x* € C such that

Fi(x*,x)e P, VxeC(, (1.8)

which has been studied by Kazmi and Khan [18]. In recent
years, the vector equilibrium problem has been intensively
studied by many authors (see, for example [2-4,18] and the ref-
erences therein).

Next, we recall that a mapping T: C — C is said to be con-
traction if there exists a constant o € (0,1) such that
I Tx — Ty|| < of|x —y||, Vx,y € C. If = 1, T is called nonex-
pansive on C.

The fixed point problem (in short, FPP) for a nonexpansive
mapping 7' is:

Find x € C such that x € Fix(7), (L.9)

where Fix(7) is the fixed point set of the nonexpansive map-
ping 7. It is well known that Fix(7) is closed and convex.

In 1997, using Cesaro mean approximation, Shimizu and
Takahashi [20] established a strong convergence theorem for a
finite family of nonexpansive mappings {7} (i=0,1,2,...,N)
in a real Hilbert space. For further related work, see [21].

Very recently, Colao et al. [23] introduced and studied the
following iterative method to obtain a strong convergence
theorem for FPP(1.9) of a nonexpansive semigroup
{T(s) : 0 < s < 0o} in the presence of the error sequence {e,}
in Hilbert space:

{Xo e C;
Xpy1 = an’yf(xn) + ﬁnxn + ((1 - ,Bn)l_ OCnB) T(S)X" + €n,

where f: H — H, is a contraction mapping with constant
o; T:C— C is a nonexpansive mapping, and B: H; — H,
is a strongly positive linear bounded operator, i.c., if there
exists a constant y > 0 such that

(Bx,x) = 7||Ix|>, VxeH,

with 0 <y <Zand € (0,1) and proved that the sequence {x,}
converges strongly to the unique solution of the variational
inequality

(B=9f)z,x—z2) =0,

which is the optimality condition for the minimization
problem

Vx € Fix(7),

1
xEmFilxr(lT)— (Bx,x) — h(x),
where £ is the potential function for yf.

We note that in spite of the fact that the fixed point iterative
methods are designed for numerical purposes, and hence the
consideration of errors is of both theoretical and practical
importance, however, the condition which implies the errors
tend to zero, is not suitable for the randomness of the occur-
rence of errors in practical computations, see [24].

Motivated by the work of Shimizu and Takahashi [20],
Colao et al. [23], Shan and Haung [26] and Kazmi and Rizvi
[11,12,14] and by the on going research in this direction, we
introduce and study the strong convergence of an explicit iter-
ative method for approximating a common solution of
SGVEP(1.4) and (1.5) and FPP(1.9) for a finite family of non-
expansive mappings in real Hilbert spaces using viscosity Ces-
aro mean approximation in Hilbert spaces. The results
presented in this paper generalize, improve and unify many
previously known results in this research area, see instance
[5,10-13,22,23].

2. Preliminaries

We recall some concepts and results which are needed in
sequel.

For every point x € H, there exists a unique nearest point
in C denoted by Pcx such that

lx = Pex|| < [x —yll, VyeC (2.1)
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P is called the metric projection of H; onto C. It is well known
that P¢ is nonexpansive mapping and is characterized by the
following property:

(x — Pcx,y — Pcx) < 0. (2.2)

Further, it is well known that every nonexpansive operator
T: H, — H, satisfies, for all (x,y) € H,; x Hj, the inequality

(x=T(x)) = (v = TB)), T() = T(x))
< (1/DINTE) = x) = (TE) = I, (2.3)
and therefore, we get, for all (x,y) € H; x Fix(7),

(x = T(x), y = T(x)) < (1/2)]| T(x) = x|, (2.4)

see, e.g. [27, Theorem 3.1].
It is also known that H, satisfies Opial’s condition [28], i.e.,
for any sequence {x,} with x, — x the inequality

lim inf ||x, — x|| < lim inf ||x, — y|| (2.5)

holds for every y € H; with y # x.

Definition 2.1. A mapping T: H; — H,; is said to be firmly
nonexpansive, if
<Tx—Ty7x—y) = HTX—Tszv an.yEHl'
Definition 2.2. A mapping 7 : H, — H, is said to be averaged

if and only if it can be written as the average of the identity
mapping and a nonexpansive mapping, i.e.,

T:=(1—-a)l+uasS,

where o € (0,1) and S: H; — H, is nonexpansive and [ is the
identity operator on Hj.

We note that the averaged mappings are nonexpansive.
Further, the firmly nonexpansive mappings are averaged. Fur-
ther for some key properties of averaged operators, see for
instance [16].

Lemma 2.1 [29]. Let {x,} and {y,} be bounded sequences
in a Banach space X and {f,} be a sequence in [0,1]
with 0 < lim inf,_.« f, < lim sup,_ B, < 1. Suppose x,11 =
(1 =By, + Buxn, for all integers n =0 and lim sup,_,
(HynJrl 7ynH - |) <0. Then hm”**OC”yn - .XnH =0.

Xn+1 — Xn

Lemma 2.2 [30]. Let {a,} be a sequence of nonnegative real
numbers such that

) < (1 - an)an + 5717 nz 07

where {o,} is a sequence in (0,1) and {9,} is a sequence in R
such that

(1) ia,,:oo; (ii)

. 5}1
lim sup— <0 or

n—o0 O

00
D 16| < o0.
n=1

Then lim,,_, . a, = 0.

Lemma 2.3 [25]. Assume that B is a strong positive linear
bounded self adjoint operator on a Hilbert space H, with coeffi-
cient 5> 0 and 0 < p < ||B||”". Then ||[I— pB|| < 1 — pj.

Jx) € f(x0) + V + P (or f(x) € flx0) + V = P),

Lemma 2.4. The following inequality hold in real Hilbert space
Hli

x4+ 1> < IIxl* + 200, x + »),

X

Vx,y € H.

Definition 2.3. [26,31]. Let X and Y be two Hausdorff topo-
logical spaces, and let E be a nonempty, convex subset of X
and P be a pointed, proper, closed, convex cone of Y with
intP # (). Let 0 be the zero point of Y, U(0) be the neighbor-
hood set of 0,U(x,) be the neighborhood set of x,, and

f: E— Y be a mapping.

(1) If for any ¥ € U(0) in Y, there exists U € U(xp) such
that

Vxe UNE,

then f'is called upper P-continuous at x,. If f'is upper P-con-
tinuous (lower P-continuous) for all x € E, then f is called
upper P-continuous (lower P-continuous) on E;

(i) If for any x,y € E and ¢ € [0, 1], the mapping f satisfies

fix) eflix+ (1 =0)y)+ P or fly) € flix+ (1 —1)y) + P,

then fis called proper P-quasiconvex;
(iii) If for any x;,x, € E and ¢ € [0, 1], the mapping f satisfies

#(x1) + (1 = f(xa) € flex + (1 = 1)y) + P,

then f'is called P-convex.

Lemma 2.5. [26,32]. Let X and Y be two real Hausdorff topo-
logical spaces; let E be a nonempty, compact, convex subset of
X, and let P be a pointed, proper, closed and convex cone of Y
with intP # (). Assume that g: EX E— Y and ® : E — Y are
two mappings. Suppose that g and ® satisfy

(i) glx,x) € P, for all x € E, and g(-,y) is lower P-continuous
for all y € E;

(i) @ is upper P-continuous on E, and g(x,-) + @(-) is proper
P-quasiconvex for all x € E.

Then there exists a point x € E satisfies

G(x,y) e P\ {0}, VyekE,

where
G()C,y) = g(xvy) + ¢(}’) - ¢(X),

Let F,: Cx C— Yand ¢, : C — Y be two mappings. For
any z € H,, define a mapping G;, : C x C — Y as follows:

Vx,y € E.

GrL(x2) = Fi(x,0) + 61 0) = 61 (x) + S0 = xx = 2), (26)

where r is a positive number in R and e € P.
Assumption 2.1. Let Gy_, F\, ¢, satisfy the following conditions:

(i) For all x€ C, F \(x,x) € P, F| is P-monotone, Ii.e.,
Fi(x,y) + Fi(y,x) € =P forallx,y € C; F\(-,y) is contin-
uous for all y €, and Fi(x,-) is weakly continuous and
P-convex, i.e.,
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lFl(xayl) + (1 - I)Fl(an’z) € Fl(x7 ) + (l - l)y2) +P7
anylayzecv VIG[O, 1]7

(i) Gy.(-,y) is lower P-continuous for all y € C and z € H,,
and G\, (x,-) is proper P-quasiconvex for all x € C and
zeH,.

(iii) ¢,(-) is P-convex and weakly continuous.

Lemma 2.6 [26]. Assume that CC H, and Q C H, are non-
empty, compact and convex sets. Assume that Fy,¢, and Gy,
are satisfying Assumption 2.1. For r >0 and for all x € Hy,
define a mapping TV . Hy — C as follows:

TR (x) = {z € C: Fi(z,9) + ¢, (v) — $,(2)
+j—j(yfz,zfx) eP, VyecC}

Then the following hold:

(i) T2 (x) is nonempty for all x € H,.
(i) TU9 js single-valued and firmly nonexpansive.
(i) Fix(T¥1?)) = sol(GVEP(1.4)) and sol(GVEP(1.4)) is
closed and convex.

Further, assume that F,: Q9 xQ— Y, ¢,: Q0 — Y and
Gy 1 Q X Q — Y defined by

G1L(v) = B, ) + $o(3) = o) += (v = wu— w),

are satisfying Assumption 2.1. For s > 0 and for all w € H,,
define a mapping 7U>%) : H, — Q as follows:

T2 (1) = {u € Q:Fr(u,v) + ¢o(v) — ¢y(u)

+§<V—u,u—w> eP, Vve Q}.
Then, we easily observe that 7{2%2)(w) is nonempty for each
w € Hy; TﬁF >%) s single-valued and firmly nonexpansive;
sol(GVEP(2.7))is closed and convex and Fix(ﬂFz’¢2>) =
sol(GVEP(2.7)), where sol(GVEP(2.7)) is the solution set of
the following GVEP: Find y* € Q such that

(% y) +d,(0) —a(x) € P, VyeQ. (2.7)

We observe that sol(GVEP(1.5)) C sol(GVEP(2.7)). Further,
it is easy to prove that I' is closed and convex set.

Notation. Let {x,} be a sequence in H;, then x, — x
(respectively, x, — x) denotes strong (respectively, weak)
convergence of the sequence {x,} to a point x € H;.

3. Main result

In this section, we prove a strong convergence theorem based
on the proposed viscosity Cesaro mean approximation method
for computing the approximate common solution of
SGVEP(1.4) and (1.5) and FPP(1.9) for a finite family of non-
expansive mappings in real Hilbert spaces.

First, we have the following lemma. The proof is similar to
the proof given in [26], and hence omitted.

Lemma 3.1. Let Fy, ¢, and G, satisfy Assumption 2.1 and let
Tf,Fl"‘pl) be defined as in Lemma 2.6 for r > 0. Let x1,x, € Hj
and ry,ry > 0. Then:

r—r
Hﬁfh%)(&) _ ﬂrfm.)(xl)H <2 =x1]) +QHT’(‘?'¢I)()€2) —x
: 2

Now, we prove the following main result.

We assume that I' # ).

Theorem 3.1. Let H, and H, be two real Hilbert spaces; let
C C H| and Q C H;, be nonempty, compact and convex subsets;
let Y be a Hausdorff topological space and let P be a proper,
closed and convex cone of Y with intP # (). Let A : Hy — Hj be
a bounded linear operator. Assume that F;:Cx C— Y,
F:O0xQ—Y, ¢, :C—Y and ¢,: Q — Y are nonlinear
mappings satisfying Assumption 2.1 and F, is upper semicon-
tinuous in first argument. Let T': C — C be a nonexpansive
mapping for each i =0,1,2,...,n such that © = (., Fix(T")N
I'#0. Let f: H — Hj be a contraction mapping with constant
o € (0,1) and B be a strongly positive bounded linear self adjoint
operator on Hy with constant y > 0 such that 0 < y < % <y+ ﬁ
For a given xoy € C arbitrarily, let the iterative sequences {uy,}
and {x,} be generated by

, = T (x, + 647 (TF%) — 1) Ax,);

Xnt1 = OC,,“/f(Xn) + ﬂnxﬂ + ((1 - ﬁn)lf “nB) ﬁzrun + VnCns
i=0
(3.1)

where {e,} is an bounded error sequence in Hy, 6 € (0,1/L), L
is the spectral radius of the operator A*A and A* is the adjoint of
A and {o.}, {B.}, {y.} are the sequences in (0,1) and
r, C (0,00) satisfying the following conditions:

(i) lim, o0, =0 and 37 o, = 00;
(ii) lim, . 2 = 0;
(iii) 0 < lim inf,_ f, < lim sup,__ B, < 1;
(iv) lim inf,_or, > 0 and lim,_ |71 — 74| = 0.

Then the sequence {x,} converges strongly to z € Pg, where
z=Po(I— B+7f)z.

Proof. By using condition (i) and Lemma 2.3, we can observe
that there exists a wunique element z € H; such that
z= Py Fix(rynr (I — B +9/)(2), see [12].

Let pe @ = Fix(ThNTI, ie, pel, we have
p=T"p and Ap = T{>%))(A4p). Using the similar argu-
ments used in proof of Theorem 3.1 [11], we have the following
estimates:

e ' 2

uy = P> < llxw = plI* + 8(LS — V|| (T — D Ax,||”. (32)

Since, 6 € (0,1), we obtain

s = pII* < llxa = pII*. (33)
Now, on setting ¢, := ﬁz;q:o T', we can easily observe that

the mapping ¢, is nonexpansive. Since p € @, we have

1 o 1 1
n+1;Tp:n+1;p:p'

hp = (34)
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Since {e,} is bounded, using condition (ii), we obtain that
{%} is bounded. Then, there exists a nonnegative real num-
ber K such that

/n”e’?H
Inftp) - .

Further, it follows by (3.1), (3.3) and (3.5) that

Bp| +*——< K, foralln > 0. (3.5)

161 =PI = w2 (Xa) 4 By + (1 = B — 0, Bttty + 80 — p|
<t l[20) = Bpll B30 =PIl + (1= B, = o) s = p -3, e
<o llflen) = A0+l l200) — Bpll+ B, llxs = pll 7, e

+(1= B, = %7) |6 = p
<l =PIl + o [2/1) = Bl + (1 = ) 150 = pll 7, e

< (1= @ —yo)a)llxs —pll + e K

K
<maxq [|x, —pll,=——¢, n=0
7=

£ } (3.6)

<Kmax |[xo —pll,=
{Imo=pl X

Hence {x,} is bounded and consequently, we deduce that
{u,}, {t,u,} and {f(x,)} are bounded.

Next, it follows from Lemma 3.1 that
= Xu|| + [ A[|oy + 6,

||un+l - un“ < H-xn+1

where

o = ‘1 =Dt 7 A, — |
n

o= ‘1 N r,_ﬂ T30 (o + 04" (T3> — 1) Ax,)
n

_ (x” 4 04" (ﬁfz~¢z)

see [12] for details.
Next, we easily estimate that

- 1)4x)].

||tn+lun+l - tn“n” < ||uﬂ+| uﬂ” +

2l =l ol
(n+2) (n+2)
It follows from the above two inequalities that
- xn” + 6HAHO_n + 611

lZns1ttner — tutt|l < [[X0p1

5w = pl+ == lpll. (3.7)

Setting x,.1 = (1 — B,)l, + B,x,, then we have

I = %0 (xn) + (1 = B)I — 0 B) tutty + 7,0 and
! 1 - Bn '
%, . 1€
ln+1 - ln = 1—+l (Vf(xn+1) - Btn+1un+1 + M)
1 - ﬂn+l p+1

)) neVl
O

oy
+ [n+lun+1 — lhly +—F 1— ﬁ <Bt Uy — f(xn)

It follows from (3.7) that

l H O(,1+1

ﬁn-H

Oy yn €n
+Hln+lun+l 7ln“n”+q(”31nun yf(xn)|‘+ !( H)

n
/"+lHe”+1H>
Opt1

||ln+1

Vn en
@wuwofmwmwm+4ﬂﬂiﬂ)

Opt1

041
<—
l_ﬁn+l

2
Allow+0u+ =5 llun p\|+ 51IPl

(HVf(anrl) Btn+1un+ ||+ +||xn+l *X,,”

+7
. mkﬂ)

+—-/ || Bt u, — xn +
lim(n -+ 2L

Therefore, we obtain

o Yortlle
et —Ball = e — xnn<"—*‘(W(xm—Bzmumuw)
17ﬁr1+l 1

Oy nll€n
+W<‘|Btnun /f(xn)+/ ” ”)

2
pal%! n 511 n A .
oAl 8+ =2 =gl 45

Taking n — oo and using the conditions (i)—(iv), we obtain

lim Sup(HlnH - ln” - Hxn+1 - xn”) <0. (3~8)

From Lemma 2.1 and (3.8), we obtain lim, .||/, — x,|| =0

and

uss =l < Jim (1= )]l — x| =0. (39)
Since, we can write

”xn - tnunH < ”xn - xn+l H + Han’yf(xn) + ﬁnxn + ((1 - ﬁn)l

- OC,,B)f”Mn + Vnen - tn”n”
< = X || 4 ol () —
- tnun“ +ynH€n||v

Bt"u”” + Bn”xn

and then

(1%, — tatta| < llx, — xn+1H+

e”
(it~ B + 221

U
1=, -5, g

Since a, — 0 and ||x,; — x,|| — 0 as n — oo, we obtain

lim ||x, — 2,u,|| = 0.
n—oo

(3.10)

Again, since {x,} is bounded, we may assume a nonnegative
real number K such that ||x, — p|| < M. It follows from (3.2)
and Lemma 2.4 that
= Bp) + B, (xn — tuttn)
(tatt =) + 7yl
<N = 00uB) (2t = p) + B (0 = ot |

+ 2(02f(%n) = Bp+ ppeu; Xui1 — )

<[ = e0,B) (tatty = p) | + B, 10 = tutt |

+ 20 (f(%n) = Bp, Xt = P) + 2(Vy€ns Xus1 —P)
<[(1 =)l = pll+ B, 1% — ]

+ 20, (f(%n) = Bp, X1 — ) + 27, [lex || M
= (1= 07)" s = pII” + By 160 — bt

+2(1 =) Bl = pll
nthn | 200, (2 ()
+27,llenl| M

1 =PI = [l (2060
+ (1 — Oy )
B)

X Hxn_ _Bp7x11+l_p>

(3.11)
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< (1=07)* [l = pl* + (LS — DAx,|’]
+ B0 — bt

+2(1 =00, 9) B lltw — pIl[| 0 — ta|

+ 206, (2f(xn) ) +2llel M

2
<l =pIP + (@3)") 1% =l

DT -

_Bpaanrl -

+(1 —otny) o(Lo— )||(TVF"2 —I)Axn |2
+ﬁ,27HX,, - t”u"Hz +2(] - an?)ﬁn””n
=Pl = 2|
Vallen|| M
Therefore,
(17“'1 ) 5(1*L5)H(TF *I)Aan

2 2
<”xn*pH 7”xn+lpr +ﬁf,”x"7tnun“
+9‘;1?2Hxn _p”z +2(1 = o0,7) B, Nt — Il 20 — tutan|

'u" e, M
+2a, <<vf(x,l) — Bp, X1 —p) +%>
< (1% =Pl + %41 = PIDIX0 = X +ﬁi“xn - tn"‘nHz
+°‘H?ZHXM _p”z +2(1 = o)) B, et = Pl %0 — Ll
Tnll€n
2, (s -+ Dl + 220 )
Since 6(Lo — 1) > 0, ||x,11 — x,|| — 0 and
n — oo and from (i) and (ii), we obtain
. 2
lim || (7292 — N Ax,|| =0.
P "

Next, we show that ||x, —
we can obtain

X, — tytty]| — 0 as

(3.12)

uy|| — 0 as n — oo. Since p € O,

2 2 2
Hun —]7” < HX,, _17” - ”un - x,,|| + 25“‘4(”71
s (7% = D
see [11]. It follows from (3.11) and (3.12) that
(%601 =pI* < (1 =7) 1 = pII> + Bl — tatin?
+2(1 =) B | — p|
X |26 = tutty || + 20 (2(X) — Bp, X1 — p)
+2y, e[ M
<(1- 7'”?)2 [Ix. *[’HZ — llun *X"HZ +26|| A(uy 7XH)HH (TS:‘ZW) 71)AXHH]
+ B — tutaa* +2(1
+ 200, (2f(x0) —
< xn =P + () 130 = plI* = (1 = 07)°

— o) Bullttn = plll|xn — tartn|
BP,X"H —P> +2V”HG7HM

llew =5,
+2(1 = 0,7) ]| Aty — x| (717292 — 1) Ax, |
+:B,21H’(n - trr”rrnz +2(1—0,7) B, ||t *1’“

% =t

n Cn M
+20, ((*,‘f(xn) = Bp, X1 —p) +M) .

%y
Therefore,

(1= 063 Nt = x> <5 = I = w1 = I+ Bl —
+ 07 1060 =PI +2(1 = 27) Bylltts = pI| 10 = tatta |
+2(1 = ,7) 70| Aty — )| (TF2%2) — 1) Ax, |
7, |len|| M
+2a, ((v‘(xn) — Bp, X1 —p) +%>
< en =2l + 1301 =PI = Xl 4+ B0 = |

+2(1 = ,7) 70| Aty — )| (TF2%) — 1) Ax, |
+°‘n72”xn *PHZ +2(1 = 09) Bulletn — Pl 1 X0 =t

v.lle
+zan(/|mw I+ 18]+ 22! "“)

Since @, — 0, [|X,1 — X, — 0, ||(7“£f2=¢2) —I)Ax,|| = 0 and
Ix, — tyun]] — 0 as n — oo and from (i) and (iv), we obtain

fim ||, — x,|| = 0. (3.13)

Using (3.10) and (3.13), we obtain

[tattn — ]| < ||tnthn — Xu|| + || X0 — ]| = 0 as n — oo.

Next, we show that lim sup, . ((y/— B)z,x, —z) <0,
where z = Pg(I — B + yf)z. To show this inequality, we choose
a subsequence {u,, } of {u,} such that

lim sup((yf — B)z,u, — z) = im{(yf — B)z,u,, — z).

n—00 i—00

(3.14)

Since {u,,} is bounded, there exists a subsequence {u, } of
{u,;} which converges weakly to some w e C. Without loss
of generality, we can assume that u, — w. From
2,0, — || — 0, we obtain #,u,, — w.

Now, we prove that w € N, Fix(T") N T. Let us first show
that w € Fix(t,) = n+1 S Fix(TY). Assume that
w ¢ 45> L Fix(T"). Since u,, — w and z,w # w. Form Opi-
al’s condition (2.5), we have

lim inf|ju,, — w|| < lim inf|ju,, — 2, w|
1—00 1—00

< lim iglog{‘|“111 =ttty || =+ [ttt = aw ]|}
< lim inf |ju,, — w||,
1—00
which s a  contradiction. Thus, we obtain
w e Fix(1,) = =5 >0 Fix(T").
Next, we show that w € sol(GVEP(1.4)). Since

Uy = Tﬁflv‘f’l)dﬂ where d, := x, + 04" (Tﬁfz‘%) — 1)Ax,,, we

have

Filun, ) + 9107) = bo(an) + 0y = sy — i) € P,

vy e C, (3.15)
which implies that

0.€ 0 t) = (107) = b)) = = =ty — i) + P,

vy € C.

Lety,=(1—t)w+tyforall s € (0,1]. Since y € Cand w € C,

we get y, € C and now (3.15) shows that

T(fz-ﬁ:)f[ A-'m
oeF.wn,)—<¢.<.v,>—¢.<u,,,>>—e<y,—u,,.~“”'f X”’”A*(( ar i >>+P‘

(3.16)
Since A" is bounded linear, it follows from (3.12) and (3.13)
and liminfr, > 0 that ”,; -0 and

? Tz g ?Ax,,

A* ' - ‘] =0, and so
0€ Fi(y,w) = (d1(y) — ¢ (w)) + P. (3.17)
It follows from Assumption 2.1 (i) and (iii) that
tFi(y,y) + (1= 0)F (v, w) + 1, (y) + (1 = 1), (w) — ¢, (1))

€ Fl(ynyz) + ¢l(yt) - ¢l(y1) +P= P,
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which implies that

—UF1(y:3) +¢1(0) = o1 0)] = (1= OF (v, w) + by (W) — by (v)] € =P
(3.18)

From (3.17) and (3.18), we get

=tF1 (v, )+ 1 (0) = b)) € (L =) [Fi(y;,w) + by (w) — by (v,)] - PE€ P
and so

=tF1 (v, ») + 1(0) — 1 ()] € —P.
It follows that

Fi(y,y) +d1(0) —é1(y) € P.
Letting ¢t — 0, we obtain

Fy(w,y) + ¢1(y) — ¢ (w) € P,Vy € C.

This implies that w € sol(GVEP(1.4)).

Next, we show that Aw € sol(GVEP(1.5)). Since
|t — xp]| — O, 4, — w as n — oo and {x,} is bounded, there
exists a subsequence {x, } of {x,} such that x,, — w and
since A4 is a bounded linear operator so that Ax,, — Aw.

Now setting v, = Ax,, — Tﬁf?*d’z)Ax,,k. It follows that from
(3.12) that limg_. vy, = 0 and /i)cnA — Vi = Tﬁf’%)Axnk.

Therefore from Lemma 2.6, we have

e
FZ(Axnk - v"k’Z) +¢1(2) — ¢ (u"k) + P (z— (Axm; - vﬂk)v

i

(Axm - VnA) - Axm) € P7 vz e Q

Since F, is upper semicontinuous in first argument and P is
closed, taking lim sup to above inequality as kK — oo and using
condition (iii), we obtain

Fz(AW,Z)*I»(fh(Z) 7¢l(u”1\) € P7 Vz € Q?

which means that Aw € sol(GVEP(1.5)) and hence w € I'.
Next, we claim that limsup, . ((3/— B)z,x, —z) <0,

where z = Pgo(I — B+ yf)z. Now from (2.2), we have

lim sup((yf — B)z, x,, — z) = lim sup{(yf — B)z, tyu, — z)

n—oo n—o0

< limsup((yf — B)z, tyuty, — z)

=((yf— B)z,w —z) <0.

Finally, we show that x, — z. It follows from (3.3) that

(3.19)

s = 2[1% = o0 (0f0x0) = B2, X1 = 2) B = 2,11 = 2)
+ (U= B = 00, B) (tathy = 2) + 70, Xny1 = 2)
<o (X)) = A2) X1 —2) + (W(2) — Bz, X011 — 2))
+ Ballxn = 2l llenr = 2l +[1(1 = B) I = 0 B[ 2320,

= 2|21 =2

+ynHe"HM

< a0y

X = Zl|[[xns1 = 2l + 0 (2f(2) — Bz, X1 — 2)
+ Bullxn = 2|1 Xn1 — 2l + (1 = B, — )
10 = 2l | X1 = 2]l + Vullenl| M

=[1 = (7 = yo)]llxn — 2l[[[ i1 = 2l + 7, llen| M
+ 0, (yf(z) — Bz, X1 — 2)

1— an(?_’ya)
S (llx — 2”31 —2I%)
+an<Yf(Z) _Bzvxn+1 _Z> +ynHe’l||M

< 1 —OCn(f)_VO()
2

2
Xn+1 72“

o=z 45
+0,(3f(2) = Bz, X1 — 2) + 7, lea|| M.

This implies that

— 2P < [1 = (7 — )]}y — 2|

. Yallean|| M
+ 20‘7! (<})j(z) - BZ7 Xnt1 — Z> +M)

O

||xl1+l

=[1 — o, (7 — ya)]||x» — ZH2 + 20, M,,.
(3.20)

Since lim, .0, =0 and Y .7 &, = oo, it is easy to see that
limsup,_.., M, < 0. Hence, from (3.19) and (3.20) and Lemma
2.2, we deduce that x, — z, where z = Pg(I+ yf— B). This
completes the proof. [

Remark 3.1. The method presented in this paper extend,
improve and unify the methods considered in [11-14]. More-
over, the algorithm and approach considered in Theorem 3.1
are different from those considered in [15,16].

4. Numerical example

Now, we give a numerical example which justify Theorem 3.1.

Example 4.1. Let H, = H, = R, the set of all real numbers,
with the inner product defined by (x,y) = xy, Vx,y € R, and
induced usual norm |-|. Let ¥ =R, then P =[0,+00). Let
C=1[0,2] and C=[-4,0; let F; :CxC— R and F,: QX
0O — R be defined by Fi(x,y) = (x — 6)(y — x), Vx,y € C and
Fuv)=wu+1)(v—u), Vu,ve Q; let ¢, : C - R and ¢, :
0O — R be defined by ¢,(x) =4x, Vx € C and ¢,(u) = 3u,
Yu € Q, respectively, and let for each x € R, we define
flx) =4x, A(x) = —2x, B(x) =2x, ¢, =sin(n), Vn and let,
for each x € C, T(x) = x. Then there exist unique sequences
{x,} C R, {u,} C C, and {z,} C Q generated by the iterative
schemes

(4.1)

1
=T =T [ A e )

1 1 1 1 1 .
X1 :@X,,Jr {0.1 +n—2} X, + [(1 — (0.1 +n—2>>17n—28] u,ﬁ»; sin(n), (42)

where o, =, B, = 0.1+, 7, = Fand r, = 1. Then {x,} con-
verges strongly to 2 € Fix(T)N 1T

Proof. It is easy to prove that the bifunctions F; and F, and
mappings ¢, and ¢, satisfy the Assumption 2.1 and F, is upper
semicontinuous. A is a bounded linear operator on R with
adjoint operator 4" and | 4[| = ||4*|| = 2. Hence 6 € (0,3),
so we can choose § = §. Further, fis contraction mapping with

constant o :é and B is a strongly positive bounded linear

operator with constant 7 = 1 on R. Therefore, we can choose
y = 2 which satisfies 0 < y < § <7+ i Furthermore, it is easy
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Figure 1  Convergence of {x,}.

to observe that Fix(7) = (0,00), sol(GVEP(1.4)={2},
sol(GVEP(1.5)) = {—4}. Hence I :={2}. Consequently,
Fix(T) NI = {2} # (. After simplification, schemes (4.1) and
(4.2) reduce to

1

z, = —(x, +2); un=§(3xn+10); (4.3)
1 35] 45 15 1

o = [+ e+ g i s @4

Following the proof of Theorem 3.1, we obtain that {z,}
converges strongly to —4 € sol(GVEP(1.5)) and {x,}, {u,}
converge strongly to w =2 € Fix(T)NT as n — oo.

Next, using the software Matlab 7.0, we have Fig. 1 which
shows that {x,} converges strongly to 2.

The proof is completed. [
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