The aim of this paper is to study the convergence of two proximal algorithms via the notion of (a, r)-relaxed cocoercivity without Lipschitzian continuity. We will show that this notion is enough to obtain some interesting convergence theorems without any Lipschitz-continuity assumption. The relaxed cocoercivity case is also investigated.
Moudafi, A., & Huang, Z. (2013). About the relaxed cocoercivity and the convergence of the proximal point algorithm. Journal of the Egyptian Mathematical Society, 21(2), 281-284. doi: 10.1016/j.joems.2013.03.014
MLA
Abdellatif Moudafi; Zhenyu Huang. "About the relaxed cocoercivity and the convergence of the proximal point algorithm", Journal of the Egyptian Mathematical Society, 21, 2, 2013, 281-284. doi: 10.1016/j.joems.2013.03.014
HARVARD
Moudafi, A., Huang, Z. (2013). 'About the relaxed cocoercivity and the convergence of the proximal point algorithm', Journal of the Egyptian Mathematical Society, 21(2), pp. 281-284. doi: 10.1016/j.joems.2013.03.014
VANCOUVER
Moudafi, A., Huang, Z. About the relaxed cocoercivity and the convergence of the proximal point algorithm. Journal of the Egyptian Mathematical Society, 2013; 21(2): 281-284. doi: 10.1016/j.joems.2013.03.014