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The aim of this paper is to study the convergence of two proximal algorithms via the
notion of («,r)-relaxed cocoercivity without Lipschitzian continuity. We will show that this notion
is enough to obtain some interesting convergence theorems without any Lipschitz-continuity
assumption. The relaxed cocoercivity case is also investigated.
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1. Introduction and preliminaries

Throughout, H is a real Hilbert space, (-, denotes the associ-
ated scalar product and ||| stands for the corresponding norm.

To begin with, let us recall that an operator A is (o, r)-re-
laxed cocoercive if there exist constants o > 0, r > 0, such that
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(A(x) = AW),x = 2) = ol A(x) = AW + rllx = »|?
forall x, ye H. (1.1)

Recently, this notion was used to establish the convergence of
algorithms for variational inequalities and systems of variational
inequalities, see for instance [1-5] and the references therein. It is
worth mentioning that this notion combined with the y-Lipschitz
continuity with positive constant y, namely for all x, y € H

[A(x) =AW <

x =yl (1.2)
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implies that the operator A is (r — oy®)-strongly monotone,
namely

(A(x) = AW),x = 2) = (r =) x =y’

provided that (r — o®) > 0. Consequently the convergence of
gradient-projection type methods related to variational
inequalities and systems of variational inequalities follows by
virtue of the classical results.

Condition (1.2) combined with (1.1) is thus too strong since the
resulting convergence results are very close to the classical ones.

The following question arises naturally:

Question: Could we obtain convergence results without the
Lipschtzian continuity assumption (1.2)?

The purpose of this paper is to partially answer the question
mentioned above by proving strong and weak convergence re-
sults for the celebrate implicit methods that are the proximal
point algorithm and its relaxed version by Yosida approxima-
tion. It is well-known that the sequence generated by the proxi-
mal point algorithm converges in norm to the unique zero of 4
when A is strongly monotone. However, if 4 is monotone with
a zero and the parameters are bounded away from zero, we only
have weak convergence. Instead, hybrid proximal algorithms
prevail, see for example [6]. We would like also to emphasize that
very recently new convergence results of proximal point algo-
rithms were obtained under generalized monotonicity notions,
see for instance [7-9]. Proximal point algorithms were also suc-
cessfully applied in various areas such as image restoration and
signal recovery, see for instance [10]. It is worth mentioning that
if r = 0 the operator is called relaxed cocoercive or cohypo-
monotone. Further, a relaxed cocoercive operator A4 is said to
be maximal, if in addition its graph, gph
A:={(x,y) € Hx H:y € A(x)}, is not properly contained in the
graph of any other relaxed-cocoercive operator or in other
words 4~! is maximal hypomonotone, see for example [11].
For / > 0 the operator J4 := (I + ),A)f1 is called the resolvent
operator of 4 of parameter 4 and is related to its Y osida approx-

imate, namely  A;(x) := k/’.’y x) , by the relation
A;(x) € A(J(x)). Finally, recall that the inverse A~ of A4 is
the operator defined by x € 47!(y) <= y € 4(x).

2. The main convergence results

Variational inclusions of the form

finding X € H such that 0 € A(X), (2.3)

where A:H — 27 is a set-valued operator on a Hilbert space H,
providing a convenient form for many problems arising in prac-
tice. For instance, minimization problems can be written in this
form by setting 4 = 0f, where 0f is the subdifferential of the
objective function f. Other problems such as saddle point prob-
lems, variational inequalities and complementarity problem can
be written in this form, see for instance [12]. Throughout this pa-
per, we will consider the following notion of (o, r)-cocoercivity: a
set-valued operator 4 will be said to be (o, r)-cocoercive, if there
exist o = 0, r > 0 such that for all x, y € H,

(n—¢&x—y) = —alln—&|* + rllx = y||* for all y
A(x), & € A(y). (2.4)

It should be noticed that (2.4) coincides with (1.1) when the
operator is single-valued.

Now, let us prove the following key property of the resol-
vent operator.

Proposition 2.1. Assume that the operator A is (o,r)-relaxed
cocoercive, then for all x, y € H one has

) =P <L) =31 =) (1=~ (1= )
(2:5)
1 X L =20
where L(2) := m and k(1) = m

Proof. Since A;(x) € A(J}(x)) and 4,(y) €
tion (2.4) yields

A(J(»)), defini-

—al|A4;(x) — A4,(»)|°
o) = )|

JA s JA(y
_ J},:(X) and A,(y) _7 J7 ()

(A:(x) = 4,(), JH(x) = J{(») =

Using the fact that A;(x) —, we
can write
X*Jf(x) nyf(y) A A
_JA y—J4 2
—o X J)LA (X) 7} J/{ (y) + ||J;4(X) _ JA(y)H ;
or equivalently
(x =y = (F(x) = H W), I (x) = I ()
> 2 |x =) = = SO + 2] ) - 0]
Thus
(1) =T (), x—y) = —%H(I—Jf)(X) (1=’
(14 20| ) = T )
(2.6)
On the other hand, we also have
21 (6) = H W) x =) = =P+ |70 = HO)

— =) @) = (1= I

We infer, by taking into account (2.6), that

2

e = yII? + 7)) = O = | (1= 1) () = (1= ) )]
:xﬂ()fﬁ(xxfw
> -2 (=)0 - (1= )0
+2(1+ )[4 = HO)|
Thus

vl = (1=F) =2 - =20
> (14 24r)||74(x) = )|

Dividing by (1 + 24r), we finally obtain the desired result,
namely
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) PN 1 ) A =2
1700 = B0 < g3 =1 = 552

< ||(1=s)x) = (1= IH)|*. O

lx—y

Now, we are in position to prove the following convergence
theorems for the proximal point algorithm and its relaxed
version.

Theorem 2.1. Assume that the operator A is (o,r)-relaxed
cocoercive. Then the sequence generated by the proximal point
algorithm

Xnt1 = Jj‘” (xn)7 (27)

strongly converges to x", the unique solution of the problem of
finding zeroes of A, provided that the regularized parameters
{An} satisfy 2, = 20 for alln € I N.

Proof. Since finding zeroes of A is equivalent to the problem
of finding fixed points of the associated resolvent operator, it
is easy to see using (2.5) and 4 > 2« that the resolvent operator
isa ﬁ-contraction and thus problem (2.3) has a unique solu-
tion x . On the other hand using (2.7) and the fact that

A, = 20, We can write

2 1 2

e L
14 dor

= [ (e) = 4 () 1260 = X"II%,

An 4n

" Lk
Xp+1 — X

from which we infer that {x,} generated by (2.7) strongly con-
verges to x~. [

Now, the limit case r = 0, namely: there exists o > 0 such
that for all x, y € H one has

(n—¢&x—y) = —aln—¢| for all n € A(x),& € A(»),

is very interesting and corresponds to relaxed cocoercivity.
This case has been studied, for instance, [7,8] and the refer-
ences therein, using a local maximal monotonicity of the Yos-
ida approximate. In what follows, our approach is different
and is based on the property (2.5) of the resolvent operator
which reduced, in this context, to

A A 2 2 _%
o0 = 0 < =t = (1-7)

< (I=r)x) = (=IHWIF. @8)

The following theorem summarizes our convergence
results.

Theorem 2.2. Assume that the operator A is o-relaxed cocoer-
cive with a zero, then the following assertions hold true:

(i) The sequence generated by the proximal point algorithm
(2.7), namely

Xnt1 = J;4 (xn)

n

weakly converges to, x", a solution of the problem of find-
ing zeroes of A, provided that A is maximal relaxed coco-
ercive and the regularized parameters {1,} satisfy
An = %for alln € IN, where 6 € (0,1) is a small enough
constant.

(ii) Assume that the regularized parameter satisfies now the
condition /4 € (2,20) and the control sequence {a,} is
chosen so that o,€(k,1) for all nel N and
Soo(on —K)(1 —ao,) = 0o with x:=2—1. Then the
sequence generated by the relaxed rule

Xpp1 = X, + (1 — 2,)J4(x,) with o, € (0,1),

wealkly converges to a zero of A.

Proof.

(1) Relation (2.8) combined with the condition on the
parameters yields

< = 2 = Sl —

||xn+1 - X

From which we infer that the sequence {||x, — x"|*} con-
verges in I R, {x,} is bounded and asymptotically regu-
lar, that is {|}x,+; — x,||} norm converges to 0. Now, let
X be a weak cluster point of the sequence {x,}, there ex-
ists a subsequence of {x,} (which we still noted {x,})
that weakly converges to X. By passing to the limit in
the following equivalent formulation of (2.7)

Xy — X

—1 n n+1

Xnt1 € A T K
;"H

and by taking into account the fact that the graph of 4~
is weakly-strongly closed (because 4~! is maximal hypo-
motone operator, see for instance [11, Proposition 4]),
we obtain at the limit that X is a zero of 4. The unique-
ness of the weak-cluster point and thus the weak conver-
gence of the whole sequence (x,) follows by the same
arguments as the classical result by Rockafellar [12].

(ii) In this context, relation (2.8) combined with the condi-
tion on the parameters yields

[ 74(x) = 2 0)|* < llx = I

+ k]| (1= ) (x) = (1= Y ),
(2.9)

with k = % — 1€ (0,1). Hence, the resolvent operator is a k-
strict pseudo contraction and the result follows by [13, Theo-
rem 3.1], and the fact that fixed points of the resolvent opera-
tors are exactly the zeroes of 4. [

Remark 2.1. It should be noticed that, in the all cases consid-
ered in this paper, the resolvent operator is single-valued. This
follows directly from (2.5) when 1 > 2« and in the other cases
from (2.9) and [13], Proposition 2.1(i) showing that every k-
strict pseudo-contraction is Lipschitzian continuous with con-
stant 125 [J
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