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Abstract The aim of this paper is to study the convergence of two proximal algorithms via the

notion of (a, r)-relaxed cocoercivity without Lipschitzian continuity. We will show that this notion

is enough to obtain some interesting convergence theorems without any Lipschitz-continuity

assumption. The relaxed cocoercivity case is also investigated.
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1. Introduction and preliminaries
Throughout, H is a real Hilbert space, ÆÆ, Ææ denotes the associ-
ated scalar product and iÆi stands for the corresponding norm.

To begin with, let us recall that an operator A is (a, r)-re-
laxed cocoercive if there exist constants a P 0, r > 0, such that
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hAðxÞ � AðyÞ; x� yiP �akAðxÞ � AðyÞk2 þ rkx� yk2

forall x; y 2 H: ð1:1Þ

Recently, this notion was used to establish the convergence of

algorithms for variational inequalities and systems of variational
inequalities, see for instance [1–5] and the references therein. It is
worth mentioning that this notion combined with the c-Lipschitz
continuity with positive constant c, namely for all x, y 2 H

kAðxÞ � AðyÞk 6 ckx� yk; ð1:2Þ
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implies that the operator A is (r � ac2)-strongly monotone,

namely

hAðxÞ � AðyÞ; x� yiP ðr� ac2Þkx� yk2

provided that (r � ac2) > 0. Consequently the convergence of
gradient-projection type methods related to variational
inequalities and systems of variational inequalities follows by

virtue of the classical results.
Condition (1.2) combinedwith (1.1) is thus too strong since the

resulting convergence results are very close to the classical ones.
The following question arises naturally:

Question: Could we obtain convergence results without the
Lipschtzian continuity assumption (1.2)?

The purpose of this paper is to partially answer the question

mentioned above by proving strong and weak convergence re-
sults for the celebrate implicit methods that are the proximal
point algorithm and its relaxed version by Yosida approxima-

tion. It is well-known that the sequence generated by the proxi-
mal point algorithm converges in norm to the unique zero of A
when A is strongly monotone. However, if A is monotone with

a zero and the parameters are bounded away from zero, we only
have weak convergence. Instead, hybrid proximal algorithms
prevail, see for example [6].Wewould like also to emphasize that
very recently new convergence results of proximal point algo-

rithms were obtained under generalized monotonicity notions,
see for instance [7–9]. Proximal point algorithms were also suc-
cessfully applied in various areas such as image restoration and

signal recovery, see for instance [10]. It is worth mentioning that
if r = 0 the operator is called relaxed cocoercive or cohypo-
monotone. Further, a relaxed cocoercive operator A is said to

be maximal, if in addition its graph, gph
A:¼{(x,y) 2 H · H:y 2 A(x)}, is not properly contained in the
graph of any other relaxed-cocoercive operator or in other
words A�1 is maximal hypomonotone, see for example [11].

For k > 0 the operator JAk :¼ ðIþ kAÞ�1 is called the resolvent
operator ofA of parameter k and is related to its Yosida approx-
imate, namely AkðxÞ :¼ x�JAk ðxÞ

k , by the relation

AkðxÞ 2 AðJAk ðxÞÞ. Finally, recall that the inverse A�1 of A is
the operator defined by x 2 A�1(y)() y 2 A(x).

2. The main convergence results

Variational inclusions of the form

finding �x 2 H such that 0 2 Að�xÞ; ð2:3Þ

where A:H fi 2H is a set-valued operator on a Hilbert spaceH,
providing a convenient form for many problems arising in prac-
tice. For instance, minimization problems can be written in this

form by setting A= of, where of is the subdifferential of the
objective function f. Other problems such as saddle point prob-
lems, variational inequalities and complementarity problem can
bewritten in this form, see for instance [12]. Throughout this pa-

per, wewill consider the following notion of (a, r)-cocoercivity: a
set-valued operatorAwill be said to be (a, r)-cocoercive, if there
exist a P 0, r> 0 such that for all x, y 2 H,

hg� n; x� yiP �akg� nk2 þ rkx� yk2 for all g

2 AðxÞ; n 2 AðyÞ: ð2:4Þ

It should be noticed that (2.4) coincides with (1.1) when the
operator is single-valued.
Now, let us prove the following key property of the resol-
vent operator.

Proposition 2.1. Assume that the operator A is (a, r)-relaxed
cocoercive, then for all x, y 2 H one has

JAk ðxÞ�JAk ðyÞ
�� ��26LðkÞkx�yk2�jðkÞ I�JAk

� �
ðxÞ� I�JAk

� �
ðyÞ

�� ��2;
ð2:5Þ

where LðkÞ :¼ 1

1þ 2kr
and jðkÞ :¼ k� 2a

kð1þ 2krÞ.

Proof. Since AkðxÞ 2 A JAk ðxÞ
� �

and AkðyÞ 2 A JAk ðyÞ
� �

, defini-
tion (2.4) yields

hAkðxÞ � AkðyÞ; JAk ðxÞ � JAk ðyÞiP �a AkðxÞ � AkðyÞk k2

þ r JAk ðxÞ � JAk ðyÞ
�� ��2:

Using the fact that AkðxÞ ¼
x�JAk ðxÞ

k and AkðyÞ ¼
y�JAk ðyÞ

k , we

can write

x� JAk ðxÞ
k

� y� JAk ðyÞ
k

; JAk ðxÞ � JAk ðyÞ
� �

P �a
x� JAk ðxÞ

k
� y� JAk ðyÞ

k

����
����
2

þ r JAk ðxÞ � JAk ðyÞ
�� ��2;

or equivalently

x� y� JAk ðxÞ � JAk ðyÞ
� �

; JAk ðxÞ � JAk ðyÞ
� �

P � a
k

x� JAk ðxÞ � y� JAk ðyÞ
� ��� ��2 þ kr JAk ðxÞ � JAk ðyÞ

�� ��2:

Thus

JAk ðxÞ � JAk ðyÞ; x� y
� �

P � a
k

I� JAk
� �

ðxÞ � I� JAk
� �

ðyÞ
�� ��2

þ ð1þ krÞ JAk ðxÞ � JAk ðyÞ
�� ��2:

ð2:6Þ

On the other hand, we also have

2 JAk ðxÞ � JAk ðyÞ; x� y
� �

¼ kx� yk2 þ JAk ðxÞ � JAk ðyÞ
�� ��2

� I� JAk
� �

ðxÞ � I� JAk
� �

ðyÞ
�� ��2:

We infer, by taking into account (2.6), that

kx� yk2 þ JAk ðxÞ � JAk ðyÞ
�� ��2 � I� JAk

� �
ðxÞ � I� JAk

� �
ðyÞ

�� ��2
¼ 2 JAk ðxÞ � JAk ðyÞ; x� y
� �

P � 2a
k

I� JAk
� �

ðxÞ � I� JAk
� �

ðyÞ
�� ��2

þ 2ð1þ krÞ JAk ðxÞ � JAk ðyÞ
�� ��2:

Thus

kx� yk2 � 1� 2a
k

	 

I� JAk
� �

ðxÞ � I� JAk
� �

ðyÞ
�� ��2

P ð1þ 2krÞ JAk ðxÞ � JAk ðyÞ
�� ��2:

Dividing by (1 + 2kr), we finally obtain the desired result,
namely
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JAk ðxÞ � JAk ðyÞ
�� ��2 6 1

1þ 2kr
kx� yk2 � k� 2a

kð1þ 2krÞ
� I� JAk
� �

ðxÞ � I� JAk
� �

ðyÞ
�� ��2: �

Now, we are in position to prove the following convergence
theorems for the proximal point algorithm and its relaxed
version.

Theorem 2.1. Assume that the operator A is (a, r)-relaxed
cocoercive. Then the sequence generated by the proximal point
algorithm

xnþ1 ¼ JAknðxnÞ; ð2:7Þ

strongly converges to x*, the unique solution of the problem of
finding zeroes of A, provided that the regularized parameters

{kn} satisfy kn P 2a for all n 2 I N.

Proof. Since finding zeroes of A is equivalent to the problem
of finding fixed points of the associated resolvent operator, it

is easy to see using (2.5) and k P 2a that the resolvent operator
is a 1

1þ4ar-contraction and thus problem (2.3) has a unique solu-
tion x*. On the other hand using (2.7) and the fact that
kn P 2a, we can write

xnþ1 � x�k k2 ¼ JAknðxnÞ � JAknðx
�Þ

�� ��2 6 1

1þ 4ar
xn � x�k k2;

from which we infer that {xn} generated by (2.7) strongly con-
verges to x*. h

Now, the limit case r = 0, namely: there exists a P 0 such

that for all x, y 2 H one has

hg� n; x� yiP �akg� nk2 for all g 2 AðxÞ; n 2 AðyÞ;

is very interesting and corresponds to relaxed cocoercivity.
This case has been studied, for instance, [7,8] and the refer-
ences therein, using a local maximal monotonicity of the Yos-

ida approximate. In what follows, our approach is different
and is based on the property (2.5) of the resolvent operator
which reduced, in this context, to

JAk ðxÞ � JAk ðyÞ
�� ��2 6 kx� yk2 � 1� 2a

k

	 


� I� JAk
� �

ðxÞ � I� JAk
� �

ðyÞ
�� ��2: ð2:8Þ

The following theorem summarizes our convergence
results.

Theorem 2.2. Assume that the operator A is a-relaxed cocoer-
cive with a zero, then the following assertions hold true:

(i) The sequence generated by the proximal point algorithm
(2.7), namely
xnþ1 ¼ JAknðxnÞ
weakly converges to, x*, a solution of the problem of find-

ing zeroes of A, provided that A is maximal relaxed coco-
ercive and the regularized parameters {kn} satisfy
kn P 2a

1�d for all n 2 IN, where d 2 (0,1) is a small enough

constant.
(ii) Assume that the regularized parameter satisfies now the

condition k 2 (a, 2a) and the control sequence {an} is
chosen so that an 2 (j, 1) for all n 2 I N andP1

n¼0ðan � jÞð1� anÞ ¼ 1 with j :¼ 2a
k � 1. Then the

sequence generated by the relaxed rule

xnþ1 ¼ anxn þ ð1� anÞJAk ðxnÞ with an 2 ð0; 1Þ;

weakly converges to a zero of A.
Proof.

(i) Relation (2.8) combined with the condition on the
parameters yields
xnþ1 � x�k k2 6 xn � x�k k2 � d xnþ1 � xnk k2:

From which we infer that the sequence {ixn � x*i2} con-
verges in I R, {xn} is bounded and asymptotically regu-
lar, that is {ixn+1 � xni} norm converges to 0. Now, let
�x be a weak cluster point of the sequence {xn}, there ex-
ists a subsequence of {xn} (which we still noted {xn})
that weakly converges to �x. By passing to the limit in

the following equivalent formulation of (2.7)
	 


xnþ1 2 A�1

xn � xnþ1

kn

;

and by taking into account the fact that the graph of A�1
is weakly-strongly closed (because A�1 is maximal hypo-
motone operator, see for instance [11, Proposition 4]),
we obtain at the limit that �x is a zero of A. The unique-

ness of the weak-cluster point and thus the weak conver-
gence of the whole sequence (xn) follows by the same
arguments as the classical result by Rockafellar [12].
(ii) In this context, relation (2.8) combined with the condi-
tion on the parameters yields� �

JAk ðxÞ � JAk ðyÞ� �2 6 kx� yk2

þ j I� JAk
� �

ðxÞ � I� JAk
� �

ðyÞ
�� ��2;

ð2:9Þ
with j ¼ 2a
k � 1 2 ð0; 1Þ. Hence, the resolvent operator is a j-

strict pseudo contraction and the result follows by [13, Theo-

rem 3.1], and the fact that fixed points of the resolvent opera-
tors are exactly the zeroes of A. h

Remark 2.1. It should be noticed that, in the all cases consid-

ered in this paper, the resolvent operator is single-valued. This
follows directly from (2.5) when k P 2a and in the other cases
from (2.9) and [13], Proposition 2.1(i) showing that every j-
strict pseudo-contraction is Lipschitzian continuous with con-
stant 1þj

1�j. h
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