Let n P 1 be a fixed integer and let R be an (n+1)!-torsion free *-ring with identity element e. If F, d:Rfi R are two additive mappings satisfying F(xn+1) = F(x)(x*)n + xd(x)(x*)n1+ x2d(x)(x*)n2+ +xnd(x) for all x 2 R, then d is a Jordan *-derivation and F is a generalized Jordan *-derivation on R.
Shehata, A. (2024). Inequalities for Humbert functions. Journal of the Egyptian Mathematical Society, 22(1), 14-18. doi: 10.1016/j.joems.2013.04.012
MLA
A. Shehata. "Inequalities for Humbert functions", Journal of the Egyptian Mathematical Society, 22, 1, 2024, 14-18. doi: 10.1016/j.joems.2013.04.012
HARVARD
Shehata, A. (2024). 'Inequalities for Humbert functions', Journal of the Egyptian Mathematical Society, 22(1), pp. 14-18. doi: 10.1016/j.joems.2013.04.012
VANCOUVER
Shehata, A. Inequalities for Humbert functions. Journal of the Egyptian Mathematical Society, 2024; 22(1): 14-18. doi: 10.1016/j.joems.2013.04.012