Let n P 1 be a fixed integer and let R be an (n+1)!-torsion free *-ring with identity element e. If F, d:Rfi R are two additive mappings satisfying F(xn+1) = F(x)(x*)n + xd(x)(x*)n1+ x2d(x)(x*)n2+ +xnd(x) for all x 2 R, then d is a Jordan *-derivation and F is a generalized Jordan *-derivation on R.
Rehman, N. U. R., Ansari, A. Z., & Bano, T. (2024). On generalized Jordan *-derivation in rings. Journal of the Egyptian Mathematical Society, 22(1), 11-13. doi: 10.1016/j.joems.2013.04.011
MLA
Nadeem ur Rehman Rehman; Abu Zaid Ansari; Tarannum Bano. "On generalized Jordan *-derivation in rings", Journal of the Egyptian Mathematical Society, 22, 1, 2024, 11-13. doi: 10.1016/j.joems.2013.04.011
HARVARD
Rehman, N. U. R., Ansari, A. Z., Bano, T. (2024). 'On generalized Jordan *-derivation in rings', Journal of the Egyptian Mathematical Society, 22(1), pp. 11-13. doi: 10.1016/j.joems.2013.04.011
VANCOUVER
Rehman, N. U. R., Ansari, A. Z., Bano, T. On generalized Jordan *-derivation in rings. Journal of the Egyptian Mathematical Society, 2024; 22(1): 11-13. doi: 10.1016/j.joems.2013.04.011