This paper deals with the existence of nondecreasing sequence of nonnegative eigenvalues for the systems divðaðxÞjrujp2ruÞ ¼ bðxÞjujp2u in X; jrujp2 @u @n ¼ kcðxÞjujp2u on @X; ( by using the Ljusternic–Schnirelman principle, where X is a bounded domain in RN(N P2).
Afrouzi, G., Mirzapour, M., & Khademloo, S. (2013). Eigenvalues for the Steklov problem via Ljusternic– Schnirelman principle. Journal of the Egyptian Mathematical Society, 21(1), 16-20. doi: 10.1016/j.joems.2012.10.006
MLA
G.A. Afrouzi; M. Mirzapour; S. Khademloo. "Eigenvalues for the Steklov problem via Ljusternic– Schnirelman principle", Journal of the Egyptian Mathematical Society, 21, 1, 2013, 16-20. doi: 10.1016/j.joems.2012.10.006
HARVARD
Afrouzi, G., Mirzapour, M., Khademloo, S. (2013). 'Eigenvalues for the Steklov problem via Ljusternic– Schnirelman principle', Journal of the Egyptian Mathematical Society, 21(1), pp. 16-20. doi: 10.1016/j.joems.2012.10.006
VANCOUVER
Afrouzi, G., Mirzapour, M., Khademloo, S. Eigenvalues for the Steklov problem via Ljusternic– Schnirelman principle. Journal of the Egyptian Mathematical Society, 2013; 21(1): 16-20. doi: 10.1016/j.joems.2012.10.006