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Abstract This paper deals with the existence of nondecreasing sequence of nonnegative eigen-

values for the systems

divðaðxÞjrujp�2ruÞ ¼ bðxÞjujp�2u in X;

jrujp�2 @u
@n
¼ kcðxÞjujp�2u on @X;

(

by using the Ljusternic–Schnirelman principle, where X is a bounded domain in RN(N P 2).
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1. Introduction

Eigenvalue problems for the p-Laplacian operator on a

bounded domain have been studied extensively and many
interesting results have been obtained, see e.g. [13] and [14].

Beside being of mathematical interest, the study of the p-

Laplacian operator is also of interest in the theory of Non-
Newtonian fluids both for the case p P 2 (dilatant fluids)
and the case 1 < p < 2 (pseudo-plastic fluids), see [3].
.A. Afrouzi), mirzapour@stu.

o@nit.ac.ir (S. Khademloo).
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In this work we study the existence of nondecreasing se-
quence of nonnegative eigenvalues for the systems

divðaðxÞjrujp�2ruÞ ¼ bðxÞjujp�2u in X;

jrujp�2 @u
@n
¼ kcðxÞjujp�2u on @X;

(
ð1Þ

by using the Ljusternic–Schnirelman principle, where X is a

bounded domain in RN(N P 2) and 1 < p 6 N. We assume
that

aðxÞ; bðxÞ is positive a:e: in X;

a 2 L1
locðXÞ; a�s 2 L1ðXÞ; s 2 N

p
;1

� �
\ 1

p� 1
;1
��
: ð2Þ

We define

ps ¼
ps

sþ 1
; p�s ¼

Nps
N� ps

¼ Nps

Nðsþ 1Þ � ps
; ð3Þ

In addition we assume
g by Elsevier B.V. Open access under CC BY-NC-ND license.
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meas fx 2 @X : cðxÞ > 0g > 0;

c 2 L
q

q�pð@XÞ; for some p 6 q < p�s : ð4Þ

Many results have been obtained on the structure of the spec-

trum of the Dirichlet problem

divðjrujp�2ruÞ ¼ kjujp�2u in X;

u ¼ 0 on @X;

(

(e.g. see [4,7,9]). It is shown in [5] that there exists a nondecreas-
ing sequence of positive eigenvalues kn tending to1 as n fi1,

also in [12], the author establish the results on existence of such
sequence and some properties of the spectral of above problem.
The existence of such a sequence of eigenvalues can be proved
using the theory of Ljusternic–Schnirelman (e.g. see [6,8]). For

that reason we call this sequence the L � S sequence {kn}. Moti-
vated by above-mentioned papers and the results in [15], we deal
with the existence of L-S sequence and simplicity of the principal

eigenvalue of problem (1).
Let X :¼W1,p(a,X), the weighted Sobolev is defined to the

set of all real valued measurable functions u for which

kuk1;p;a ¼
Z

X
ajrujpdxþ

Z
X
jujpdx

� �1
p

: ð5Þ

Then X equipped with the norm iÆi1,p,a is a uniformly convex

Banach space, thus, byMilman’s Theorem (see [10]) is a reflexive
Banach space. Moreover we have these continuous embedding

X,!W1;psðXÞ,!Lp�s ðXÞ

with ps ¼ ps
sþ1 and p�s ¼

Nps
N�ps

.
Notice that the compact embedding

X,!Lrð@XÞ ð6Þ

holds provided that 1 6 r < p�s , see [1] and [2]. It follows from

the weighted Friedrichs inequality (see [7] (formula (1.28))) that
the norm

kuk ¼
Z

X
ajrujpdx

� �1
p

on the space X is equivalent to the norm iÆi1,p,a defined in (5).

Definition 1. We say k > 0 is a positive eigenvalue of (1), if

there exists a nontrivial function u 2W1,p(X) such thatZ
X
ajrujp�2rurvdxþ

Z
X
bjujp�2uvdx

¼ k
Z
@X

cðtÞjujp�2uvdt ð7Þ

holds for any v 2 X. Then u is called an eigenfunction correspond-
ing to the eigenvalue k. The pair (u,k) is called an eigenpair.
2. The Ljusternic–Schnirelman principle

Let X be a real Banach space and F, G be two functionals on X.
For fixed a > 0, we consider the eigenvalue problem

F0ðuÞ ¼ lG0ðuÞ; u 2 Na; k 2 R ð8Þ

with the level set

Na :¼ fu 2 X;GðuÞ ¼ ag:

We assume that:
(H1)F, G:X fi R are even functionals such that F,

G 2 C1(X,R) and F(0) = G(0) = 0. In particular, it follows
from this that F0 and G0 are odd potential operators.
(H2)The operator F0 is strongly continuous (i.e.

un N u) F0(un) fi F0(u)) and F ðuÞ–0; u 2 coN a implies
F0(u) „ 0, where coN a is the closed convex hull of Na.
(H3)The operator G0 is uniformly continuous on bounded
sets and satisfies (S0), i.e. as n fi1,

un * u;G0ðunÞ* v; hG0ðunÞ; uni ! hv; ui implies un ! u:

(H4)The level set Na is bounded and

u–0 implies hG0ðuÞ; ui > 0; lim
t!1

GðtuÞ ¼ þ1;
and

inf
u2Na

hG0ðuÞ; ui > 0:

It is known that u is a solution of (8) if and only if u is a

critical point of F with respect to Na (see Zeidler [8, Proposi-
tion 43.21]).

For any positive integer n, denote by An the class of all com-
pact, symmetric subsets K of Na such that F(u) > 0 on K and
c(K) P 0, where c(K) denote the genus of K, i.e., c(K) :¼
inf{k 2 N; $h:K fi Rkn{0} such that h is continuous and odd}.

We define:

an ¼
supH2An

infu2HFðuÞ if An–;
0 if An ¼ ;:

�
ð9Þ

Also let

v ¼
supfn 2 N; an > 0g if a1 > 0;

0 if a1 ¼ 0:

�

Now, we state the L–S principle.

Theorem 1. Under assumptions (H1)–(H4), the following
assertions hold:

[1] (Existence of an eigenvalue) If an > 0, then (1) possesses
a pair ±un of eigenvectors and an eigenvalue ln „ 0; fur-

thermore F(un) = an.
[2] (Multiplicity) If v =1, (8) has infinitely many pairs ±un of

eigenvectors corresponding to nonzero eigenvalues.

[3] (Critical levels)1> a1 P a2 P � � �P 0 and an fi 0 as
n fi1.

[4] (Infinitely many eigenvalues) If v =1 and

F ðuÞ ¼ 0; u 2 coN a implies ÆF0(u),uæ = 0, then there
exists an infinite sequence {ln} of distinct eigenvalues
of (8) such that ln fi 0 as n fi1.

[5] (Weak convergence of eigenvectors) Assume that

F ðuÞ ¼ 0; u 2 coN a implies u = 0, Then v =1 and
there exists a sequence of eigenpairs {(un,ln)} of (8) such
that un N 0,ln fi 0 as n fi1 and ln „ 0 for all n.

Proof. We refer to [6] or [8] for the proof. h

Define on X the functionals

FðuÞ ¼
Z
@X

cðtÞjuðtÞjpdt; ð10Þ

GðuÞ ¼
Z

X
ajrujpdxþ

Z
X
bjujpdx: ð11Þ
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It is easy to see that F and G are differentiable with A ¼ 1
p
F0

and B ¼ 1
p
G0 given by

hAu; vi ¼
Z
@X

cðtÞjuðtÞjp�2uvdt; ð12Þ

hBu; vi ¼
Z

X
ajrujp�2rurvdxþ

Z
X
bjujp�2uvdx: ð13Þ

Then (8) becomes Au= lBu, where G(u) = 1.

We claim that F and G satisfy (H1)–(H4). It is clear that F
and G are even and (H4) holds. It remain to verify (H2) and
(H3).

Lemma 1. Let X be a domain in RN and let /:R+ fi R+ be a

Young function which satisfies a D2-condition, i.e., there is c > 0
such that /(2t) 6 c/(t) for all t P 0. If {un} is a sequence of
integrable functions in X such that

uðxÞ ¼ lim
n!1

unðxÞ; a:e: x 2 X and

Z
X

/ðjujÞdx

¼ lim
n!1

Z
X

/ðjunjÞdx;

then

lim
n!1

/ðjun � ujÞdx ¼ 0:

Proof. See [11, Theorem 12], for the proof. h

Proposition 1. The functional F given by (10) satisfies (H2).

Proof. It is sufficient to show that A is strongly continuous.
Let un N u in X, we show that Aun fi Au in X*.

For any v 2 X, by Holder’s inequality and compact
embedding X W Lp(oX), it follows that

jhAun � Au; vij ¼
Z
@X

cðjunjp�2un � jujp�2uÞvds
����

����
6 kckLað@XÞkjunj

p�2
un � jujp�2uk

L
b

p�1ð@XÞ
kvk

Lp�s ð@XÞ

6 kkckLað@XÞkjunj
p�2

un � jujp�2uk
L

b
p�1ð@XÞ

kvk;

where a, b are such that 1
aþ

p�1
b þ 1

p�s
¼ 1. We observe that

p�s � p

p�s
þ p� 1

p�s
þ 1

p�s
¼ 1: ð14Þ

Since c is in L
q

q�pð@XÞ and p�s
p�s�p

< q
q�p, whenever p < q < p�s , we

can choose a such that
p�s

p�s�p
< a < q

q�p. With this choice of a,

it follows from (14) that 1 < b < p�s . We next show that

ŒunŒp�2un fi ŒuŒp�2u in L
b

p�1ð@XÞ. To see this, let wn = ŒunŒp�2un
and w = ŒuŒp�2u. Since un N u in X, un fi u in Lb(oX) by (6), it
follows that

wnðxÞ ! wðxÞ; a:e: on @X and

Z
@X
jwnj

b
p�1ds!

Z
@X
jwj

b
p�1ds:

Using Lemma 1, we conclude that wn fi w in L
b

p�1ð@XÞ. There-
fore Aun fi Au in X*. h

Lemma 2. Let B be defined in (13), then for any u, v 2 X one
has
hBu� Bv; u� viP ðkukp�1 � kvkp�1Þðkuk � kvkÞ:

Furthermore, ÆBu � Bv,u � væ = 0 if and only if u = v a.e. in X.

Proof. Straightforward computation gives us for any u,
v in X

jhBu� Bv; u� vij ¼
Z

X
½ajrujp þ ajrvjp�dx

�
Z

X
ajrujp�2rurvdx� ajrvjp�2rvrudx

þ
Z

X
½bjujp þ bjvjp�dx�

Z
X
bjujp�2uvdx

�
Z

X
bjvjp�2vudx:

Also, we haveZ
X
bðjujp þ jvjp � jujp�2uv� jvjp�2uvÞdx

P
Z

X
bðjujp þ jvjp � jujp�1jvj � jvjp�1jujÞdx

¼
Z

X
bðjujp�1 � jvjp�1Þðjuj � jvjÞdx P 0;

where the last inequality follows from the fact that t fi ŒtŒp�1 is
strictly increasing. As the function a is positive, it follows from
Holder’s inequality thatZ

X
ajrujp�2rurvdx 6

Z
X
ajrujp

� �p�1
p
Z

X
ajrvjp

� �1
p

¼ kukp�1kvk: ð15Þ

Similarly we haveZ
X
ajrvjp�2rvrudx 6 kvkp�1kuk:

Therefore,

hBu� Bv; u� viP kukp þ kvkp � kukp�1kvk � kvkp�1kuk

¼ ðkukp�1 � kvkp�1Þðkuk � kvkÞ:

Now let u and v be such that ÆB u � B v,u � væ = 0. Then we

have

hBu� Bv; u� vi ¼ ðkukp�1 � kvkp�1Þðkuk � kvkÞ ¼ 0:

It follows that iui = ivi and that the equality holds in (15). As
equality in Holder’s inequality is characterized, we obtain that
u= kv a.e. in X, for some constant k P 0, which implies

iui = kivi. Therefore, k = 1 and u = v a.e. in X. h

Proposition 2. Let G be defined in (11), then G0 satisfies (H3).

Proof. As B ¼ G0

p
, it suffices to show this for B. It is easy to see

that B is bounded. Using Holder’s inequality and Sobolev

embedding theorem we have

hBun � Bu; vi ¼
Z

X
aðjrunjp�2run � jrujp�2ruÞrvdxþ

Z
X
bðjunjp�2un

����
�jujp�2uÞvdx

�� 6 Z
X

a
p�1
p

��� ���runjp�2run � a
p�1
p jrujp�2ruj

p
p�1dx

� �p�1
p

kvk

þ c

Z
X

b
p�1
p

��� ���unjp�2un � b
p�1
p jujp�2uj

p
p�1dx

� �p�1
p

kvk
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Since un fi u in X, un fi u in Lp(X). Let wn ¼ a
p�1
p jrunjp�2run

and w ¼ a
p�1
p jrujp�2ru then

wnðxÞ ! wðxÞ; a:e:in X and

Z
X
jwnj

p
p�1dx!

Z
X
jwj

p
p�1dx:

Thus, wn fi w in L
p

p�1ðXÞ and similarly we can prove that

b
p�1
p junjp�2un ! b

p�1
p jujp�2u in L

p
p�1ðXÞ.

It remains to show that B satisfies condition S0. That means

if {un} is a sequence in X such that

un * u;Bun * v and hBun; uni ! hv; ui

for some v 2 X* and u 2 X, then un fi u in X.
Since X is a uniformly convex Banach space, Weak

convergence and norm convergence imply (strong) conver-
gence. Thus to showing un fi u, we need to show iuni fi iui. To
do this, we first observe that

lim
n!1
hBun � Bu; un � ui ¼ lim

n!1
ðhBun; uni � hBun � ui

� hBu; un � uiÞ ¼ 0:

On the other hand, it follows from Lemma 2 that

hBun � Bu; un � uiP ðkunkp�1 � kukp�1Þðkunk � kukÞ:

Thus iuni fi iui as n fi1. Therefore B satisfies condition
S0. h

Theorem 2 (Existence of L–S sequence). Let F and G be the
two functionals defined in (10) and (11). Then there exists a

nondecreasing sequence of positive eigenvalues {ln} obtained
from the Ljusternik–Schnirelman principle such that ln fi 0 as
n fi1,

where
ln ¼ sup

H2An

inf
u2H

FðuÞ ð16Þ

and each ln is an eigenvalue of F0(u) = l G0(u).

Proof. It is easy to see that Na contains compact subsets of

arbitrary large genus. Thus An is nonempty for any n. Given
a set H in An, since H is compact and F is positive on H,
infu2HF(u) > 0. It follows that an is the critical value defined
by (9). The existence of such a sequence ln follows from The-

orem 1 – [1], [2] and [3]. Also

ln ¼ lGðunÞ ¼ lhBun; uni ¼ hAun; uni ¼ FðuÞ ¼ an:

Combining this with (9), we obtain (16). h
3. Simplicity of the first eigenvalue

In this section we will show that the first element k1 of the L–S
sequence of eigenvalue is simple.

Lemma 3.

(i) Let p P 2 then for all x, y 2 RN

jyjp P jxjp þ pjxjp�2x � ðy� xÞ þ CðpÞjx� yjp: ð17Þ

(ii) Let 1 < p < 2, then for all x, y 2 RN,

jyjp P jxjp þ pjxjp�2x � ðy� xÞ þ CðpÞ jx� yj2

ðjxj þ jyjÞ2�p
: ð18Þ
(iii) For any x „ y, p > 1

jyjp P jxjp þ pjxjp�2x � ðy� xÞ: ð19Þ

In the above C(p) is a constant depending only on p.

Proof. We refer to Lindqvist [4] for the proof. h

Lemma 4. If u1 is an eigenfunction associated with k1, then
either u1 > 0 or u1 < 0 in X.

Proof. We refer to [12] for the proof. h

Theorem 3. The principal eigenvalue k1 is simple, i.e., if u and v

are two eigenfunctions associated with k1, then there exists a
constant c such that u = cv.

Proof. By Lemma 4 we can assume u and v are positive in X.
Let

g1 ¼
ðup � vpÞ
up�1

and g2 ¼
ðvp � upÞ

vp�1
;

then take them as test functions, we get

Z
X
ajrujp�2ru:r up � vp

up�1

� �
dx ¼ k1

Z
@X

cjujp�2u up � vp

up�1

� �
ds

�
Z

X
bjujp�2u up � vp

up�1

� �
dx;

andZ
X
ajrvjp�2rv � r vp � up

vp�1

� �
dx ¼ k1

Z
@X

cjvjp�2v vp � up

vp�1

� �
ds

�
Z

X
bjvjp�2v vp � up

vp�1

� �
dx:

Summing up, we obtain

0 ¼
Z

X
ajrujp�2ru � r up � vp

up�1

� �
dxþ

Z
X
ajrvjp�2rv

� r vp � up

vp�1

� �
dx: ð20Þ

We know that

r up � vp

up�1

� �
¼ ru� p

vp�1

up�1
rvþ ðp� 1Þ v

p

up
ru:

Using this, the first term of (20) becomesZ
X
ajrujpdx� p

Z
X
a
vp�1

up�1
jrujp�2rvrudxþ ðp� 1Þ

Z
X
a

� vp

up
jrujpdx

¼
Z

X
ajr ln ujpupdx� p

Z
X
avpjr ln ujp�2r ln u � r ln vdx

þ ðp� 1Þ
Z

X
ajr ln ujpvpdx

¼
Z

X
ajr ln ujpðup � vpÞdx� p

Z
X
avpjr ln ujp�2r ln ur ln v

þ p

Z
X
ajr ln ujpvpdx
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and for the second term of (20) we have

Z
X
ajrvjpdx� p

Z
X
a
up�1

vp�1
jrvjp�2rurvdxþ ðp� 1Þ

Z
X
a
up

vp
jrvjpdx

¼
Z

X
ajr ln vjpvpdx� p

Z
X
aupjr ln vjp�2r ln v � r ln udx

þ ðp� 1Þ
Z

X
ajr ln vjpupdx

¼
Z

X
ajr ln vjpðvp � upÞdx� p

Z
X
aupjr ln vjp�2r ln vr ln u

þ p

Z
X
ajr ln vjpupdx:

Thus (20) becomes

0 ¼
Z

X
aðup � vpÞðjr ln ujp � jr ln vjpÞdx� p

�
Z

X
avpjr ln ujp�2r ln u � ðr ln v�r ln uÞdx� p

�
Z

X
aupjr ln vjp�2r ln v � ðr ln u�r ln vÞdx:

For p P 2, taking x = $lnu, y= $lnv and vice versa, it fol-
lows from inequality (17) in Lemma 3 that

0 P CðpÞ
Z

X
ajr ln u�r ln vjpðup þ vpÞdx:

Therefore,
0 ¼ jr ln u�r ln vj

This implies that u= kv. For p < 2 we use inequality (18)
in Lemma 3 to obtain the same results. h
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