

Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

www.etms-eg.org [www.elsevier.com/locate/joems](http://www.sciencedirect.com/science/journal/1110256X)

ORIGINAL ARTICLE

Eigenvalues for the Steklov problem via Ljusternic– Schnirelman principle

G.A. Afrouzi ^{a,*}, M. Mirzapour ^a, S. Khademloo ^b

^a Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran ^b Faculty of Basic Sciences, Babol University of Technology, Babol, Iran

Received 12 May 2012; revised 15 October 2012; accepted 31 October 2012 Available online 3 January 2013

KEYWORDS

p-Laplacian systems; Eigenvalue problems; Variational methods; Ljusternic–Schnirelman principle

Abstract This paper deals with the existence of nondecreasing sequence of nonnegative eigenvalues for the systems

 $div(a(x)|\nabla u|^{p-2}\nabla u) = b(x)|u|^{p-2}u$ in Ω , $|\nabla u|^{p-2} \frac{\partial u}{\partial n} = \lambda c(x)|u|^{p-2}u$ on $\partial \Omega$,

by using the Ljusternic–Schnirelman principle, where Ω is a bounded domain in $R^N(N \ge 2)$.

AMS SUBJECT CLASSIFICATION: 35J60, 35B30, 35B40

ª 2012 Egyptian Mathematical Society. Production and hosting by Elsevier B.V. Open access under [CC BY-NC-ND license.](http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Eigenvalue problems for the p-Laplacian operator on a bounded domain have been studied extensively and many interesting results have been obtained, see e.g. [\[13\]](#page-4-0) and [\[14\].](#page-4-0)

Beside being of mathematical interest, the study of the p-Laplacian operator is also of interest in the theory of Non-Newtonian fluids both for the case $p \ge 2$ (dilatant fluids) and the case $1 \le p \le 2$ (pseudo-plastic fluids), see [\[3\].](#page-4-0)

ELSEVIER

Production and hosting by Elsevier

In this work we study the existence of nondecreasing sequence of nonnegative eigenvalues for the systems

$$
\begin{cases} \operatorname{div}(a(x)|\nabla u|^{p-2}\nabla u) = b(x)|u|^{p-2}u & \text{in } \Omega, \\ |\nabla u|^{p-2}\frac{\partial u}{\partial n} = \lambda c(x)|u|^{p-2}u & \text{on } \partial\Omega, \end{cases}
$$
(1)

by using the Ljusternic–Schnirelman principle, where Ω is a bounded domain in $R^N(N \ge 2)$ and $1 \le p \le N$. We assume that

 $a(x)$, $b(x)$ is positive a.e. in Ω ,

$$
a \in L_{loc}^1(\Omega), a^{-s} \in L^1(\Omega), \ s \in \left(\frac{N}{p}, \infty\right) \cap \left[\frac{1}{p-1}, \infty\right). \tag{2}
$$

We define

$$
p_s = \frac{ps}{s+1}, p_s^* = \frac{Np_s}{N-p_s} = \frac{Nps}{N(s+1) - ps},
$$
\n(3)

In addition we assume

1110-256X ª 2012 Egyptian Mathematical Society. Production and hosting by Elsevier B.V. Open access under [CC BY-NC-ND license.](http://creativecommons.org/licenses/by-nc-nd/4.0/)<http://dx.doi.org/10.1016/j.joems.2012.10.006>

 $\overline{\ast}$ Corresponding author.

E-mail addresses: afrouzi@umz.ac.ir (G.A. Afrouzi), [mirzapour@stu.](mailto:mirzapour@stu. umz.ac.ir) [umz.ac.ir](mailto:mirzapour@stu. umz.ac.ir) (M. Mirzapour), S.Khademloo@nit.ac.ir (S. Khademloo). Peer review under responsibility of Egyptian Mathematical Society.

$$
\begin{aligned}\n\text{meas } \{x \in \partial \Omega : c(x) > 0\} > 0, \\
c \in L^{\frac{q}{q-p}}(\partial \Omega), \text{ for some } p \leq q < p_s^*.\n\end{aligned} \tag{4}
$$

Many results have been obtained on the structure of the spectrum of the Dirichlet problem

$$
\begin{cases} \operatorname{div}(|\nabla u|^{p-2}\nabla u) = \lambda |u|^{p-2}u & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}
$$

(e.g. see $[4,7,9]$). It is shown in $[5]$ that there exists a nondecreasing sequence of positive eigenvalues λ_n tending to ∞ as $n \to \infty$, also in [\[12\]](#page-4-0), the author establish the results on existence of such sequence and some properties of the spectral of above problem. The existence of such a sequence of eigenvalues can be proved using the theory of Ljusternic–Schnirelman (e.g. see [\[6,8\]](#page-4-0)). For that reason we call this sequence *the* $L-S$ *sequence* $\{\lambda_n\}$. Motivated by above-mentioned papers and the results in [\[15\],](#page-4-0) we deal with the existence of L-S sequence and simplicity of the principal eigenvalue of problem (1).

Let $X := W^{1,p}(a,\Omega)$, the weighted Sobolev is defined to the set of all real valued measurable functions u for which

$$
||u||_{1,p,a} = \left(\int_{\Omega} a|\nabla u|^{p} dx + \int_{\Omega} |u|^{p} dx\right)^{\frac{1}{p}}.
$$
 (5)

Then X equipped with the norm $\|\cdot\|_{1,p,a}$ is a uniformly convex Banach space, thus, by Milman's Theorem (see [\[10\]](#page-4-0)) is a reflexive Banach space. Moreover we have these continuous embedding

$$
X \rightarrow W^{1,p_s}(\Omega) \rightarrow L^{p_s^*}(\Omega)
$$

with $p_s = \frac{ps}{s+1}$ and $p_s^* = \frac{Np_s}{N-p_s}$.
Notice that the compact embedding

$$
X \rightarrow L^{r}(\partial \Omega)
$$
 (6)

holds provided that $1 \leq r < p_s^*$, see [\[1\]](#page-4-0) and [\[2\]](#page-4-0). It follows from the weighted Friedrichs inequality (see [\[7\]](#page-4-0) (formula (1.28))) that the norm

$$
||u|| = \left(\int_{\Omega} a|\nabla u|^p dx\right)^{\frac{1}{p}}
$$

on the space X is equivalent to the norm $\|\cdot\|_{1,p,a}$ defined in (5).

Definition 1. We say $\lambda > 0$ is a positive eigenvalue of [\(1\),](#page-0-0) if there exists a nontrivial function $u \in W^{1,p}(\Omega)$ such that

$$
\int_{\Omega} a |\nabla u|^{p-2} \nabla u \nabla v dx + \int_{\Omega} b |u|^{p-2} u v dx
$$

$$
= \lambda \int_{\partial \Omega} c(t) |u|^{p-2} u v dt \tag{7}
$$

holds for any $v \in X$. Then u is called an eigenfunction corresponding to the eigenvalue λ . The pair (u, λ) is called an eigenpair.

2. The Ljusternic–Schnirelman principle

Let X be a real Banach space and F , G be two functionals on X . For fixed $\alpha > 0$, we consider the eigenvalue problem

$$
F'(u) = \mu G'(u), \qquad u \in N_{\alpha}, \quad \lambda \in R \tag{8}
$$

with the level set

$$
N_{\alpha} := \{ u \in X; G(u) = \alpha \}.
$$

We assume that:

 $(H_1)F$, $G:X \to R$ are even functionals such that F, $G \in C^1(X, R)$ and $F(0) = G(0) = 0$. In particular, it follows from this that F and G' are odd potential operators. $(H₂)$ The operator F is strongly continuous (i.e. $u_n \rightharpoonup u \Rightarrow F(u_n) \to F(u)$ and $F(u) \neq 0, u \in \overline{coN_{\alpha}}$ implies $F(u) \neq 0$, where $\overline{coN_{\alpha}}$ is the closed convex hull of N_{α} . $(H₃)$ The operator G' is uniformly continuous on bounded sets and satisfies (S_0) , i.e. as $n \to \infty$,

 $u_n \rightharpoonup u$, $G'(u_n) \rightharpoonup v$, $\langle G'(u_n), u_n \rangle \rightharpoonup \langle v, u \rangle$ implies $u_n \rightharpoonup u$.

(H₄)The level set N_{α} is bounded and

 $u\neq 0$ implies $\langle G'(u), u \rangle > 0$, $\lim_{t \to \infty} G(tu) = +\infty$,

and

$$
\inf_{u \in N_{\gamma}} \langle G'(u), u \rangle > 0.
$$

It is known that u is a solution of (8) if and only if u is a critical point of F with respect to N_{α} (see Zeidler [\[8, Proposi](#page-4-0)[tion 43.21\]\)](#page-4-0).

For any positive integer *n*, denote by A_n the class of all compact, symmetric subsets K of N_{α} such that $F(u) > 0$ on K and $\gamma(K) \geq 0$, where $\gamma(K)$ denote the genus of K, i.e., $\gamma(K) :=$ $\inf\{k \in N; \exists h: K \to R^k \setminus \{0\} \text{ such that } h \text{ is continuous and odd}\}.$ We define:

$$
a_n = \begin{cases} \sup_{H \in A_n} \inf_{u \in H} F(u) & \text{if } A_n \neq \emptyset \\ 0 & \text{if } A_n = \emptyset. \end{cases}
$$
 (9)

Also let

$$
\chi = \begin{cases} \sup\{n \in N; a_n > 0\} & \text{if } a_1 > 0, \\ 0 & \text{if } a_1 = 0. \end{cases}
$$

Now, we state the L–S principle.

Theorem 1. Under assumptions (H_1) – (H_4) , the following assertions hold:

- [1] (*Existence of an eigenvalue*) If $a_n > 0$, then [\(1\)](#page-0-0) possesses a pair $\pm u_n$ of eigenvectors and an eigenvalue $\mu_n \neq 0$; furthermore $F(u_n) = a_n$.
- [2] (*Multiplicity*) If $\chi = \infty$, (8) has infinitely many pairs $\pm u_n$ of eigenvectors corresponding to nonzero eigenvalues.
- [3] (Critical levels) $\infty > a_1 \geq a_2 \geq \cdots \geq 0$ and $a_n \to 0$ as $n \to \infty$.
- [4] (*Infinitely many eigenvalues*) If $\chi = \infty$ and $F(u) = 0, u \in \overline{coN_{\alpha}}$ implies $\langle F(u), u \rangle = 0$, then there exists an infinite sequence $\{\mu_n\}$ of distinct eigenvalues of (8) such that $\mu_n \to 0$ as $n \to \infty$.
- [5] (Weak convergence of eigenvectors) Assume that $F(u) = 0, u \in \overline{coN_{\alpha}}$ implies $u = 0$, Then $\gamma = \infty$ and there exists a sequence of eigenpairs $\{(u_n,\mu_n)\}\$ of (8) such that $u_n \rightharpoonup 0, \mu_n \to 0$ as $n \to \infty$ and $\mu_n \neq 0$ for all n.

Proof. We refer to [\[6\]](#page-4-0) or [\[8\]](#page-4-0) for the proof. \Box

Define on X the functionals

$$
F(u) = \int_{\partial \Omega} c(t) |u(t)|^p dt,
$$
\n(10)

$$
G(u) = \int_{\Omega} a |\nabla u|^p dx + \int_{\Omega} b|u|^p dx.
$$
 (11)

It is easy to see that F and G are differentiable with $A = \frac{1}{p}F$

and
$$
B = \frac{1}{p}G'
$$
 given by
\n $\langle Au, v \rangle = \int_{\partial \Omega} c(t) |u(t)|^{p-2} uv dt,$ (12)

$$
\langle Bu, v \rangle = \int_{\Omega} a |\nabla u|^{p-2} \nabla u \nabla v dx + \int_{\Omega} b |u|^{p-2} uv dx.
$$
 (13)

Then [\(8\)](#page-1-0) becomes $Au = \mu B u$, where $G(u) = 1$.

We claim that F and G satisfy (H_1) – (H_4) . It is clear that F and G are even and (H_4) holds. It remain to verify (H_2) and (H_3) .

Lemma 1. Let Ω be a domain in R^N and let $\phi:R^+ \to R^+$ be a Young function which satisfies a Δ_2 -condition, i.e., there is $c > 0$ such that $\phi(2t) \leq c\phi(t)$ for all $t \geq 0$. If $\{u_n\}$ is a sequence of integrable functions in Ω such that

$$
u(x) = \lim_{n \to \infty} u_n(x), \text{ a.e. } x \in \Omega \text{ and } \int_{\Omega} \phi(|u|) dx
$$

=
$$
\lim_{n \to \infty} \int_{\Omega} \phi(|u_n|) dx,
$$

then

 $\lim_{n\to\infty}\phi(|u_n-u|)dx=0.$

Proof. See [\[11, Theorem 12\],](#page-4-0) for the proof. \Box

Proposition 1. The functional F given by ([10](#page-1-0)) satisfies (H_2) .

Proof. It is sufficient to show that A is strongly continuous. Let $u_n \rightharpoonup u$ in X, we show that $Au_n \rightarrow Au$ in X^* .

For any $v \in X$, by Holder's inequality and compact embedding $X \subseteq L^p(\partial \Omega)$, it follows that

$$
\begin{aligned} |\langle Au_n - Au, v \rangle| &= \left| \int_{\partial \Omega} c(|u_n|^{p-2} u_n - |u|^{p-2} u) v \, ds \right| \\ &\leq \|c\|_{L^2(\partial \Omega)} \| |u_n|^{p-2} u_n - |u|^{p-2} u \|_{L^{\frac{\beta}{p-1}}(\partial \Omega)} \| v \|_{L^{p^*_{s}}(\partial \Omega)} \\ &\leq k \| c \|_{L^2(\partial \Omega)} \| |u_n|^{p-2} u_n - |u|^{p-2} u \|_{L^{\frac{\beta}{p-1}}(\partial \Omega)} \| v \|, \end{aligned}
$$

where α , β are such that $\frac{1}{\alpha} + \frac{p-1}{\beta} + \frac{1}{p_s^*} = 1$. We observe that

$$
\frac{p_s^* - p}{p_s^*} + \frac{p-1}{p_s^*} + \frac{1}{p_s^*} = 1.
$$
\n(14)

Since c is in $L^{\frac{q}{q-p}}(\partial \Omega)$ and $\frac{p_s^*}{p_s^*-p} < \frac{q}{q-p}$, whenever $p < q < p_s^*$, we can choose α such that $\frac{p_s^*}{p_s^* - p} < \alpha < \frac{q}{q - p}$. With this choice of α , it follows from (14) that $1 < \beta < p_s^*$. We next show that $|u_n|^{p-2}u_n \to |u|^{p-2}u$ in $L^{\frac{\beta}{p-1}}(\partial \Omega)$. To see this, let $w_n = |u_n|^{p-2}u_n$ and $w = |u|^{p-2}u$. Since $u_n \rightharpoonup u$ in X , $u_n \rightharpoonup u$ in $L^{\beta}(\partial \Omega)$ by [\(6\),](#page-1-0) it follows that

$$
w_n(x) \to w(x)
$$
, *a.e.* on $\partial\Omega$ and $\int_{\partial\Omega} |w_n|^{p-1} ds \to \int_{\partial\Omega} |w|^{p-1} ds$.

Using Lemma 1, we conclude that $w_n \to w$ in $L^{\frac{\beta}{p-1}}(\partial \Omega)$. Therefore $Au_n \to Au$ in X^* . \Box

Lemma 2. Let B be defined in (13), then for any $u, v \in X$ one has

$$
\langle Bu - Bv, u - v \rangle \ge |||u||^{p-1} - ||v||^{p-1})(||u|| - ||v||).
$$

Furthermore, $\langle Bu - Bv, u - v \rangle = 0$ if and only if $u = v$ a.e. in Ω .

Proof. Straightforward computation gives us for any u , v in X

$$
|\langle Bu - Bv, u - v \rangle| = \int_{\Omega} [a|\nabla u|^p + a|\nabla v|^p] dx
$$

$$
- \int_{\Omega} a|\nabla u|^{p-2} \nabla u \nabla v dx - a|\nabla v|^{p-2} \nabla v \nabla u dx
$$

$$
+ \int_{\Omega} [b|u|^p + b|v|^p] dx - \int_{\Omega} b|u|^{p-2} uv dx
$$

$$
- \int_{\Omega} b|v|^{p-2} v u dx.
$$

Also, we have

$$
\int_{\Omega} b(|u|^p + |v|^p - |u|^{p-2}uv - |v|^{p-2}uv)dx
$$
\n
$$
\geq \int_{\Omega} b(|u|^p + |v|^p - |u|^{p-1}|v| - |v|^{p-1}|u|)dx
$$
\n
$$
= \int_{\Omega} b(|u|^{p-1} - |v|^{p-1})(|u| - |v|)dx \geq 0,
$$

where the last inequality follows from the fact that $t \to |t|^{p-1}$ is strictly increasing. As the function a is positive, it follows from Holder's inequality that

$$
\int_{\Omega} a |\nabla u|^{p-2} \nabla u \nabla v dx \le \left(\int_{\Omega} a |\nabla u|^{p} \right)^{\frac{p-1}{p}} \left(\int_{\Omega} a |\nabla v|^{p} \right)^{\frac{1}{p}}
$$

$$
= ||u||^{p-1} ||v||. \tag{15}
$$

Similarly we have

$$
\int_{\Omega} a |\nabla v|^{p-2} \nabla v \nabla u dx \leq ||v||^{p-1} ||u||.
$$

Therefore,

$$
\langle Bu - Bv, u - v \rangle \ge ||u||^p + ||v||^p - ||u||^{p-1} ||v|| - ||v||^{p-1} ||u||
$$

= $(||u||^{p-1} - ||v||^{p-1})(||u|| - ||v||).$

Now let *u* and *v* be such that $\langle B u - B v, u - v \rangle = 0$. Then we have

$$
\langle Bu - Bv, u - v \rangle = (\|u\|^{p-1} - \|v\|^{p-1})(\|u\| - \|v\|) = 0.
$$

It follows that $||u|| = ||v||$ and that the equality holds in (15). As equality in Holder's inequality is characterized, we obtain that $u = kv$ a.e. in Ω , for some constant $k \geq 0$, which implies $\|u\| = k\|v\|$. Therefore, $k = 1$ and $u = v$ a.e. in Ω . \Box

Proposition 2. Let G be defined in (11) , then G' satisfies (H_3) .

Proof. As $B = \frac{G'}{p}$, it suffices to show this for B. It is easy to see that B is bounded. Using Holder's inequality and Sobolev embedding theorem we have

$$
\langle Bu_n - Bu, v \rangle = \left| \int_{\Omega} a (|\nabla u_n|^{p-2} \nabla u_n - |\nabla u|^{p-2} \nabla u) \nabla v dx + \int_{\Omega} b (|u_n|^{p-2} u_n - |u|^{p-2} u) v dx \right| \leq \left(\int_{\Omega} |a^{\frac{p-1}{p}}| \nabla u_n|^{p-2} \nabla u_n - a^{\frac{p-1}{p}} |\nabla u|^{p-2} \nabla u \right)^{\frac{p-1}{p}} \|v\| + c \left(\int_{\Omega} |b^{\frac{p-1}{p}}|u_n|^{p-2} u_n - b^{\frac{p-1}{p}} |u|^{p-2} u \right)^{\frac{p-1}{p}} \|v\|
$$

Since $u_n \to u$ in X , $u_n \to u$ in $L^p(\Omega)$. Let $w_n = a^{\frac{p-1}{p}} |\nabla u_n|^{p-2} \nabla u_n$ and $w = a^{\frac{p-1}{p}} |\nabla u|^{p-2} \nabla u$ then

$$
w_n(x) \to w(x)
$$
, a.e.in Ω and $\int_{\Omega} |w_n|^{p-1} dx \to \int_{\Omega} |w|^{p-1} dx$.

Thus, $w_n \to w$ in $L^{\frac{p}{p-1}}(\Omega)$ and similarly we can prove that $b^{\frac{p-1}{p}}|u_n|^{p-2}u_n \to b^{\frac{p-1}{p}}|u|^{p-2}u$ in $L^{\frac{p}{p-1}}(\Omega)$.

It remains to show that B satisfies condition S_0 . That means if $\{u_n\}$ is a sequence in X such that

$$
u_n \to u
$$
, $Bu_n \to v$ and $\langle Bu_n, u_n \rangle \to \langle v, u \rangle$

for some $v \in X^*$ and $u \in X$, then $u_n \to u$ in X.

Since X is a uniformly convex Banach space, Weak convergence and norm convergence imply (strong) convergence. Thus to showing $u_n \to u$, we need to show $||u_n|| \to ||u||$. To do this, we first observe that

$$
\lim_{n\to\infty}\langle Bu_n - Bu, u_n - u \rangle = \lim_{n\to\infty}(\langle Bu_n, u_n \rangle - \langle Bu_n - u \rangle
$$

$$
- \langle Bu, u_n - u \rangle) = 0.
$$

On the other hand, it follows from Lemma 2 that

$$
\langle Bu_n - Bu, u_n - u \rangle \geq (\|u_n\|^{p-1} - \|u\|^{p-1})(\|u_n\| - \|u\|).
$$

Thus $||u_n|| \to ||u||$ as $n \to \infty$. Therefore B satisfies condition S_0 . \square

Theorem 2 (Existence of $L-S$ sequence). Let F and G be the two functionals defined in (10[\) and \(](#page-1-0)11). Then there exists a nondecreasing sequence of positive eigenvalues $\{\mu_n\}$ obtained from the Ljusternik–Schnirelman principle such that $\mu_n \to 0$ as $n \to \infty$, m_k

where
\n
$$
\mu_n = \sup_{H \in A_n} \inf_{u \in H} F(u) \tag{16}
$$

and each μ_n is an eigenvalue of $F(u) = \mu G'(u)$.

Proof. It is easy to see that N_α contains compact subsets of arbitrary large genus. Thus A_n is nonempty for any n. Given a set H in A_n , since H is compact and F is positive on H, $\inf_{u \in H} F(u) > 0$. It follows that a_n is the critical value defined by [\(9\)](#page-1-0). The existence of such a sequence μ_n follows from Theorem $1 - [1]$, $[2]$ and $[3]$. Also

 $\mu_n = \mu G(u_n) = \mu \langle Bu_n, u_n \rangle = \langle Au_n, u_n \rangle = F(u_1) = a_n.$

Combining this with [\(9\)](#page-1-0), we obtain (16). \Box

3. Simplicity of the first eigenvalue

In this section we will show that the first element λ_1 of the L–S sequence of eigenvalue is simple.

Lemma 3.

(i) Let
$$
p \ge 2
$$
 then for all $x, y \in R^N$
\n
$$
|y|^p \ge |x|^p + p|x|^{p-2}x \cdot (y-x) + C(p)|x-y|^p.
$$
\n(ii) Let $1 \le p \le 2$, then for all $x, y \in R^N$, (17)

$$
|y|^{p} \ge |x|^{p} + p|x|^{p-2}x \cdot (y-x) + C(p)\frac{|x-y|^{2}}{(|x|+|y|)^{2-p}}.
$$
 (18)

(iii) For any
$$
x \neq y
$$
, $p > 1$
\n
$$
|y|^p \ge |x|^p + p|x|^{p-2}x \cdot (y-x).
$$
\n(19)

In the above $C(p)$ is a constant depending only on p.

Proof. We refer to Lindqvist [\[4\]](#page-4-0) for the proof. \Box

Lemma 4. If u_1 is an eigenfunction associated with λ_1 , then either $u_1 > 0$ or $u_1 < 0$ in $\overline{\Omega}$.

Proof. We refer to [\[12\]](#page-4-0) for the proof. \Box

Theorem 3. The principal eigenvalue λ_1 is simple, i.e., if u and v are two eigenfunctions associated with λ_1 , then there exists a constant c such that $u = cv$.

Proof. By Lemma 4 we can assume u and v are positive in $\overline{\Omega}$. Let

$$
\eta_1 = \frac{(u^p - v^p)}{u^{p-1}}
$$
 and $\eta_2 = \frac{(v^p - u^p)}{v^{p-1}}$,

then take them as test functions, we get

$$
\int_{\Omega} a |\nabla u|^{p-2} \nabla u \cdot \nabla \left(\frac{u^p - v^p}{u^{p-1}} \right) dx = \lambda_1 \int_{\partial \Omega} c |u|^{p-2} u \left(\frac{u^p - v^p}{u^{p-1}} \right) ds \n- \int_{\Omega} b |u|^{p-2} u \left(\frac{u^p - v^p}{u^{p-1}} \right) dx,
$$

and

$$
\int_{\Omega} a |\nabla v|^{p-2} \nabla v \cdot \nabla \left(\frac{v^p - u^p}{v^{p-1}} \right) dx = \lambda_1 \int_{\partial \Omega} c |v|^{p-2} v \left(\frac{v^p - u^p}{v^{p-1}} \right) ds \n- \int_{\Omega} b |v|^{p-2} v \left(\frac{v^p - u^p}{v^{p-1}} \right) dx.
$$

Summing up, we obtain

$$
0 = \int_{\Omega} a |\nabla u|^{p-2} \nabla u \cdot \nabla \left(\frac{u^p - v^p}{u^{p-1}}\right) dx + \int_{\Omega} a |\nabla v|^{p-2} \nabla v
$$

$$
\cdot \nabla \left(\frac{v^p - u^p}{v^{p-1}}\right) dx. \tag{20}
$$

We know that

$$
\nabla \left(\frac{u^p - v^p}{u^{p-1}} \right) = \nabla u - p \frac{v^{p-1}}{u^{p-1}} \nabla v + (p-1) \frac{v^p}{u^p} \nabla u.
$$

Using this, the first term of (20) becomes

$$
\int_{\Omega} a |\nabla u|^p dx - p \int_{\Omega} a \frac{v^{p-1}}{u^{p-1}} |\nabla u|^{p-2} \nabla v \nabla u dx + (p-1) \int_{\Omega} a
$$

\n
$$
\times \frac{v^p}{u^p} |\nabla u|^p dx
$$

\n
$$
= \int_{\Omega} a |\nabla \ln u|^p u^p dx - p \int_{\Omega} a v^p |\nabla \ln u|^{p-2} \nabla \ln u \cdot \nabla \ln v dx
$$

\n
$$
+ (p-1) \int_{\Omega} a |\nabla \ln u|^p v^p dx
$$

\n
$$
= \int_{\Omega} a |\nabla \ln u|^p (u^p - v^p) dx - p \int_{\Omega} a v^p |\nabla \ln u|^{p-2} \nabla \ln u \nabla \ln v
$$

\n
$$
+ p \int_{\Omega} a |\nabla \ln u|^p v^p dx
$$

and for the second term of [\(20\)](#page-3-0) we have

$$
\int_{\Omega} a |\nabla v|^p dx - p \int_{\Omega} a \frac{u^{p-1}}{v^{p-1}} |\nabla v|^{p-2} \nabla u \nabla v dx + (p-1)
$$

$$
\int_{\Omega} a \frac{u^p}{v^p} |\nabla v|^p dx
$$

$$
= \int_{\Omega} a |\nabla \ln v|^p v^p dx - p \int_{\Omega} a u^p |\nabla \ln v|^{p-2} \nabla \ln v \cdot \nabla \ln u dx
$$

$$
+ (p-1) \int_{\Omega} a |\nabla \ln v|^p u^p dx
$$

$$
= \int_{\Omega} a |\nabla \ln v|^p (v^p - u^p) dx - p \int_{\Omega} a u^p |\nabla \ln v|^{p-2} \nabla \ln v \nabla \ln u
$$

$$
+ p \int_{\Omega} a |\nabla \ln v|^p u^p dx.
$$

Thus (20) becomes

$$
\int_{a}^{b} f(x) \, dx \, dx \, dx \, dx \, dx
$$

$$
0 = \int_{\Omega} a(u^p - v^p)(|\nabla \ln u|^p - |\nabla \ln v|^p)dx - p
$$

\$\times \int_{\Omega} av^p |\nabla \ln u|^{p-2} \nabla \ln u \cdot (\nabla \ln v - \nabla \ln u)dx - p\$
\$\times \int_{\Omega} au^p |\nabla \ln v|^{p-2} \nabla \ln v \cdot (\nabla \ln u - \nabla \ln v)dx.\$

For $p \ge 2$, taking $x = \text{Sh}u$, $y = \text{Sh}v$ and vice versa, it follows from inequality [\(17\)](#page-3-0) in Lemma 3 that

$$
0 \geq C(p) \int_{\Omega} a |\nabla \ln u - \nabla \ln v|^p (u^p + v^p) dx.
$$

Therefore,

$$
0 = |\nabla \ln u - \nabla \ln v|
$$

This implies that $u = kv$. For $p < 2$ we use inequality [\(18\)](#page-3-0) in Lemma 3 to obtain the same results. \Box

References

- [1] R.A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
- [2] M. Struwe, Variational Methods, fourth ed., Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Berlin, 2008.
- [3] G. Astarita, G. Marrucci, Principles of Non-Newtonian Fluid Mechanics, McGraw-Hill, New York, 1974.
- [4] P. Lindqvist, On the equation div($|\mathcal{S}u|^{p-2}\mathcal{S}u$) + $|u|^{p-2}u = 0$, Proceedings of the American Mathematical Society 109 (1990) 157–164.
- [5] J.P. Garcia Azorero, I. Peral Alonso, Existence and nonuniqueness for the p-Laplacian: nonlinear eigenvalues, Communications in Partial Differential Equation 12 (1987) 1389–1430.
- [6] F. Browder, Existence theorems for nonlinear partial differential equations, in: Global Analysis, Proceedings of the Symposium Pure Mathematics, vol. XVI, Berkeley, California, 1968, American Mathematics Society Providence, RI, 1970, pp. 1–60.
- [7] P. Drabek, A. Kufner, F. Nicolosi, Quasilinear elliptic equations with degenerations and singularities, de Gruyter Series in Nonlinear Analysis and Applications, vol. 5, Walter de Gruyter and Co., Berlin, 1997.
- [8] E. Zeidler, Nonlinear functional analysis and its applications, Variational Methods and Optimization, vol. 3, Springer, Berlin, 1985.
- [9] M. Willem, Minimax Theorems, Birkhauser, Boston, 1996.
- [10] K. Yosida, Functional Analysis, 6th ed., Springer, New York, 1995.
- [11] M.M. Rao, Z.D. Ren, Theory of Orlicz Space, Monographs and Textbooks in Pure and Applied Mathematics, vol. 146, Marcel Dekker Inc., New York, 1991.
- [12] A. Le, Eigenvalue problems for the p-Laplacian, Nonlinear Analysis 64 (2006) 1057–1099.
- [13] A. Anane, Simplicite et isolation de la premiere valeur propre du p-Laplacian avec poids, Comptes Rendus I'Academie des Sciences Paris Series I Mathematique 305 (1987) 725–728.
- [14] A. Anane, O. Chakrone, B. Karim, A. Zerouali, Eigenvalue for a Steklov problem, Electronic Journal of Differential Equations 2009 (75) (2009) 1–8.
- [15] A. Le, K. Schmitt, Variational eigenvalue of degenerate eigenvalue problems for the weighted p-Laplacian, Advanced Nonlinear studies 5 (2005) 573–587.