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1. Introduction

Eigenvalue problems for the p-Laplacian operator on a
bounded domain have been studied extensively and many
interesting results have been obtained, see e.g. [13] and [14].

Beside being of mathematical interest, the study of the p-
Laplacian operator is also of interest in the theory of Non-
Newtonian fluids both for the case p > 2 (dilatant fluids)
and the case 1 < p < 2 (pseudo-plastic fluids), see [3].
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In this work we study the existence of nondecreasing se-
quence of nonnegative eigenvalues for the systems

div(a(x)|Vul” >Vu) = b(x)[uf’ *u in Q,
|Vul” 224 = Je(x) on 0Q,

on

(1)

ul’u

by using the Ljusternic—Schnirelman principle, where Q is a
bounded domain in RY(N > 2) and 1 < p < N. We assume
that

a(x),b(x) is positive a.e. in Q,
. N 1
ac L (Q),a" €L (Q), s€ (;,oo) N [”Tloo) (2)
We define
ps Np;, Nps

L= = = 3
Ps=50Ps N—p, N(s+1)—ps’ 3)

In addition we assume
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meas {x € 9Q : ¢(x) > 0} >0,
¢ € Li'(dQ), for some p < ¢ < p;- (4)

Many results have been obtained on the structure of the spec-
trum of the Dirichlet problem

div(|Vul’ *Vu) = 2uf’ *u in Q,
u=>0 on 0Q,

(e.g. see [4,7,9]). It is shown in [5] that there exists a nondecreas-
ing sequence of positive eigenvalues 4, tending to oo as n — oo,
also in [12], the author establish the results on existence of such
sequence and some properties of the spectral of above problem.
The existence of such a sequence of eigenvalues can be proved
using the theory of Ljusternic—Schnirelman (e.g. see [6,8]). For
that reason we call this sequence the L — S sequence {4,}. Moti-
vated by above-mentioned papers and the results in [15], we deal
with the existence of L-S sequence and simplicity of the principal
eigenvalue of problem (1).

Let X := W'(a,Q), the weighted Sobolev is defined to the
set of all real valued measurable functions u for which

1
0 = ( [avaracs | |u|"dx) | 5)
Q Q

Then X equipped with the norm |||; ., is a uniformly convex
Banach space, thus, by Milman’s Theorem (see [10]) is a reflexive
Banach space. Moreover we have these continuous embedding

X W' (Q)— 1P (Q)

with p, = £5 and p; = %
Notice that the compact embedding
X—L'(0Q) (6)

holds provided that 1 < r < p;, see [1] and [2]. It follows from
the weighted Friedrichs inequality (see [7] (formula (1.28))) that
the norm

1
llull = (/ a|Vu|pdx)l
e

on the space X is equivalent to the norm [[{; ,, defined in (5).

Definition 1. We say 2 > 0 is a positive eigenvalue of (1), if
there exists a nontrivial function u € W'”(Q) such that

/a\Vu|”72Vqudx+/b|u|”72uvdx
Q Q
= / () ul’uvdt (7)
00

holds for any v € X. Then u is called an eigenfunction correspond-
ing to the eigenvalue 1. The pair (u, 4) is called an eigenpair.

2. The Ljusternic—Schnirelman principle

Let X be a real Banach space and F, G be two functionals on X.
For fixed & > 0, we consider the eigenvalue problem

F (u) = uG'(u), ueN, LeR (8)
with the level set

N, :={u e X;G(u) = o}.

We assume that:

(H)F, G:X— R are even functionals such that F,
G € CY(X,R) and F(0) = G(0) = 0. In particular, it follows
from this that 7' and G’ are odd potential operators.
(Hy)The operator F is strongly continuous (i.e.
u, —u= F(u,) > F(u) and F(u)#0,u € coN, implies
F(u) #0, where coN,, is the closed convex hull of N,.
(H3)The operator G’ is uniformly continuous on bounded
sets and satisfies (Sp), i.e. as n — oo,

t, — u, G (u,) — v, (G (u,), u,) — (v,u) implies u, — u.
(Hy)The level set N, is bounded and

u70 implies (G'(u),u) > 0, imG(tu) = +oo,

and o

l}grl/\{{G (u),u) > 0.

It is known that u is a solution of (8) if and only if u is a
critical point of F with respect to N, (see Zeidler [8, Proposi-
tion 43.21]).

For any positive integer n, denote by A4,, the class of all com-
pact, symmetric subsets K of N, such that F(u) > 0 on K and
7(K) = 0, where y(K) denote the genus of K, ie., p(K):=
inf{k € N; In:K — Rk\{O} such that / is continuous and odd}.

We define:

SupHeA,,infueHF(u) if A,,;é(Z)
n = . B (9)
0 if 4, =0.
Also let
L {Sup{n € Nya, >0} ifa; >0,
o if @ = 0.

Now, we state the L-S principle.

Theorem 1. Under assumptions (H;)—(Hy), the following
assertions hold:

[1] (Existence of an eigenvalue) 1f a,, > 0, then (1) possesses
a pair +u, of eigenvectors and an eigenvalue p, # 0; fur-
thermore F(u,) = a,.

[2] (Multiplicity) If y = oo, (8) has infinitely many pairs +u,, of
eigenvectors corresponding to nonzero eigenvalues.

[3] (Critical levelsyoo > a; =2 a, = --- 2 0 and a,—> 0 as
n— oo.

[4] (Infinitely  many  eigenvalues) 1If y = oo and
F(u) =0,u € coN, implies (F(u),u) = 0, then there
exists an infinite sequence {u,} of distinct eigenvalues
of (8) such that p, — 0 as n — oo.

[5] (Weak convergence of eigenvectors) Assume that
F(u) =0,u € coN, implies u =0, Then y = oo and
there exists a sequence of eigenpairs {(u,,,)} of (8) such
that u, — 0,4, > 0 as n - oo and p, # 0 for all n.

Proof. We refer to [6] or [8] for the proof. [

Define on X the functionals

Flu) = /mc(znu(r)v’dz, (10)
G(u) =/Qa\Vu|"dx+/Qb\u|”dx. (11)
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It is easy to see that F and G are differentiable with 4 = %F
and B = %G’ given by
(Au,v) = / (O \u(O)F2uvd, (12)

oQ

(Bu,v) :/a|Vu|”72Vqudx+/b|u\”72uvdx. (13)
o o

Then (8) becomes Au = uBu, where G(u) = 1.
We claim that F and G satisfy (Hy)—(Hy). It is clear that F
and G are even and (Hy) holds. It remain to verify (H,) and

(Hs).

Lemma 1. Let Q be a domain in RY and let ¢:R* — R™ be a
Young function which satisfies a A,-condition, i.e., there is ¢ > 0

such that ¢(2t) < co(t) for all t = 0. If {u,} is a sequence of

integrable functions in Q such that

u(x) = limu,(x), ae. x € Q and /¢(|u|)dx
n—oo Q

= lim [ ¢(|un|)dx,

then
lim ¢(|u, — ul)dx = 0.

Proof. See [11, Theorem 12], for the proof. [
Proposition 1. The functional F given by (10) satisfies (H,).
Proof. It is sufficient to show that A4 is strongly continuous.

Let 1, — u in X, we show that Au, — Auin X".

For any ve X, by Holder’s inequality and compact
embedding X o L”(0Q), it follows that

[{(Au, — Au,v)| = ‘/ (P 2wy — [uf”u)vds
a0

-2 -2
< lell xqogy unl” "2t — Juaf” MHU%(@Q)”VHLMW)

< klle

p—2 _ p—2
L’(Osl)“‘uﬂ‘ u, — |ul ”HU%M)HV‘L

where o, f are such that i+’% + 1% = 1. We observe that
- -1 1
,175—*}7 + }7—* + —= 1. (14)
p.? pS pS
Since ¢ is in L77(0Q) and p{’fp <%, whenever p < g < pj, we
can choose o such that P”—fp <a< ﬁ With this choice of o,
it follows from (14) that 1 < p < p:. We next show that
| wd ?2u, — |l P~ uin LP%(GQ). To see this, let w,, = | u,) 7" 2u,
and w = |l ?"2u. Since u, — u in X, u, — u in LA(dQ) by (6), it
follows that

B
wy(x) — w(x),a.e. on 9Q and / |w, [ Tds — / [w
00 00

ya
PTds.

Using Lemma 1, we conclude that w,, — w in Lv/*}l((’)Q). There-
fore Au, —» Auin X°. O

Lemma 2. Let B be defined in (13), then for any u, v € X one
has

-1 -1
(Bu—By,u—v) = ([ul™ = [II" ) llull = IIVID)-
Furthermore, (Bu — Bv,u — vy = 0 if and only if u = v a.e. in Q.

Proof. Straightforward computation gives us for any u,
vin X

[(Bu — Bv,u —v)| = / [a|Vul” + a|Vv|']dx

JQ

- / aVul” *VuVvdx — a| Vv > VvWudx
0
+/[b|u|”+b\v|”]dx—/b\u\p72uvdx
o o
- /b\v|p72vudx.
Ja

Also, we have

/ B(lul” + v — a2y — v 2ur)dx
Q
> /b(|“|" + o =l v = " ful)dx
Q

- / b(lul”™" = ") (Jul — v)dx > 0,
Q

where the last inequality follows from the fact that 1 —| 477" is
strictly increasing. As the function a is positive, it follows from
Holder’s inequality that

[ 1
> ;
/a|Vu|”72Vqudx < (/ a|Vu\p) (/ a|Vv|”)
Q Q Q
= [lull”" v (15)

Similarly we have
/a|vV|"*2vVvudx < Il
Q

Therefore,
(Bu— Bv,u—v) = ||l + [yl = [l [yl = (v~ ul
= ([l = 107~ Ul = [1¥11)-
Now let u and v be such that (Bu — B v,u — v) = 0. Then we
have
(Bu— Bv,u—v) = (|lull”" = [~ (|[ull = Iv]}) = 0.

It follows that || = ||| and that the equality holds in (15). As
equality in Holder’s inequality is characterized, we obtain that
u=kv ae. in Q, for some constant k£ > 0, which implies
llull = &l[v|. Therefore, k = 1 and u = v ae. in Q. O

Proposition 2. Let G be defined in (11), then G’ satisfies (Hs).

Proof. As B= G—)', it suffices to show this for B. It is easy to see
that B is bounded. Using Holder’s inequality and Sobolev
embedding theorem we have

(Bu, — Bu,v) =

/ a(|Vu ">V, — |Vl > Vu)Vvdx + / b(|un” 1
e Q

<

u
) B P
7,y — 7 P up “’) "

—|u|"u)vdx a7

=
— p 3
ViV, — apl_vl\Vu\“zVu\"%'dx) (V]|
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. . . Jud} -2
Since u, —wuin X, u, > uin L’(Q). Let w, = a7 |Vu,|""Vu,
poL )
and w = a7 |[Vu|"""Vu then

wy(x) — w(x), a.ein Q and /|wn
Q

P]_]‘dx—>/|w|l’L'dx.
o

Thus, w, — w in Li7(Q) and similarly we can prove that
1 p—1 p
b7 2w, — b7 [ul’"*u in LFT(Q).
It remains to show that B satisfies condition S,. That means
if {u,,} is a sequence in X such that

Uy, — u,Bu, — v and (Bu,,u,) — (v, u)

for some v € X and u € X, then u, — u in X.

Since X is a uniformly convex Banach space, Weak
convergence and norm convergence imply (strong) conver-
gence. Thus to showing u,, — u, we need to show ||u,|| = ||u||. To
do this, we first observe that
lim (Bu, — Bu,u, — u) = lim ((Bu,, u,) — (Bu, — u)

n—oo n—oo

— (Bu,u, — u)) = 0.
On the other hand, it follows from Lemma 2 that
(Buy — Buyuty — 1) = ([~ = [fall”) flan| = [Jel])-

Thus [ju,]| = |lull as n— co. Therefore B satisfies condition
So-

Theorem 2 (Existence of L—S sequence). Let F and G be the

two functionals defined in (10) and (11). Then there exists a

nondecreasing sequence of positive eigenvalues {u,} obtained

from the Ljusternik—Schnirelman principle such that u, — 0 as

n— 0o,

where

w, = supinfF(u) (16)
Hed, el

and each ,, is an eigenvalue of F (u) = u G'(u).

Proof. It is easy to see that N, contains compact subsets of

arbitrary large genus. Thus 4,, is nonempty for any n. Given

a set H in A,, since H is compact and F is positive on H,

inf,c 7 F(u) > 0. It follows that a, is the critical value defined

by (9). The existence of such a sequence , follows from The-
orem 1 — [1], [2] and [3]. Also

Uy = 1G(uy) = u(Buty, uy) = (Atty, u,) = F(uy = a,.
Combining this with (9), we obtain (16). O

3. Simplicity of the first eigenvalue

In this section we will show that the first element A; of the L-S
sequence of eigenvalue is simple.

Lemma 3.

(i) Let p > 2 then for all x, y € R
W =[xl + plxl"x - (v = x) + C(p)lx =yl (17)
(i) Let 1 < p < 2, then for all x, y € R",

X

|X_y|2 (18)

P = el + plx 7 x- (v = x) + C(p) =z
(Il + )™

(iii)) Forany x=y, p > 1
" =[x+ plxx - (v = x). (19)
In the above C(p) is a constant depending only on p.

Proof. We refer to Lindqvist [4] for the proof. [

Lemma 4. If u; is an eigenfunction associated with 1;, then
either u; > 0 or u; < 0 in Q.

Proof. We refer to [12] for the proof. O

Theorem 3. The principal eigenvalue 1, is simple, i.e., if u and v
are two eigenfunctions associated with 1;, then there exists a
constant ¢ such that u = cv.

Proof. By Lemma 4 we can assume « and v are positive in Q.
Let

(w =)

w1

(" —w)

and 1, = =

m=

k]

then take them as test functions, we get

P — P Y
—2 u % R —2 u V
a|Vul"""Vu.V —|dx = [ clul"u ds
Q ub= ; !

00
L (u =
f/b|u|” zu(u )dx,
Q ur!
and

P P " P — P
i W o— u , L [V —u
alVvf " Vv v dx=17 | <y ds
vpfl fol
Jo 20

Lo (V-
f/b|v|’7 2\)( u>dx.
0 vl
Summing up, we obtain

P — P
0= [ a|Vul"*Vu-v L= ) o+ IAvAY vt
Q 7 Q

P P
v <%) dx. (20)

We know that

w1

w — =1 W
Using this, the first term of (20) becomes
p—1
/a\Vu|”dx—p / av—fl\VuV*szVudx—i- (p- 1)/a
Q Jo W Q
W
x — |Vul’dx
u?
= /a|V1nu|”u‘”dx—p/av”\Vlan’*zV In u-Vinvdx
Q Q
+(p- 1)/a|V1nu\”v”dx
Q
- /a|v1nu|”(u"— vﬂ)dx—p/avﬂ\vmu|ﬂ‘2v1nuv1nv
Q Q

+p/a|Vlnu|pv”dx
2
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and for the second term of (20) we have

p—1
/ a| Vv dx —p/ au—f1 V" *VuVvdx + (p — 1)
Q o W

u?
/a—|Vv\pdx
o W

:/a|Vlnv|”v"dx—p/au‘”|Vlnv|"72V In v-VInudx
o o
+(p—1)/a|Vlnv|pu"dx
o
:/a|Vlnv|”(v”—u”)dx—p/au"|Vlnv\p72V1an1nu
o o

+p /Qa\Vln v ul dx.
Thus (20) becomes
0— /Qa(u” WYV Inuf — [VinvP)dx — p
X /Qav”|Vlnu|”’2V1nu (Vinv—ViInu)dx —p

X / a|VInvf*Viny- (Vinu — Vinv)dx.
Q

For p > 2, taking x = $lnu, y = S$lnv and vice versa, it fol-
lows from inequality (17) in Lemma 3 that

0= C(p) / alVinu—Vinv](u +)dx.
Q
Therefore,

0=|Vinu—Viny|

This implies that u = kv. For p < 2 we use inequality (18)
in Lemma 3 to obtain the same results. [
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