ORIGINAL RESEARCH

Open Access

Namrata Arvind and Saikat Panja*

*Correspondence: panjasaikat300@gmail.com

IISER Pune, Dr. Homi Bhabha Road, Pashan, Pune 411 008, India

Abstract

We provide the structure of the unit group of $\mathbb{F}_{p^k}S_n$, where p>n is a prime and S_n denotes the symmetric group on n letters. We also provide the complete characterization of the unit group of the group algebra $\mathbb{F}_{p^k}A_6$ for $p\geq 7$, where A_6 is the alternating group on 6 letters.

Keywords: Unit group, Group algebra, Finite field, Wedderburn decomposition **Mathematics Subject Classification:** Primary 16S34, Secondary 16U60, 20C05

Introduction

Let $q=p^k$ for some prime p and $k\in\mathbb{N}$. Let \mathbb{F}_q denote the finite field of cardinality q. For any group G, let \mathbb{F}_qG denote the group algebra of G over \mathbb{F}_q . We will follow [14] for basic notations. The group of units of \mathbb{F}_qG has applications in different areas, including the construction of convolutional codes (see [5–7]) and solving problems in combinatorial number theory (see [3]) et cetera. This necessitates finding the explicit structure of the group of units of \mathbb{F}_qG .

In [15], the author has described units of \mathbb{F}_qG , where G is a p-group. The authors of [13] complete the study of unit groups of semisimple group algebras of all groups up to order 120, except that of the symmetric group S_5 and groups of order 96. In Remark 3.7 of this article, we complete the characterization for the group S_5 . However, the complexity of the problem increases if the group has a larger size, as that requires solving an equation of type $\sum_{i=1}^{n} k_i n_i^2 = |G|$. The most commonly used tricks include identifying a

normal subgroup H of G and considering the algebra $\mathbb{F}_q(G/H)$ inside \mathbb{F}_qG . This is not possible if the group G does not have any normal subgroup. This is why we will be using representations of the group A_6 to solve the problem in case of the same. See [16, 17] et cetera for more exposition about other groups.

The objective of this article is twofold. We start by investigation of $\mathbb{F}_q S_n$ where p > n. This is mainly a consequence of the representation theory of S_n over \mathbb{C} and the connection between the Brauer characters of the group when p > n and the ordinary characters over \mathbb{C} . We state the characterization in this case in Theorem 3.6. The group of units of the semisimple algebras $\mathbb{F}_q A_5$ and $\mathbb{F}_q SL(3,2)$ have been characterized in [1, 12],

respectively. In this article, we look at the next non-Abelian simple group A_6 , the alternating group on six letters. We give a complete characterization of $\mathbb{F}_q A_6$ for the case $p \geq 7$ in Theorem 4.8.

The rest of the article is organized as follows: in "Preliminaries" section, we give some basic definitions and results. "Units of $\mathbb{F}_{p^k}S_n$ for $p \not\mid n3$ " section is about the general description of representations of S_n over an arbitrary field of characteristic p > n and deducing the structure of $\mathcal{U}(\mathbb{F}_{p^k}S_n)$ for p > n. In section 4, we present the result about $\mathbb{F}_{p^k}A_6$ where $p \geq 7$.

Preliminaries

We start by fixing some notations. Already mentioned notations from section 1 are adopted. For a field extension E/\mathbb{F}_q , $\operatorname{Gal}(E/\mathbb{F}_q)$ will denote the Galois group of the extension. For $m \in \mathbb{N}$, the notation M(m,R) denotes the ring of $m \times m$ matrices over R and $\operatorname{GL}(m,R)$ will denote the set of all invertible matrices in M(m,R). For a ring R, the set of units of R will be denoted by R^\times . Let Z(R) and J(R) denote the center and the Jacobson radical, respectively. If G is a group and $x \in G$, then [x] will denote the conjugacy class of x in G. For the group ring $\mathbb{F}_q G$, the group of units will be denoted as $\mathcal{U}(\mathbb{F}_q G)$. For the notations on projective spaces, we follow [4].

We say an element $g \in G$ is a p'-element if the order of g is not divisible by p. Let e be the exponent of the group G and η be a primitive rth root of unity, where $e = p^f r$ and $p \mid r$. Let

$$I_{\mathbb{F}_q} = \Big\{l \ (\text{mod } e): \text{ there exists } \sigma \in \operatorname{Gal}(\mathbb{F}_q(\eta)/\mathbb{F}_q) \text{ satisfying } \sigma(\eta) = \eta^l \Big\}.$$

Definition 2.1 For a p'-element $g \in G$, the cyclotomic \mathbb{F}_q -class of g, denoted by $S_{\mathbb{F}_q}(\gamma_g)$, is defined as $\left\{\gamma_{g^l}: l \in I_{\mathbb{F}_q}\right\}$, where $\gamma_{g^l} \in \mathbb{F}_q G$ is the sum of all conjugates of g^l in G.

Then, we have the following results, which are crucial in determining the Artin–Wedderburn decomposition of $\mathbb{F}_q G$.

Lemma 2.2 [2, Proposition 1.2] The number of simple components of $\mathbb{F}_qG/J(\mathbb{F}_qG)$ is equal to the number of cyclotomic \mathbb{F}_q -classes in G.

Definition 2.3 Let π be a representation of a group G over a field F. π is said to be absolutely irreducible if π^E is irreducible for every field $F \subseteq E$, where π^E is the representation $\pi \otimes E$ over E.

Definition 2.4 A field *F* is a splitting field for *G* if every irreducible representation of *G* over *F* is absolutely irreducible.

Lemma 2.5 [2, Theorem 1.3] Let n be the number of cyclotomic \mathbb{F}_q -classes in G. If L_1, L_2, \dots, L_n are the simple components of $Z(\mathbb{F}_q G/J(\mathbb{F}_q G))$ and S_1, S_2, \dots, S_n are the cyclotomic \mathbb{F}_q -classes of G, then with a suitable reordering of the indices,

$$|S_i| = [L_i : \mathbb{F}_q].$$

Lemma 2.6 [11, Lemma 2.5] Let K be a field of characteristic p and let A_1 , A_2 be two finite dimensional K-algebras. Assume A_1 to be semisimple. If $g: A_2 \longrightarrow A_1$ is a surjective homomorphism of K-algebras, then there exists a semisimple K-algebra l such that $A_2/J(A_2) = l \oplus A_1$.

We need the following lemmas from our previous work to compute some components of the Artin–Wedderburn decomposition of \mathbb{F}_qG , for a finite group G under consideration.

Lemma 2.7 [1, Lemma 3.1] Let G be a group of order n and \mathbb{F} be a field of characteristic p > 0. Let G acts on $\{1, 2, \dots, k\}$ doubly transitively. Set $G_i = \{g \in G : g \cdot i = i\}$ and $G_{i,j} = \{g \in G : g \cdot i = i, g \cdot j = j\}$. Then, the $\mathbb{F}G$ module

$$W = \left\{ x \in \mathbb{F}^k : \sum_{i=1}^k x_i = 0 \right\}$$

is an irreducible $\mathbb{F}G$ module if $p \mid /k, p \mid /|G_{1,2}|$.

Lemma 2.8 [1, Corollary 3.8] Let G be a finite group, K be a finite field of characteristic p > 0, $p \mid / \mid G \mid$. Suppose there exists an n dimensional irreducible representations of G over k. Then, M(n, k) appears as one of the components of the Artin-Wedderburn decomposition of the semisimple algebra $\mathbb{F}_a G$.

Units of $\mathbb{F}_{p^k}S_n$ for $p \not\mid n$

We start the section by talking about representations of S_n over a finite field. We define the Brauer character and state some important results about representations over an arbitrary field. See [8] for further details.

Let E be a field of characteristic p. We choose a ring of algebraic integers A in $\mathbb C$ such that E=A/M, where M is a maximal ideal of A containing pA. Take f to be the natural map $A\longrightarrow E$. Take $W=\{z\in\mathbb C|z^m=1\text{ for some }m\in\mathbb Z\text{ with }p\mid /m\}$ (note that $W\subseteq A$). Now let π be a representation of a finite group G over E. Let S be the set of p' elements of G. For $\alpha\in S$, let $\epsilon_1,\epsilon_2,\ldots,\epsilon_l\in E^\times$ be the eigenvalues of $\pi(\alpha)$ with multiplicities. Then, for every i, there exists a unique $u_i\in W$ such that $f(u_i)=\epsilon_i$. Define $\phi:S\longrightarrow \mathbb C$ as $\phi(\alpha)=\Sigma u_i$. Then, ϕ is called the Brauer character of G afforded by π .

Remark 3.1

The description of Brauer character comes along with a choice of a maximal ideal M of A.

Suppose $\pi_1, \pi_2, ..., \pi_k$ are all the non-isomorphic irreducible representations of G over E up to isomorphism. Let ϕ_i be the Brauer character afforded by π_i . Then, $\phi_i's$ are called irreducible Brauer characters and we denote by IBr(G) the set $\{\phi_i\}$. We denote by Irr(G) the set of irreducible characters of G over \mathbb{C} . We have the following results.

Lemma 3.2 [8, Theorem 15.13] We have IBr(G) = Irr(G) whenever $p \mid |G|$.

For the rest of this section, take $G = S_n$, the symmetric group on n letters. We say a partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_l)$ of n is p-singular if for some j we have $\lambda_{j+1} = \lambda_{j+2} = \dots = \lambda_{j+p}$. If a partition is not p-singular, it is called p-regular. Then we have the following.

Lemma 3.3 [9, Theorem 11.5] If F is a field of characteristic p, then as λ varies over the p-regular partitions, D^{λ} varies over the complete set of inequivalent irreducible FS_n -modules, where $D^{\lambda} = \frac{S^{\lambda}}{S^{\lambda} \cap (S^{\lambda})^{\perp}}$ and S^{λ} denotes the Specht module corresponding to the partition λ . Moreover, every field is a splitting field for S_n .

Proof

The proof follows immediately from the fact that every partition of n is a p-regular partition.

Lemma 3.4 The dimensions of non-isomorphic irreducible representations of S_n over E coincide with the dimensions of non-isomorphic irreducible representations of S_n over \mathbb{C} when characteristic of the field E is greater than n.

Proof

Since the dimension of a representation is as same as the value of the corresponding character χ at the identity element of the group, the result follows from Lemma 3.2.

Proposition 3.5 Let S_n denote the symmetric group on n letters and \mathbb{F}_{p^k} be a finite field where p > n. Then,

$$\mathbb{F}_{p^k}S_n \cong \bigoplus_{\chi \in Irr(G)} \mathrm{M}(\chi(1), \mathbb{F}_{p^k}).$$

Proof

Since being a semisimple algebra $\mathbb{C}S_n\cong\bigoplus_{\chi\in Irr(G)}M(\chi(1),\mathbb{C})$, the result follows from Lem-

mas 2.8, 3.2 and 3.4.

Theorem 3.6 Let S_n denote the symmetric group on n letters and \mathbb{F}_{p^k} be a finite field where p > n. Then,

$$\mathcal{U}(\mathbb{F}_{p^k}S_n) \cong \bigoplus_{\chi \in Irr(G)} GL(\chi(1), \mathbb{F}_{p^k}).$$

Proof

This follows immediately from Proposition 3.5 and the fact that given two rings R_1 , R_2 , we have $(R_1 \times R_2)^{\times} = R_1^{\times} \times R_2^{\times}$.

Remark 3.7

Theorem 3.6 improves the result of [10] and proves that when p > 5, unit group of $\mathbb{F}_{p^k}S_5$ is $\mathcal{U}(\mathbb{F}_{p^k}S_5)$ given by

$$\mathbb{F}_{p^k}^\times \oplus \mathbb{F}_{p^k}^\times \oplus \operatorname{GL}(4,\mathbb{F}_{p^k}) \oplus \operatorname{GL}(4,\mathbb{F}_{p^k}) \oplus \operatorname{GL}(5,\mathbb{F}_{p^k}) \oplus \operatorname{GL}(5,\mathbb{F}_{p^k}) \oplus \operatorname{GL}(6,\mathbb{F}_{p^k})$$

Remark 3.8

For an irreducible representation χ of S_n over a field of characteristic p > n, this is characterized by a partition λ of n. The value $\chi(1)$ can be calculated as the number of standard Young tableaux of shape λ .

Units of $\mathbb{F}_{p^k}A_6$ for $p \geq 7$

We start with the description of the conjugacy classes in A_6 . Using [18], the group has 7 conjugacy classes, of which the representatives are given by (1), a = (1,2)(3,4), b = (1,2,3), c = (1,2,3)(4,5,6), d = (1,2,3,4)(5,6), e = (1,2,3,4,5)

and f = (1, 2, 3, 4, 6). We have the following relations:

for all
$$g \notin [e] \cup [f]$$
, $[g] = [g^{-1}]$, (4.1)

and
$$[e] = [e^4], [e^2] = [e^3] = [f].$$
 (4.2)

Proposition 4.1 Let \mathbb{F}_q be a field of characteristic $p \geq 7$ and $G = A_6$. Then, the Artin–Wedderburn decomposition of \mathbb{F}_qG is one of the following:

$$\mathbb{F}_{q} \oplus \bigoplus_{i=1}^{6} M(n_{i}, \mathbb{F}_{q}),$$

$$\mathbb{F}_{q} \oplus \bigoplus_{i=1}^{4} M(n_{i}, \mathbb{F}_{q}) \oplus M(n_{5}, \mathbb{F}_{q^{2}})$$

Proof

Since $p \ge 7$, we have $p \mid /|A_6|$; by Maschke's theorem we have $J(\mathbb{F}_q G) = 0$. Hence, Wedderburn decomposition of $\mathbb{F}_q G$ is isomorphic to $\bigoplus_{i=1}^n M(n_i, K_i)$, where for all $1 \le i \le n$, we have $n_i > 0$ and K_i is a finite extension of \mathbb{F}_q .

Firstly, from Lemma 2.6, we have

$$\mathbb{F}_q G \cong \mathbb{F}_q \bigoplus_{i=1}^{n-1} M(n_i, K_i), \tag{4.3}$$

taking g to be the map $g(\sum_{x\in A_6}\alpha_x x)=\sum_{x\in A_6}\alpha_x$. Now to compute these n_i 's and K_i 's we calculate the cyclotomic \mathbb{F}_q classes of G. Note that $p^k\equiv \pm 1\mod 4$, $p^k\equiv \pm 1\mod 3$ for any prime p. Hence, $S_{\mathbb{F}_q}(\gamma_g)=\{\gamma_g\}$ whenever $g\not\in [e]\cup [f]$ (by Equation 4.1). Hence, we have to consider $S_{\mathbb{F}_q}(\gamma_g)$ in the other cases.

When $p \equiv \pm 1 \mod 5$, $S_{\mathbb{F}_q}(\gamma_e) = \{\gamma_e\}$ and $S_{\mathbb{F}_q}(\gamma_f) = \{\gamma_f\}$, by Eq. 4.2 and the fact that $p^k \equiv \pm 1 \mod 5$. Thus, by Lemmas 2.2 and 2.5, there are seven cyclotomic \mathbb{F}_q -classes and $[K_i : \mathbb{F}_q] = 1$ for all $1 \le i \le 6$. This gives that in this case the Artin–Wedderburn decomposition is

$$\mathbb{F}_q \oplus \bigoplus_{i=1}^6 M(n_i, \mathbb{F}_q).$$

When $p \equiv \pm 2 \mod 5$ and k is even, then $p^k \equiv -1 \mod 5$. Similarly, in this case the Artin–Wedderburn decomposition is

$$\mathbb{F}_q \oplus \bigoplus_{i=1}^6 M(n_i, \mathbb{F}_q).$$

Lastly, when $p\equiv \pm 2 \mod 5$ and k is odd, then $p^k\equiv \pm 2 \mod 5$ and $S_{\mathbb{F}_q}(\gamma_e)=\{\gamma_e,\gamma_f\}$ by Eq. 4.2. Thus, by Lemmas 2.2 and 2.5, there are six cyclotomic \mathbb{F}_q -classes and $[K_i:\mathbb{F}_q]=1$ for all $1\leq i\leq 4$, $[K_5:\mathbb{F}_q]=2$. In this case, the Artin–Wedderburn decomposition is

$$\mathbb{F}_q \oplus \bigoplus_{i=1}^4 M(n_i, \mathbb{F}_q) \oplus M(n_5, \mathbb{F}_{q^2}).$$

Since dim $\mathbb{F}_q A_6 = |A_6| = 360$, Proposition 4.1 gives that the n_i 's should satisfy $n_1^2 + n_2^2 + n_3^2 + n_4^2 + n_5^2 + n_6^2 = 359$ or $n_1^2 + n_2^2 + n_3^2 + n_4^2 + 2n_5^2 = 359$. Since these equations do not have a unique solution, we find some of the n_i 's using representations of A_6 over \mathbb{F}_q and invoke Lemma 2.7 to reach a unique solution for the mentioned equations. We have the following results.

Lemma 4.2 The group S_6 has four inequivalent irreducible representations of degree 5, which on restriction on A_6 give two inequivalent irreducible representations of A_6 over \mathbb{F}_{p^k} for $p \geq 7$. Moreover, these irreducible representations are obtained from two non-isomorphic doubly transitive actions on a set of 6 points.

Proof

Note that S_6 acts on $T = \{1, 2, 3, 4, 5, 6\}$ doubly transitively. Hence, by Lemma 2.7, we get an irreducible representation of degree 5. Since tensoring with sign representation gives irreducible representations, we get two inequivalent irreducible representations of degree 5 of S_6 , say π_1 and π_2 .

For the other two irreducible representations of dimension 5, we consider the outer automorphism of S_6 , say φ , given on generators as follows:

```
\begin{split} \varphi((1,2)) &= (1,2)(3,4)(5,6) \\ \varphi((2,3)) &= (1,3)(2,5)(4,6) \\ \varphi((3,4)) &= (1,5)(2,6)(3,4) \\ \varphi((4,5)) &= (1,3)(2,4)(5,6) \\ \varphi((5,6)) &= (1,6)(2,5)(3,4). \end{split}
```

This gives another doubly transitive action on T, which is not isomorphic to the previous action. Thus, we get another 5 dimensional irreducible representation, say π_3 . Tensoring π_3 with the sign representations, we get π_4 which is a 5-dimensional irreducible representation of S_6 different from π_3 . By considering the characters of the corresponding representations, we see that π_1, π_2, π_3 and π_4 are all distinct.

Since A_6 acts doubly transitively on T via the restrictions of these two actions, we obtain two non-isomorphic 5-dimensional irreducible representations of A_6 .

Corollary 4.3 *The algebra* $\mathbb{F}_q A_6$ *has two components to be* $M(5, \mathbb{F}_q)$ *for* $p \geq 7$.

Proof

Immediately follows from Lemmas 4.2 and 2.7. \square

Corollary 4.4 There does not exist any 4 dimensional irreducible representations of A_6 over \mathbb{F}_{p^k} for $p \geq 7$.

Proof

From Lemma 3.3, we know that any field \mathbb{F}_{p^k} , $p \ge 7$ is a splitting field of S_6 . Hence, by Proposition 3.5, we have degrees of irreducible representations of S_6 are $\{1, 5, 9, 10, 16\}$.

Recall that by Frobenius reciprocity we have the following bijection

$$\operatorname{Hom}_{\mathbb{F}_a S_6}(\operatorname{Ind}V, W) \cong \operatorname{Hom}_{\mathbb{F}_a A_6}(V, \operatorname{Res}W),$$

where Ind, Res denote the induction functor, restriction functor, respectively. Here V is an irreducible representation of A_6 and W is an irreducible representation of S_6 . Suppose A_6 has an irreducible representation V with dim V=4. Since $[S_6:A_6]=2$, we have that dim IndV=8. Since S_6 does not have any irreducible representation of dimension S, the induced representation splits. Being dim IndV=8, Ind(V) does not have any component of dimensions S_6 , 10 and 16. Now, let us assume that dim S_6 then by Lemma S_6 is an irreducible representation. Hence S_6 Homes S_6 is an irreducible representation. Hence S_6 Homes S_6 is inilarly, Ind S_6 does not have any irreducible component of dimension S_6 . Similarly, Ind S_6 does not have any irreducible component of dimension S_6 . This completes the proof. \square

Corollary 4.5 The algebra $\mathbb{F}_q A_6$ has one component to be $M(9, \mathbb{F}_q)$ for $p \geq 7$.

Proof

The group A_6 being isomorphic to $PSL(2, \mathbb{F}_9)$ acts doubly transitively on a set with 10 points (see [4]), hence the conclusion.

Corollary 4.6 *We have* $(n_1, n_2, n_3, n_4, n_5, n_6) = (5, 5, 9, 8, 8, 10)$ *or* $(n_1, n_2, n_3, n_4, n_5) = (5, 5, 9, 10, 8)$ *up to permutation.*

Proof

Since A_6 has one 1-dimensional, two 5-dimensional and one 9-dimensional irreducible representations, we can assume that $n_1 = 5$, $n_2 = 5$, $n_3 = 9$. Hence, we are left with the equation

$$n_4^2 + n_5^2 + n_6^2 = 228$$
 or $n_4^2 + 2n_5^2 = 228$.

Then, $(n_4, n_5, n_6) \in \{(4, 4, 14), (8, 8, 10)\}, (n_4, n_5) \in \{(14, 4), (10, 8)\}.$ Hence, the result is obvious from Corollary 4.4.

Proposition 4.7 Let \mathbb{F}_{p^k} be a field of characteristic $p \geq 7$ and A_6 denote the alternating group on six letters. Then, the Artin–Wedderburn decomposition of $\mathbb{F}_{p^k}A_6$ is

$$\mathbb{F}_q \oplus \mathrm{M}(5,\mathbb{F}_q) \oplus \mathrm{M}(5,\mathbb{F}_q) \oplus \mathrm{M}(9,\mathbb{F}_q) \oplus \mathrm{M}(10,\mathbb{F}_q) \oplus \mathrm{M}(8,\mathbb{F}_{q^2}),$$

when $p \equiv \pm 2 \mod 5, k \equiv 1 \mod 2$ and

$$\mathbb{F}_q \oplus M(5, \mathbb{F}_q) \oplus M(5, \mathbb{F}_q) \oplus M(8, \mathbb{F}_q) \oplus M(8, \mathbb{F}_q) \oplus M(9, \mathbb{F}_q) \oplus M(10, \mathbb{F}_q),$$

otherwise.

Proof

Follows from Proposition 4.1 and Corollary 4.6.

Theorem 4.8 Let \mathbb{F}_{p^k} be a field of characteristic $p \geq 7$ and A_6 denote the alternating group on six letters. Then, the unit group of the algebra, $\mathcal{U}(\mathbb{F}_{p^k}A_6)$ is

$$\mathbb{F}_{q}^{\times} \oplus \operatorname{GL}(5, \mathbb{F}_{q}) \oplus \operatorname{GL}(5, \mathbb{F}_{q}) \oplus \operatorname{GL}(9, \mathbb{F}_{q}) \oplus \operatorname{GL}(10, \mathbb{F}_{q}) \oplus \operatorname{GL}(8, \mathbb{F}_{q^{2}}), \tag{4.4}$$

when $p \equiv \pm 2 \mod 5, k \equiv 1 \mod 2$ and

$$\mathbb{F}_q^{\times} \oplus \operatorname{GL}(5,\mathbb{F}_q) \oplus \operatorname{GL}(5,\mathbb{F}_q) \oplus \operatorname{GL}(8,\mathbb{F}_q) \oplus \operatorname{GL}(8,\mathbb{F}_q) \oplus \operatorname{GL}(9,\mathbb{F}_q) \oplus \operatorname{GL}(10,\mathbb{F}_q), \tag{4.5}$$

otherwise.

Proof

This follows immediately from Proposition 4.7 and the fact that given two rings R_1 , R_2 , we have $(R_1 \times R_2)^{\times} = R_1^{\times} \times R_2^{\times}$.

Acknowledgements

We thank the referee for a careful reading of the manuscript. This has certainly improved the exposition herein.

Author contributions

Both the authors read and approved the final manuscript.

Funding

The first named author is partially supported by the IISER Pune research fellowship and the second author has been partially supported by NBHM fellowship

Availability of data and materials

Data sharing is not applicable to this article as no data sets were generated or analyzed during the current study

Declarations

Competing interests

The authors declare that they have no competing interests.

Received: 9 August 2021 Accepted: 5 September 2022

Published online: 15 September 2022

References

- 1. Arvind, N., Panja, S.: Unit group of \${\mathbb{F}}_{g}{\text{SL}}(3,2),p\ge 11\$. arXiv:2106.07261
- 2. Ferraz, R.A.: Simple components of the center of \$FG/J(FG)\$. Commun. Algebra 36(9), 3191–3199 (2008)
- Gao, W.D., Geroldinger, A., Halter-Koch, F.: Group algebras of finite abelian groups and their applications to combinatorial problems. Rocky Mt. J. Math. 39, 805–823 (2008)
- Hirschfeld, J.W.P.: Projective Geometries Over Finite Fields. Oxford Mathematical Monographs. The Clarendon Press, New York. xii+474 (1979). ISBN: 0198535260
- 5. Hurley, T.: Group rings and rings of matrices. Int. J. Pure Appl. Math. 31(3), 319–335 (2006)
- 6. Hurley, T.: Convolutional codes from units in matrix and group rings. Int. J. Pure Appl. Math. 50(3), 431–463 (2009)
- Hurley, P., Hurley, T.: Codes from zero-divisors and units in group rings. Int. J. Inf. Coding Theory (IJICOT) 1(1), 20
 (2007)
- Isaacs, I.M.: Character Theory of Finite Groups. Corrected reprint of the 1976 original [Academic Press, New York; MR0460423]. AMS Chelsea Publishing, Providence (2006). xii+310, ISBN: 978-0-8218-4229-4; 0-8218-4229-3
- James, G.D.: The Representation Theory of the Symmetric Groups. Lecture Notes in Mathematics, vol. 682. Springer, Berlin (1978)
- 10. Kumar, Y., Sharma, R.K., Srivastava, J.B.: The structure of the unit group of the group algebra ${\rm hoh}_{F}}_55$ where ${\rm hoh}_{F}}$ is a finite field with $\text{char }_{mathbb{F}}=p>5$. Acta Math. Acad. Paedagog. Nyh azi. (N.S.), **33**(2), 187–191 (2017)
- 11. Maheshwari, S., Sharma, R.: The unit group of group algebra ${\rm SL}_{2,Z_3}\$. J. Algebra Comb. Discrete Appl. **3**(1), 1–6 (2016)
- Makhijani, N., Sharma, R.K., Srivastava, J.B.: A note on the structure of \${\mathbb{F}}_{p^k}A_5/J({\mathbb{F}}_{p^k}A_5)\$. Acta Sci. Math. (Szeged) 82(1-2), 29-43 (2016)
- Mittal, G., Sharma, R.K.: Unit group of semisimple group algebras of some non-metabelian groups of order 120. Asian-Eur. J. Math. (2022). https://doi.org/10.1142/S1793557122500590
- Milies, P.C., Sudarshan, S.: An Introduction to Group Rings. ISBN: 978-1-4020-0238-0. Springer (2002). Mathematics—371 pages
- Sandling, R.: Units in the modular group algebra of a finite abelian \$p\$-group. J. Pure Appl. Algebra 33, 337–346 (1984)
- Sahai, M., Ansari, S.F.: Unit groups of group algebras of groups of order 18. Commun. Algebra (2021). https://doi.org/ 10.1080/00927872.2021.1893740
- 17. Tang, G.H., Gao, Y.Y.: The unit group of FG of group with order 12. Int. J. Pure Appl. Math. 73, 143-158 (2011)
- 18. The GAP Group: GAP—Groups, Algorithms, and Programming, Version 4.11.1 (2021). https://www.gap-system.org

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.