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Introduction
Let q = pk for some prime p and k ∈ N . Let Fq denote the finite field of cardinality q. For 
any group G, let FqG denote the group algebra of G over Fq . We will follow [14] for basic 
notations. The group of units of FqG has applications in different areas, including the 
construction of convolutional codes (see [5–7]) and solving problems in combinatorial 
number theory (see [3]) et cetera. This necessitates finding the explicit structure of the 
group of units of FqG.

In [15], the author has described units of FqG , where G is a p-group. The authors of 
[13] complete the study of unit groups of semisimple group algebras of all groups up to 
order 120, except that of the symmetric group S5 and groups of order 96. In Remark 3.7 
of this article, we complete the characterization for the group S5 . However, the complex-
ity of the problem increases if the group has a larger size, as that requires solving an 

equation of type 
n

i=1

kin
2
i = |G| . The most commonly used tricks include identifying a 

normal subgroup H of G and considering the algebra Fq(G/H) inside FqG . This is not 
possible if the group G does not have any normal subgroup. This is why we will be using 
representations of the group A6 to solve the problem in case of the same. See [16, 17] et 
cetera for more exposition about other groups.

The objective of this article is twofold. We start by investigation of FqSn where p > n . 
This is mainly a consequence of the representation theory of Sn over C and the connec-
tion between the Brauer characters of the group when p > n and the ordinary char-
acters over C . We state the characterization in this case in Theorem 3.6. The group of 
units of the semisimple algebras FqA5 and FqSL(3, 2) have been characterized in [1, 12], 
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respectively. In this article, we look at the next non-Abelian simple group A6 , the alter-
nating group on six letters. We give a complete characterization of FqA6 for the case 
p ≥ 7 in Theorem 4.8.

The rest of the article is organized as follows: in “Preliminaries” section, we give some 
basic definitions and results.  “Units of Fpk Sn for p  | n3” section is about the general 
description of representations of Sn over an arbitrary field of characteristic p > n and 
deducing the structure of U(Fpk Sn) for p > n . In section 4, we present the result about 
FpkA6 where p ≥ 7.

Preliminaries
We start by fixing some notations. Already mentioned notations from section  1 are 
adopted. For a field extension E/Fq , Gal(E/Fq) will denote the Galois group of the exten-
sion. For m ∈ N , the notation M(m,R) denotes the ring of m×m matrices over R and 
GL(m,R) will denote the set of all invertible matrices in M(m,R) . For a ring R, the set of 
units of R will be denoted by R× . Let Z(R) and J(R) denote the center and the Jacobson 
radical, respectively. If G is a group and x ∈ G , then [x] will denote the conjugacy class 
of x in G. For the group ring FqG , the group of units will be denoted as U(FqG) . For the 
notations on projective spaces, we follow [4].

We say an element g ∈ G is a p′-element if the order of g is not divisible by p. Let e be 
the exponent of the group G and η be a primitive rth root of unity, where e = pf r and 
p  | r . Let

Definition 2.1  For a p′-element g ∈ G , the cyclotomic Fq-class of g, denoted by 
SFq (γg ) , is defined as 

{

γgl : l ∈ IFq

}

 , where γgl ∈ FqG is the sum of all conjugates of gl in 

G.

Then, we have the following results, which are crucial in determining the Artin–Wed-
derburn decomposition of FqG.

Lemma 2.2  [2, Proposition 1.2] The number of simple components of FqG/J (FqG) is 
equal to the number of cyclotomic Fq-classes in G.

Definition 2.3  Let π be a representation of a group G over a field F. π is said to be 
absolutely irreducible if πE is irreducible for every field F ⊆ E , where πE is the represen-
tation π ⊗ E over E.

Definition 2.4  A field F is a splitting field for G if every irreducible representation of G 
over F is absolutely irreducible.

Lemma 2.5  [2, Theorem  1.3] Let n be the number of cyclotomic Fq-classes in G. If 
L1, L2, · · · , Ln are the simple components of Z(FqG/J (FqG)) and S1, S2, · · · , Sn are the 
cyclotomic Fq-classes of G, then with a suitable reordering of the indices,

IFq =

{

l (mod e) : there exists σ ∈ Gal(Fq(η)/Fq) satisfying σ(η) = ηl
}

.
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Lemma 2.6  [11, Lemma 2.5] Let K be a field of characteristic p and let A1 , A2 be two 
finite dimensional K-algebras. Assume A1 to be semisimple. If g : A2 −→ A1 is a surjec-
tive homomorphism of K-algebras, then there exists a semisimple K-algebra l such that 
A2/J (A2) = l ⊕ A1.

We need the following lemmas from our previous work to compute some com-
ponents of the Artin–Wedderburn decomposition of FqG , for a finite group G under 
consideration.

Lemma 2.7  [1, Lemma 3.1] Let G be a group of order n and F be a field of characteris-
tic p > 0 . Let G acts on {1, 2, · · · , k} doubly transitively. Set Gi = {g ∈ G : g · i = i} and 
Gi,j = {g ∈ G : g · i = i, g · j = j} . Then, the FG module

is an irreducible FG module if p  | k , p  | |G1,2|.

Lemma 2.8  [1, Corollary 3.8] Let G be a finite group, K be a finite field of characteris-
tic p > 0 , p  | |G| . Suppose there exists an n dimensional irreducible representations of G 
over k. Then, M(n, k) appears as one of the components of the Artin-Wedderburn decom-
position of the semisimple algebra FqG.

Units of FpkSn for p  | n

We start the section by talking about representations of Sn over a finite field. We define 
the Brauer character and state some important results about representations over an 
arbitrary field. See [8] for further details.

Let E be a field of characteristic p. We choose a ring of algebraic integers A in C such 
that E = A/M , where M is a maximal ideal of A containing pA. Take f to be the natural 
map A −→ E . Take W = {z ∈ C|zm = 1 for somem ∈ Z with p �| m} (note that W ⊆ A ). 
Now let π be a representation of a finite group G over E. Let S be the set of p′ elements of 
G. For α ∈ S , let ǫ1, ǫ2, . . . , ǫl ∈ E× be the eigenvalues of π(α) with multiplicities. Then, 
for every i, there exists a unique ui ∈ W  such that f (ui) = ǫi . Define φ : S −→ C as 
φ(α) = �ui . Then, φ is called the Brauer character of G afforded by π.

Remark 3.1

The description of Brauer character comes along with a choice of a maximal ideal M of A.

Suppose π1,π2, . . . ,πk are all the non-isomorphic irreducible representations of G 
over E up to isomorphism. Let φi be the Brauer character afforded by πi . Then, φ′

is are 
called irreducible Brauer characters and we denote by IBr(G) the set { φi }. We denote by 
Irr(G) the set of irreducible characters of G over C . We have the following results.

|Si| = [Li : Fq].

W =

{

x ∈ F
k :

k
∑

i=1

xi = 0

}
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Lemma 3.2  [8, Theorem 15.13] We have IBr(G) = Irr(G) whenever p  ||G|.

For the rest of this section, take G = Sn , the symmetric group on n letters. We say a par-
tition � = (�1, �2, · · · , �l) of n is p-singular if for some j we have �j+1 = �j+2 = . . . = �j+p . 
If a partition is not p-singular, it is called p-regular. Then we have the following.

Lemma 3.3  [9, Theorem 11.5] If F is a field of characteristic p, then as � varies over the 
p-regular partitions, D� varies over the complete set of inequivalent irreducible FSn-mod-

ules, where D� =
S�

S� ∩ (S�)⊥
 and S� denotes the Specht module corresponding to the par-

tition � . Moreover, every field is a splitting field for Sn.

Proof
The proof follows immediately from the fact that every partition of n is a p-regular 
partition. 

Lemma 3.4  The dimensions of non-isomorphic irreducible representations of Sn over E 
coincide with the dimensions of non-isomorphic irreducible representations of Sn over C 
when characteristic of the field E is greater than n.

Proof
Since the dimension of a representation is as same as the value of the corresponding char-
acter χ at the identity element of the group, the result follows from Lemma 3.2. 

Proposition 3.5  Let Sn denote the symmetric group on n letters and Fpk be a finite field 
where p > n . Then, 

Proof
Since being a semisimple algebra CSn ∼=

⊕

χ∈Irr(G)

M(χ(1),C) , the result follows from Lem-

mas 2.8, 3.2 and 3.4. 

Theorem 3.6  Let Sn denote the symmetric group on n letters and Fpk be a finite field 
where p > n . Then, 

Proof
This follows immediately from Proposition 3.5 and the fact that given two rings R1,R2 , we 
have (R1 × R2)

× = R×
1 × R×

2  . 

�

�

Fpk Sn
∼=

⊕

χ∈Irr(G)

M(χ(1),Fpk ).

�

U(Fpk Sn)
∼=

⊕

χ∈Irr(G)

GL(χ(1),Fpk ).

�
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Remark 3.7
Theorem 3.6 improves the result of [10] and proves that when p > 5 , unit group of Fpk S5 is 
U(Fpk S5) given by

Remark 3.8
For an irreducible representation χ of Sn over a field of characteristic p > n , this is char-
acterized by a partition � of n. The value χ(1) can be calculated as the number of stand-
ard Young tableaux of shape �.

Units of FpkA6 for p ≥ 7

We start with the description of the conjugacy classes in A6 . Using [18], the group has 
7 conjugacy classes, of which the representatives are given by 

(1), a = (1, 2)(3, 4), b = (1, 2, 3), c = (1, 2, 3)(4, 5, 6), d = (1, 2, 3, 4)(5, 6), e =

(1, 2, 3, 4, 5)
 

and f = (1, 2, 3, 4, 6). We have the following relations:

Proposition 4.1  Let Fq be a field of characteristic p ≥ 7 and G = A6 . Then, the Artin–
Wedderburn decomposition of FqG is one of the following:

Fq ⊕
6
⊕

i=1

M(ni,Fq),

Fq ⊕
4
⊕

i=1

M(ni,Fq)⊕M(n5,Fq2)

Proof
Since p ≥ 7 , we have p  | |A6| ; by Maschke’s theorem we have J (FqG) = 0 . Hence, Wed-
derburn decomposition of FqG is isomorphic to 

n
⊕

i=1

M(ni,Ki) , where for all 1 ≤ i ≤ n , we 

have ni > 0 and Ki is a finite extension of Fq.

Firstly, from Lemma 2.6, we have

F
×

pk
⊕ F

×

pk
⊕GL(4,Fpk )⊕GL(4,Fpk )⊕GL(5,Fpk )⊕ GL(5,Fpk )⊕ GL(6,Fpk )

(4.1)for all g  ∈ [e] ∪ [f ], [g] = [g−1],

(4.2)and [e] = [e4], [e2] = [e3] = [f ].

(4.3)FqG ∼= Fq

n−1
⊕

i=1

M(ni,Ki),
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taking g to be the map g(
∑

x∈A6

αxx) =
∑

x∈A6

αx . Now to compute these ni ’s and Ki ’s we cal-

culate the cyclotomic Fq classes of G. Note that pk ≡ ±1 mod 4, pk ≡ ±1 mod 3 for 
any prime p. Hence, SFq (γg ) = {γg } whenever g  ∈ [e] ∪ [f ] (by Equation 4.1). Hence, we 
have to consider SFq (γg ) in the other cases.

When p ≡ ±1 mod 5 , SFq (γe) = {γe} and SFq (γf ) = {γf } , by Eq.  4.2 and the fact that 
pk ≡ ±1 mod 5 . Thus, by Lemmas 2.2 and 2.5, there are seven cyclotomic Fq-classes 
and [Ki : Fq] = 1 for all 1 ≤ i ≤ 6 . This gives that in this case the Artin–Wedderburn 
decomposition is

When p ≡ ±2 mod 5 and k is even, then pk ≡ −1 mod 5 . Similarly, in this case the 
Artin–Wedderburn decomposition is

Lastly, when p ≡ ±2 mod 5 and k is odd, then pk ≡ ±2 mod 5 and SFq (γe) = {γe, γf } 
by Eq.  4.2. Thus, by Lemmas 2.2 and 2.5, there are six cyclotomic Fq-classes and 
[Ki : Fq] = 1 for all 1 ≤ i ≤ 4 , [K5 : Fq] = 2 . In this case, the Artin–Wedderburn decom-
position is

Since dimFqA6 = |A6| = 360 , Proposition 4.1 gives that the ni ’s should satisfy 
n21 + n22 + n23 + n24 + n25 + n26 = 359 or n21 + n22 + n23 + n24 + 2n25 = 359 . Since these 
equations do not have a unique solution, we find some of the ni ’s using representations 
of A6 over Fq and invoke Lemma 2.7 to reach a unique solution for the mentioned equa-
tions. We have the following results.

Lemma 4.2  The group S6 has four inequivalent irreducible representations of degree 5, 
which on restriction on A6 give two inequivalent irreducible representations of A6 over Fpk 
for p ≥ 7 . Moreover, these irreducible representations are obtained from two non-isomor-
phic doubly transitive actions on a set of 6 points.

Proof
Note that S6 acts on T = {1, 2, 3, 4, 5, 6} doubly transitively. Hence, by Lemma 2.7, we get 
an irreducible representation of degree 5. Since tensoring with sign representation gives 
irreducible representations, we get two inequivalent irreducible representations of degree 
5 of S6 , say π1 and π2.

Fq ⊕

6
⊕

i=1

M(ni,Fq).

Fq ⊕

6
⊕

i=1

M(ni,Fq).

Fq ⊕

4
⊕

i=1

M(ni,Fq)⊕M(n5,Fq2).

�
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For the other two irreducible representations of dimension 5, we consider the outer 
automorphism of S6 , say ϕ , given on generators as follows:

This gives another doubly transitive action on T, which is not isomorphic to the previous 
action. Thus, we get another 5 dimensional irreducible representation, say π3 . Tensor-
ing π3 with the sign representations, we get π4 which is a 5-dimensional irreducible rep-
resentation of S6 different from π3 . By considering the characters of the corresponding 
representations, we see that π1,π2,π3 and π4 are all distinct.

Since A6 acts doubly transitively on T via the restrictions of these two actions, we obtain 
two non-isomorphic 5-dimensional irreducible representations of A6 . 

Corollary 4.3  The algebra FqA6 has two components to be M(5,Fq) for p ≥ 7.

Proof
Immediately follows from Lemmas 4.2 and 2.7. �

Corollary 4.4  There does not exist any 4 dimensional irreducible representations of A6 
over Fpk for p ≥ 7.

Proof
From Lemma 3.3, we know that any field Fpk , p ≥ 7 is a splitting field of S6 . Hence, by 
Proposition 3.5, we have degrees of irreducible representations of S6 are {1, 5, 9, 10, 16}.

Recall that by Frobenius reciprocity we have the following bijection

where Ind, Res denote the induction functor, restriction functor, respectively. Here V is 
an irreducible representation of A6 and W is an irreducible representation of S6 . Sup-
pose A6 has an irreducible representation V with dimV = 4 . Since [S6 : A6] = 2 , we 
have that dim IndV = 8 . Since S6 does not have any irreducible representation of dimen-
sion 8, the induced representation splits. Being dim IndV = 8 , Ind(V ) does not have 
any component of dimensions 9, 10 and 16. Now, let us assume that dimW = 5 , then 
by Lemma 4.2, ResW  is an irreducible representation. Hence HomFqA6(V , ResW ) = 0 , 
which implies that IndV  does not have any irreducible component of dimension 5. Simi-
larly, IndV  does not have any irreducible component of dimension 1. This completes the 
proof. �

ϕ((1, 2)) = (1, 2)(3, 4)(5, 6)

ϕ((2, 3)) = (1, 3)(2, 5)(4, 6)

ϕ((3, 4)) = (1, 5)(2, 6)(3, 4)

ϕ((4, 5)) = (1, 3)(2, 4)(5, 6)

ϕ((5, 6)) = (1, 6)(2, 5)(3, 4).

�

HomFqS6(IndV ,W ) ∼= HomFqA6(V , ResW ),
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Corollary 4.5  The algebra FqA6 has one component to be M(9,Fq) for p ≥ 7.

Proof
The group A6 being isomorphic to PSL(2,F9) acts doubly transitively on a set with 10 
points (see [4]), hence the conclusion. 

Corollary 4.6  We have (n1, n2, n3, n4, n5, n6) = (5, 5, 9, 8, 8, 10) or 
(n1, n2, n3, n4, n5) = (5, 5, 9, 10, 8) up to permutation.

Proof
Since A6 has one 1-dimensional, two 5-dimensional and one 9-dimensional irreducible 
representations, we can assume that n1 = 5, n2 = 5, n3 = 9 . Hence, we are left with the 
equation

Then, (n4, n5, n6) ∈ {(4, 4, 14), (8, 8, 10)}, (n4, n5) ∈ {(14, 4), (10, 8)} . Hence, the result is 
obvious from Corollary 4.4. 

Proposition 4.7  Let Fpk be a field of characteristic p ≥ 7 and A6 denote the alternating 
group on six letters. Then, the Artin–Wedderburn decomposition of FpkA6 is

when p ≡ ±2 mod 5, k ≡ 1 mod 2 and

otherwise.

Proof
Follows from Proposition 4.1 and Corollary 4.6. 

Theorem 4.8  Let Fpk be a field of characteristic p ≥ 7 and A6 denote the alternating 
group on six letters. Then, the unit group of the algebra, U(FpkA6) is

when p ≡ ±2 mod 5, k ≡ 1 mod 2 and

otherwise.

�

n24 + n25 + n26 = 228 or n24 + 2n25 = 228.

�

Fq ⊕M(5,Fq)⊕M(5,Fq)⊕M(9,Fq)⊕M(10,Fq)⊕M(8,Fq2),

Fq ⊕M(5,Fq)⊕M(5,Fq)⊕M(8,Fq)⊕M(8,Fq)⊕M(9,Fq)⊕M(10,Fq),

�

(4.4)F
×
q ⊕ GL(5,Fq)⊕ GL(5,Fq)⊕ GL(9,Fq)⊕ GL(10,Fq)⊕ GL(8,Fq2),

(4.5)
F
×
q ⊕ GL(5,Fq)⊕ GL(5,Fq)⊕ GL(8,Fq)⊕ GL(8,Fq)⊕ GL(9,Fq)⊕ GL(10,Fq),
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Proof
This follows immediately from Proposition 4.7 and the fact that given two rings R1,R2 , we 
have (R1 × R2)

× = R×
1 × R×

2  . 
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