

# Egyptian Mathematical Society

# Journal of the Egyptian Mathematical Society





### **ORIGINAL ARTICLE**

# Properties of superposition operators acting between $\mathcal{B}_u^*$ and $Q_K^*$



## Alaa Kamal

Port Said University, Faculty of Science, Department of Mathematics, Port Said 42521, Egypt

Received 3 June 2014; revised 16 October 2014; accepted 3 January 2015 Available online 25 March 2015

#### **KEYWORDS**

Superposition operators;  $\mathcal{B}^*_{\mu}$ ; Lipschitz continuity; Compactness

**Abstract** In this paper we introduce natural metrics in the hyperbolic Bloch and  $Q_K$ -type spaces with respect to which these spaces are complete. Moreover, Lipschitz continuous, bounded and compact superposition operators  $S_{\phi}$  from the hyperbolic Bloch type space to the hyperbolic  $Q_K$ -type space are characterized by conditions depending only on the analytic symbol  $\phi$ .

**2010 MATHEMATICS SUBJECT CLASSIFICATION:** 46*E*15; 47*B*33; 47*B*38; 54*C*35

© 2015 The Author. Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

#### 1. Introduction

In 1979, Yamashita [1] introduced originally the concept of systematically hyperbolic function classes. Subsequently, this concept has studied for hyperbolic Hardy, BMOA and Dirichlet-classes (see, e.g., [1,3–7]). In the last decades, Smith [8] studied inner functions in the hyperbolic little Bloch-class. The hyperbolic counter parts of the  $Q_p$ -spaces were studied by Li [9] and Li et al. [10].

On the other hand, Cámera and Giménez [11,12] studied the Bergman space  $A^p$ , the space of all  $L^p$  functions (with respect to Lebesgue area measure) which is analytic in the unit disk. They showed that  $S_{\phi}(A^p) \subset A^q$  if and only if  $\phi$  is a

E-mail address: alaa\_mohamed1@yahoo.com

Peer review under responsibility of Egyptian Mathematical Society.



Production and hosting by Elsevier

polynomial of degree at most p/q where  $S_{\phi}: L^p(\mathbb{D}) \to L^q(\mathbb{D})$  is the superposition operator. Later, Buckley and Vukotic [13,14] introduced superposition operators from Besov spaces into Bergman spaces and univalent interpolation in Besov spaces. Also, in [15], Alvarez et al. characterized superposition operators between the Bloch space and Bergman spaces. Recently, Wen Xu [16] studied superposition operators on Bloch-type spaces.

Let X and Y be two metric spaces of analytic functions on the unit disk  $\mathbb{D}=\{z\in\mathbb{C}:|z|<1\}$ . Assume that  $\phi$  denotes a complex-valued function in the plane  $\mathbb{C}$ . The superposition operator  $S_{\phi}$  on Xdefined by

 $S_{\phi}(f) := \phi \circ f, \quad f \in X.$ 

If  $\phi \circ f \in Y$  for  $f \in X$ , we say that  $\phi$  acts by superposition from Xinto Y. As in Wen Xu [16] if X contains linear functions,  $\phi$  must be an analytic function.

Let  $H(\mathbb{D})$  be the class of analytic functions on  $\mathbb{D}$ . Also,  $B(\mathbb{D})$  denotes the class of all analytic functions on  $\mathbb{D}$  such that |f(z)| < 1 for all  $z \in \mathbb{D}$ . It is clear that  $B(\mathbb{D}) \subset H(\mathbb{D})$ .

508 A. Kamal

Hyperbolic derivative for analytic functions on the unit disk D.

$$f^*(z) = \frac{|f'(z)|}{1 - |f(z)|^2}$$
 (cf. [17]).

The spaces of analytic functions, have been actively appearing in different areas of mathematical sciences such as dynamical systems, theory of semigroups, probability, mathematical physics and quantum mechanics (see [18-20] and others). Now, we list the following definitions.

**Definition 1.1** [2]. Let f be an analytic function in  $\mathbb{D}$  and  $0 < \alpha < \infty$ . The  $\alpha$ -Bloch space  $\mathcal{B}^{\alpha}$  is defined by

$$\mathcal{B}^{\alpha} = \left\{ f \in H(\mathbb{D}) : \|f\|_{\mathcal{B}^{\alpha}} = \sup_{z \in \mathbb{D}} (1 - |z|^2)^{\alpha} |f'(z)| < \infty \right\},$$

the little  $\alpha$ -Bloch space  $\mathcal{B}_0^{\alpha}$  is given as follows

$$\mathcal{B}_{0}^{\mathbf{z}} = \left\{ f \in H(\mathbb{D}) : \|f\|_{\mathcal{B}_{0}^{\mathbf{z}}} = \lim_{|z| \to 1^{-}} (1 - |z|^{2})^{\mathbf{z}} |f'(z)| = 0 \right\}.$$

The spaces  $\mathcal{B}^1$  and  $\mathcal{B}^1_0$  are called as the Bloch space, and little Bloch space and denoted by  $\mathcal{B}$  and  $\mathcal{B}_0$  respectively (see [21]).

A positive continuous function  $\mu$  on [0, 1) is called normal if there are three constants  $0 \le \delta < 1$  and 0 < a < b such that.

- $\frac{\mu(r)}{(1-r)^a}$  is decreasing on  $[\delta,1)$  and  $\lim_{r\to 1}\frac{\mu(r)}{(1-r)^a}=0;$   $\frac{\mu(r)}{(1-r)^b}$  is increasing on  $[\delta,1)$  and  $\lim_{r\to 1}\frac{\mu(r)}{(1-r)^b}=\infty.$

**Definition 1.2** [22]. A function  $f \in H(\mathbb{D})$  such that

$$\|f\|_{\mu} := \sup_{z \in \mathbb{D}} \mu(|z|) f'(z) < \infty$$

is called a  $\mu$ -Bloch function. The space of all  $\mu$ -Bloch functions is denoted by  $\mathcal{B}_{\mu}$ .

It is readily seen that  $\mathcal{B}_u$  is a Banach space with the norm  $||f||_{\mathcal{B}_{\mu}} := |f(0)| + ||f||_{\mu}$ . Also, when  $\mu(z) = 1 - |z|^2$ , the space  $\mathcal{B}_{u}$  is just the Bloch space which is denoted by  $\mathcal{B}$ ; while when  $\mu(z) = (1 - |z|^2)^{\alpha}$  with  $\alpha > 0$ , the space  $\mathcal{B}_{\mu}$  becomes the  $\alpha$ -Bloch space which is denoted by  $\mathcal{B}_{\alpha}$ .

The hyperbolic  $\mu$ -Bloch space is defined as follows:

**Definition 1.3** [23]. The sets of  $f \in B(\mathbb{D})$  for which

$$\mathcal{B}_{\boldsymbol{\mu}}^* = \bigg\{ f : f \text{ analytic in } \mathbb{D} \text{ and } \sup_{\boldsymbol{z} \in \mathbb{D}} \, \mu(|\boldsymbol{z}|) f^*(\boldsymbol{z}) < \infty \bigg\}.$$

The little hyperbolic Bloch space  $\mathcal{B}_{u,0}^*$  is a subspace of  $\mathcal{B}_u^*$ consisting of all  $f \in \mathcal{B}_{u}^{*}$  such that

$$\lim_{|z| \to 1^{-}} \mu(|z|) f^{*}(z) = 0.$$

Following [23], the authors defined a natural metric on the hyperbolic  $\mu$ -Bloch space  $\mathcal{B}_{\mu}^{*}$  in the following way:

$$d(f,g;\mathcal{B}_{\mu}^{*}) \;:=\; d_{\mathcal{B}_{\mu}^{*}}(f,g) + \|f-g\|_{\mathcal{B}_{\mu}} + |f(0)-g(0)|,$$

$$d_{\mathcal{B}_{\mu}^{*}}(f,g) \ := \ \sup_{g \in \mathbb{D}} \ \left| \frac{f'(z)}{1 - |f(z)|^{2}} - \frac{g'(z)}{1 - |g(z)|^{2}} \right| \mu(|z|)$$

for 
$$f, g \in \mathcal{B}_u^*$$
.

The following conditions have played crucial roles in the study of  $Q_K$  spaces:

$$\int_{0}^{1} \phi_{K}(s) \frac{ds}{s} < \infty. \tag{1}$$

$$\int_{1}^{\infty} \phi_{K}(s) \frac{ds}{s^{2}} < \infty. \tag{2}$$

**Lemma 1.1** [24]. If K satisfy the condition (2), then the

$$K_1(t) = t \int_t^\infty \frac{K(s)}{s^2} ds$$
 (where,  $0 < t < \infty$ ),

has the following properties:

- (A)  $K_1$  is nondecreasing on  $(0, \infty)$ .
- (B)  $K_1(t)/t$  is nondecreasing on  $(0, \infty)$ .
- (C)  $K_1(t) \geqslant K(t)$  for all  $t \in (0, \infty)$ .
- (D)  $K_1 \leq K \text{ on } (0,1].$
- If K(t) = K(1) for  $t \ge 1$ , then we also have
  - (E)  $K_1(t) = K_1(1) = K(1)$  for  $t \ge 1$ , so  $K_1 \approx K$  on  $(0, \infty)$ .

**Lemma 1.2** [24]. If K satisfy the condition (2), then we can find another non-negative weight function given by

$$K_1(t) = t \int_t^\infty \frac{K(s)}{s^2} ds$$
 (where,  $0 < t < \infty$ ),

such that  $Q_K = Q_{K_1}$  and that the new function  $K_1$  has the following properties:

- (A)  $K_1$  is nondecreasing on  $(0, \infty)$ .
- (B)  $K_1(t)/t$  is nondecreasing on  $(0, \infty)$ .
- (c)  $K_1(t)$  satisfies condition (1).
- (d)  $K_1(2t) \approx K_1(t)$  on  $(0, \infty)$ .
- (e)  $K_1(t) \approx K(t)$  on (0, 1].
- (f)  $K_1$  is differentiable on  $(0, \infty)$ .
- (g)  $K_1$  is concave on  $(0, \infty)$ .
- (h)  $K_1(t) = K_1(1)$  for  $t \ge 1$ .

**Definition 1.4** (see [25]). Let a function  $K:[0,\infty) \to [0,\infty)$ . The space  $Q_K$  is defined by

$$Q_K = \left\{ f \in H(\mathbb{D}) : \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} |f'(z)|^2 K(g(z,a)) \, dA(z) < \infty \right\}.$$

$$\lim_{|a|\to 1^-}\sup_{a\in\mathbb{D}}\int_{\mathbb{D}}|f'(z)|^2K(g(z,a))\,dA(z)=0,$$

then  $f \in Q_{K,0}$ . Clearly, if  $K(t) = t^p$ , then  $Q_K = Q_p$ .

Li et al. [10] defined the hyperbolic  $Q_K$  type space  $Q_K^*$  as follows.

**Definition 1.5.** Let  $K:[0,\infty)\to[0,\infty)$ . The hyperbolic space  $Q_K^*$  consists of those functions  $f \in B(\mathbb{D})$  for which

$$||f||_{Q_K^*}^2 = \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} (f^*(z))^2 K(g(z,a)) dA(z) < \infty.$$

Moreover, we say that  $f \in Q_K^*$  belongs to the space  $Q_{K,0}^*$  if

$$\lim_{|a| \to 1^{-}} \int_{\mathbb{D}} (f^{*}(z))^{2} K(g(z, a)) dA(z) = 0,$$

where dA is the normalized 2-dimensional Lebesgue measure on  $\mathbb{D}$ ,  $g(z,a)=\log\frac{1}{|\varphi_a(z)|}$  is the Green's function of  $\mathbb{D}$  where  $\varphi_a(z)=\frac{a-z}{1-az}$  is the Möbius transformation related to the point  $a\in\mathbb{D}$ . Note that hyperbolic classes are not linear spaces, since they consist of functions that are self-maps of  $\mathbb{D}$ .

For  $f,g \in Q_K^*$ , we define their distance by

$$d(f,g;Q_K^*) := d_{Q_K^*}(f,g) + ||f-g||_{Q_K} + |f(0)-g(0)|,$$

where

$$d_{\mathcal{Q}_{K}^{*}}(f,g) \ := \ \left( \sup_{z \in \mathbb{D}} \ \int_{\mathbb{D}} \ |f^{*}(z) - g^{*}(z)|^{2} K(g(z,a)) dA(z) \right)^{\frac{1}{2}}.$$

Now, we introduce the following results of the complete metric spaces  $\mathcal{B}_{u}^{*}$  and  $Q_{K}^{*}$ .

**Proposition 1.1.** The class  $\mathcal{B}_{\mu}^{*}$  is equipped with a complete metric. Moreover,  $\mathcal{B}_{\mu,0}^{*}$  is a closed (and therefore complete) subspace of  $\mathcal{B}_{\mu}^{*}$ .

**Proof.** The proof of Propositions 1.1 is very similar to that of Proposition 2.1 in [10].  $\Box$ 

**Proposition 1.2.** The class  $Q_K^*$  equipped with a complete metric space. Moreover,  $Q_{K,0}^*$  is a closed (and therefore complete) subspace of  $Q_K^*$ .

**Proof.** Let  $f, g, h \in Q_K^*$ . Then clearly

- (i)  $d(f, f; Q_K^*) = 0$ .
- (ii)  $d(f, g; Q_K^*) \ge 0$  and  $d(f, g; Q_K^*) = 0$  implies f = g.
- (iii)  $d(f, g; Q_K^*) = d(g, f; Q_K^*)$
- (iv)  $d(f, g; Q_K^*) \leq d(f, h; Q_K^*) + d(h, g; Q_K^*).$

Hence, d is a metric on  $Q_K^*$ , and  $(Q_K^*, d)$  is a metric space.

To proof the completeness, let  $(f_n)_{n=1}^{\infty}$  be a Cauchy sequence in the metric space  $(Q_K^*,d)$ , that is, for any  $\varepsilon>0$  there is an  $N=N(\varepsilon)\in\mathbb{N}$  such that  $d(f_n,f_m;Q_K^*)<\varepsilon$ , for all n,m>N. Since  $(f_n)\subset B(\mathbb{D})$ , such that  $f_{n_j}$  converges to f uniformly on compact subsets of  $\mathbb{D}$ . It follows that also  $f_n$  converges to f uniformly on compact subsets, now let m>N, and 0< r<1. Then Fatou's lemma yields

$$\begin{split} &\int_{D(0,r)} \left| f^*(z) - f^*_m(z) \right|^2 K(1 - |\varphi_a(z)|^2) dA(z) \\ &= \int_{D(0,r)} \lim_{n \to \infty} \left| f^*_n(z) - f^*_m(z) \right|^2 K(1 - |\varphi_a(z)|^2) dA(z) \\ &\leqslant \lim_{n \to \infty} \int_{D(0,r)} \left| f^*(z) - f^*_m(z) \right|^2 K(1 - |\varphi_a(z)|^2) dA(z) \leqslant \varepsilon^2, \end{split}$$

and by letting  $r \to 1^-$ , it follows that,

$$\int_{\mathbb{D}} (f^*(z))^2 K(1 - |\varphi_a(z)|^2) dA(z)$$

$$\leq 2\varepsilon^2 + 2 \int_{\mathbb{D}} (f_m^*(z))^2 K(1 - |\varphi_a(z)|^2) dA(z)$$

this yields,

$$||f||_{Q_{w}^{*}}^{2} \leq 2||f_{m}||_{Q_{w}^{*}}^{2} + 2\varepsilon^{2}.$$

Thus  $f \in Q_K^*$ . We also find that  $f_n \to f$  with respect to the metric of  $(Q_K^*, d)$  and  $(Q_K^*, d)$  is complete metric space. The second part of the assertion follows.

Our objective in this paper is to study Lipschitz continuity, boundedness and compactness of the superposition operator  $S_{\phi}$  between the hyperbolic spaces  $\mathcal{B}_{u}^{*}$  and  $Q_{K}^{*}$ .  $\square$ 

#### 2. Main results

First, we study Lipschitz continuity of the superposition operator  $S_{\phi}$  between the hyperbolic spaces  $\mathcal{B}_{\mu}^{*}$  and  $\mathcal{Q}_{K}^{*}$  equipped with a complete metric space. Throughout this section we assume that

$$(\phi^*(f(z)) + \phi^*(g(z))) \geqslant \frac{\epsilon}{\mu(|f(z)|)} > 0, \quad \forall z \in \mathbb{D}.$$
 (3)

Now, we give the following result.

**Theorem 2.1.** Assume  $\phi$  is non-constant analytic mapping from  $\mathbb{D}$  into itself and let  $K:[0,\infty)\to[0,\infty)$ . Suppose that (3) is satisfied. Then the following statements are equivalent:

- (i)  $S_{\phi}: \mathcal{B}_{u}^{*} \to \mathcal{Q}_{K}^{*}$  is bounded;
- (ii)  $S_{\phi}: \mathcal{B}_{\mu}^* \to \mathcal{Q}_K^*$  is Lipschitz continuous;

(iii) 
$$\sup_{a\in\mathbb{D}}\int_{\mathbb{D}}\frac{|f'(z)|^2}{\mu(|f(z)|)^2}K(g(z,a))dA(z)<\infty.$$

**Proof.** To prove (i)  $\iff$  (iii), first assume that (iii) holds, for any  $f \in \mathcal{B}_{n}^{*}$ , and |f(z)| is bounded. Then, we obtain

$$\begin{split} \|S_{\phi}f\|_{\mathcal{Q}_{K}^{*}} &= \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} ((\phi \circ f)^{*}(z))^{2} K(g(z,a)) dA(z) \\ &= \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} (\phi^{*}(f(z)))^{2} |f'(z)|^{2} K(g(z,a)) dA(z) \\ &\leq \|\phi(f(z))\|_{\mathcal{B}_{\mu}^{*}}^{2} \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} \frac{|f'(z)|^{2}}{\mu(|f(z)|)^{2}} K(g(z,a)) dA(z) < \infty. \end{split}$$

Hence, it follows that (i) holds.

Conversely, by assuming that (i) holds and (3), there exists a constant  $\epsilon > 0$  such that  $(\phi^*(f(z)) + \phi^*(g(z))) \ge \frac{\epsilon}{\mu(|f(z)|)} > 0$ , where  $f, g \in \mathcal{B}^*_{\mu}$ , and  $\|S_{\phi}f\|_{\mathcal{Q}^*_{\kappa}} \le C\|\phi(f(z))\|_{\mathcal{B}^*_{u}}$ .

We can assume |f'(z)| < |g'(z)|. Then, we have

$$\begin{split} &\|S_{\phi}f\|_{\mathcal{Q}_{K}^{*}} + \|S_{\phi}g\|_{\mathcal{Q}_{K}^{*}} \\ &\geqslant \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} \left[ \left( (\phi \circ f)^{*}(z) \right)^{2} + \left( (\phi \circ g)^{*}(z) \right)^{2} \right] K(g(z,a)) dA(z) \\ &\geqslant \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} \left[ \left( \phi^{*}(f(z)) \right)^{2} |f'(z)|^{2} + \left( \phi^{*}(g(z)) \right)^{2} |g'(z)|^{2} \right] K(g(z,a)) dA(z) \\ &\geqslant \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} \left[ \left( \phi^{*}(f(z)) \right)^{2} + \left( \phi^{*}(g(z)) \right)^{2} \right] |f'(z)|^{2} K(g(z,a)) dA(z) \end{split}$$

510 A. Kamal

$$\begin{split} &\geqslant \frac{1}{2} \sup_{a \in \mathbb{D}} \ \int_{\mathbb{D}} \ [\phi^*(f(z)) + \phi^*(g(z))]^2 |f'(z)|^2 \ K(g(z,a)) dA(z) \\ &\geqslant \frac{\epsilon^2}{2} \sup_{a \in \mathbb{D}} \ \int_{\mathbb{D}} \frac{|f'(z)|^2}{\mu(|f(z)|)^2} \ K(g(z,a)) dA(z). \end{split}$$

Then, we have

$$\sup_{a \in \mathbb{D}} \int_{\mathbb{D}} \frac{|f'(z)|^2}{\mu(|f(z)|)^2} |K(g(z,a)) dA(z) \leqslant \|S_{\phi}f\|_{Q_K^*}^2 + \|S_{\phi}g\|_{Q_K^*}^2 < \infty.$$

So (iii) is satisfied.

To prove (ii)  $\iff$  (iii), assume first that  $S_{\phi}: \mathcal{B}_{\mu}^* \to \mathcal{Q}_K^*$  is Lipschitz continuous, that is, there exists a positive constant C such that

$$d(\phi \circ f, \phi \circ g; Q_K^*) \leq Cd(\phi(f(z)), \phi(g(z)); \mathcal{B}_u^*), \text{ for all } f, g \in \mathcal{B}_u^*.$$

Taking  $\phi(g) = 0$ , this implies

$$\|\phi \circ f\|_{\mathcal{Q}_{K}^{*}} \leq C\Big(\|\phi(f(z))\|_{\mathcal{B}_{\mu}^{*}} + \|\phi(f(z))\|_{\mathcal{B}_{\mu}} + |\phi(f(0))|\Big), \text{ for all } f \in \mathcal{B}_{\mu}^{*}.$$

$$(4)$$

The assertion (iii) follows by choosing f(z) = z in (4). Moreover, from (3), for  $f, g \in \mathcal{B}^*_{\mu}$ , we deduce that

$$(\phi^*(f(z)) + \phi^*(g(z)))\mu(|f(z)|) \ge \epsilon > 0, \quad \text{for all } z \in \mathbb{D}.$$
 (5)

Therefore, combining (4) and (5), we have

$$\begin{split} &\|\phi(f(z))\|_{\mathcal{B}_{\mu}^{*}} + \|\phi(g(z))\|_{\mathcal{B}_{\mu}^{*}} + \|\phi(f(z))\|_{\mathcal{B}_{\mu}} \\ &+ \|\phi(g(z))\|_{\mathcal{B}_{\mu}} + |\phi(f(0))| + |\phi(g(0))| \\ &\geqslant \|\phi \circ f\|_{\mathcal{Q}_{K}^{*}} + \|\phi \circ g\|_{\mathcal{Q}_{K}^{*}} \geqslant \frac{\epsilon^{2}}{2} \int_{\mathbb{D}} \frac{|f'(z)|^{2}}{\mu(|f(z)|)^{2}} K(g(z,a)) dA(z). \end{split}$$

For which the assertion (iii) follows.

Assume now that (iii) is satisfied, we have

$$\begin{split} &d(\phi \circ f, \phi \circ g; Q_K^*) \\ &= d_{\mathcal{Q}_K^*}(\phi \circ f, \phi \circ g) + \|\phi \circ f - \phi \circ g\|_{\mathcal{Q}_K} + |\phi(f(0)) - \phi(g(0))| \\ &\leqslant d_{\mathcal{B}_\mu^*}(\phi(f(z)), \phi(g(z))) \left( \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} \frac{|f'(z)|^2}{\mu} (|f(z)|)^2 K(g(z, a)) dA(z) \right)^{\frac{1}{2}} \\ &+ \|\phi(f(z)) - \phi(g(z))\|_{\mathcal{B}_\mu} \left( \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} \frac{|f'(z)|^2}{\mu (|f(z)|)^2} K(g(z, a)) dA(z) \right)^{\frac{1}{2}} \\ &+ |\phi(f(0)) - \phi(g(0))| \leqslant C d(\phi(f(z)), \phi(g(z)); \mathcal{B}_\mu^*). \end{split}$$

Thus  $S_{\phi}: \mathcal{B}_{\mu}^* \to \mathcal{Q}_K^*$  is Lipschitz continuous and this completes the proof.

Secondly, we state and prove compactness of the superposition operators  $S_{\phi}$  between the hyperbolic spaces. Recall that a superposition operator  $S_{\phi}: \mathcal{B}_{\mu}^* \to \mathcal{Q}_K^*$  is said to be compact, if it maps any ball in  $\mathcal{B}_{\mu}^*$  onto a pre-compact set in  $\mathcal{Q}_K^*$ .

We state and prove the following proposition.  $\Box$ 

**Proposition 2.1.** Let  $\phi$  be an analytic mapping from  $\mathbb D$  into itself and let  $K:[0,\infty)\to [0,\infty)$ . If  $S_\phi:\mathcal B_\mu^*\to \mathcal Q_K^*$  is compact, then it maps closed balls onto compact sets.

**Proof.** If  $B \subset \mathcal{B}_{\mu}^*$  is a closed ball and  $g \in \mathcal{Q}_K^*$  belongs to the closure of  $S_{\phi}(B)$ , we can find a sequence  $(f_n)_{n=1}^{\infty} \subset B$  such that  $\phi \circ f_n$  converges to  $g \in \mathcal{Q}_K^*$  as  $n \to \infty$ . But  $(f_n)_{n=1}^{\infty}$  is a normal family, hence it has a subsequence  $(f_{n_j})_{j=1}^{\infty}$  converging uniformly on compact subsets of  $\mathbb{D}$  to an analytic function f. It follows that also  $f_n$  converges to f uniformly on compact subsets, and by the Cauchy formula, the same also holds for the derivatives. Let m > N. Then the uniform convergence yields

$$\left| \frac{f'(z)}{1 - |f(z)|^2} - \frac{f'_m(z)}{1 - |f_m(z)|^2} \right| \mu(|z|)$$

$$= \lim_{n \to \infty} \left| \frac{f'_n(z)}{1 - |f_n(z)|^2} - \frac{f'_m(z)}{1 - |f_m(z)|^2} \right| \mu(|z|)$$

$$\leqslant \lim_{n \to \infty} d(f_n, f_m; \mathcal{B}_{\mu}^*) \leqslant \epsilon. \tag{6}$$

for all  $z \in \mathbb{D}$ , and it follows that  $||f||_{\mathcal{B}^*_{\mu}} \leq ||f_m||_{\mathcal{B}^*_{\mu}} + \epsilon$ . Thus  $f \in \mathcal{B}^*_{\mu}$ . From (6) f belongs to the closed ball B. On the other hand, also the sequence  $\phi \circ (f_{n_j})_{j=1}^{\infty}$  converges uniformly on compact subsets to an analytic function, which is  $g \in \mathcal{Q}^*_K$ . We get  $g = \phi \circ f$ , i.e. g belongs to  $S_{\phi}(B)$ . Thus, this set is closed and also compact.  $\square$ 

Now, we give the main theorem for compactness of superposition operators acting between  $\mathcal{B}_{\mu}^{*}$  and  $Q_{K}^{*}$  classes.

**Theorem 2.2.** Let  $\phi$  be an analytic mapping from  $\mathbb{D}$  into itself and let  $K: [0, \infty) \to [0, \infty)$ . Then  $S_{\phi}: \mathcal{B}_{\mu}^* \to \mathcal{Q}_K^*$  is compact if

$$\lim_{r \to 1^{-} a \in \mathbb{D}} \int_{|f(z)| > r} \frac{|f'(z)|^{2}}{\mu(|f(z)|)^{2}} K(g(z, a)) dA(z) = 0.$$
 (7)

**Proof.** We first assume that (7) holds. Let  $B := \overline{B}(g, \delta) \subset \mathcal{B}_{\mu}^*$ ,  $g \in \mathcal{B}_{\mu}^*$  and  $\delta > 0$ , be a closed ball, and let  $(f_n)_{n=1}^{\infty} \subset B$  be some sequence. We show that its image has a convergent subsequence in  $\mathcal{Q}_K^*$ , which proves the compactness of  $S_{\phi}$  by definition.

Again,  $(f_n)_{n=1}^{\infty} \subset B(\mathbb{D})$  is normal, hence, there is a subsequence  $(f_n)_{j=1}^{\infty}$  which converges uniformly on the compact subsets of  $\mathbb{D}$  to an analytic function f. By Cauchy formula for the derivative of an analytic function, also the sequence  $(f_n)_{j=1}^{\infty}$  converges uniformly on the compact subsets of  $\mathbb{D}$  to  $f_n$ . It follows that also the sequences  $(\phi \circ f_n)_{j=1}^{\infty}$  and  $(\phi \circ f_n)_{j=1}^{\infty}$  converge uniformly on the compact subsets of  $\mathbb{D}$  to  $\phi \circ f$  and  $\phi \circ f'$ , respectively. Moreover,  $f \in B \subset \mathcal{B}^*_{\mu}$  since for any fixed R, 0 < R < 1, the uniform convergence yields

$$\begin{split} \sup_{|z|\leqslant R} & \left| \frac{f'(z)}{1-|f(z)|^2} - \frac{g'(z)}{1-|g(z)|^2} \right| \mu(|z|) + \sup_{|z|\leqslant R} |f'(z) - g'(z)| \mu(|z|) \\ & + |f(0) - g(0)| = \lim_{j\to\infty} \sup_{|z|\leqslant R} \left| \frac{f'_{n_j}(z)}{1-|f_{n_j}(z)|^2} - \frac{g'(z)}{1-|g(z)|^2} \right| \mu(|z|) \\ & + \lim_{j\to\infty} \left( \sup_{|z|\leqslant R} |f'_{n_j}(z) - g'(z)| \mu(|z|) + |f_{n_j}(0) - g(0)| \right) < \delta. \end{split}$$

Hence,  $d(f, g; \mathcal{B}_{u}^{*}) \leq \delta$ .

Let  $\varepsilon > 0$ . Since (7) is satisfied, we may fix r, 0 < r < 1, such that

$$\sup_{a\in\mathbb{D}}\int_{|f(z)|>r}\frac{|f'(z)|^2}{\mu(|f(z)|)^2}K(g(z,a))dA(z)\leqslant \varepsilon.$$

By the uniform convergence, we may fix  $N_1 \in \mathbb{N}$  such that

$$|\phi(0) \circ f_{n_i} - \phi(0) \circ f| \leqslant \varepsilon, \quad \text{forall } j \geqslant N_1.$$
 (8)

The condition (7) is known to imply the compactness of  $S_{\phi}: \mathcal{B}_{\mu} \to \mathcal{Q}_{K}$ , hence possibly to passing once more to a subsequence and adjusting the notations, we may assume that

$$\|\phi \circ f_{n_i} - \phi \circ f\|_{Q_K} \leqslant \varepsilon$$
, for all  $j \geqslant N_2$ ;  $N_2 \in \mathbb{N}$ . (9)

Since  $(f_{n_i})_{i=1}^{\infty} \subset B$ ,  $f \in B$  and  $|f'_{n_i}(z)| \leq |f'(z)|$  it follows that

$$\begin{split} &\sup_{a \in \mathbb{D}} \int_{|f(z)| \geqslant r} \left[ (\phi \circ f_{n_j})^*(z) - (\phi \circ f)^*(z) \right]^2 K(g(z,a)) dA(z) \\ &\leqslant \sup_{a \in \mathbb{D}} \int_{|f(z)| \geqslant r} \left[ \phi^*(f_{n_j}(z)) |f'_{n_j}(z)| - \phi^*(f(z)) |f'(z)| \right]^2 K(g(z,a)) dA(z) \\ &\leqslant \sup_{a \in \mathbb{D}} \int_{|f(z)| \geqslant r} \left[ \phi^*(f_{n_j}(z)) - \phi^*(f(z)) \right]^2 |f'(z)|^2 K(g(z,a)) dA(z) \\ &\leqslant d_{\mathcal{B}_x^*}(\phi(f_{n_j}(z)), \phi(f(z))) \sup_{a \in \mathbb{D}} \int_{|f(z)| > r} \frac{|f'(z)|^2}{\mu(|f(z)|)^2} K(g(z,a)) dA(z), \end{split}$$

hence,

$$\sup_{a\in\mathbb{D}} \int_{|f(z)|\geqslant r} \left[ (\phi \circ f_{n_j})^*(z) - (\phi \circ f)^*(z) \right]^2 K(g(z,a)) dA(z) \leqslant C\varepsilon.$$
(10)

On the other hand, by the uniform convergence on the compact disc  $\mathbb{D}$ , we can find an  $N_3 \in \mathbb{N}$  such that for all  $i \ge N_3$ ,

$$\left|\frac{\phi'(f_{n_j})(z)}{1-\left|\phi(f_{n_i}(z))\right|^2}-\frac{\phi'(f(z))}{1-\left|\phi(f(z))\right|^2}\right|\leqslant \varepsilon.$$

For all z with  $|f(z)| \le r$ . Hence, for such j,

$$\begin{split} \sup_{a\in\mathbb{D}} & \int_{|f(z)|\leqslant r} \left[ (\phi\circ f_{n_j})^*(z) - (\phi\circ f)^*(z) \right]^2 K(g(z,a)) dA(z) \\ \leqslant \sup_{a\in\mathbb{D}} & \int_{|f(z)|\leqslant r} \left[ \phi^*(f_{n_j}(z)) - \phi^*(f(z)) \right]^2 |f'(z)|^2 K(g(z,a)) dA(z) \\ \leqslant \varepsilon \left( \sup_{a\in\mathbb{D}} & \int_{|f(z)|\leqslant r} |f'(z)|^2 \frac{K(g(z,a))}{\mu(|f(z)|)^2} dA(z) \right)^{\frac{1}{2}} \leqslant C\varepsilon, \end{split}$$

hence.

$$\sup_{a\in\mathbb{D}} \int_{|f(z)|\leqslant r} \left[ (\phi \circ f_{n_j})^*(z) - (\phi \circ f)^*(z) \right]^2 K(g(z,a)) dA(z) \leqslant C \varepsilon.$$
(11)

where C is bounded which is obtained from (iii) of Theorem 2.1 combining (8)–(11) we deduce that  $f_{n_j} \to f$  in  $Q_K^*$ . The proof is therefore completed.  $\square$ 

#### 3. Conclusion

We know that a superposition operator  $S_{\phi}: \mathcal{B}_{\mu}^* \to \mathcal{Q}_K^*$  is said to be bounded if there is a positive constant C such that

 $||S_{\phi}f||_{\mathcal{Q}_{K}^{*}} \leq C||\phi(f(z))||_{\mathcal{B}_{\mu}^{*}};$  for all  $f \in \mathcal{B}_{\mu}^{*}$ . Theorem 2.1 shows that  $S_{\phi}: \mathcal{B}_{\mu}^{*} \to \mathcal{Q}_{K}^{*}$  is bounded if and only if it is Lipschitz continuous, that is, if there exists a positive constant C such that  $d(\phi \circ f, \phi \circ g; \mathcal{Q}_{K}^{*}) \leq Cd(\phi(f(z)), \phi(g(z)); \mathcal{B}_{\mu}^{*}),$  for all  $f, g \in \mathcal{B}_{\mu}^{*}$ .

#### 4. Future work

It is still an open problem to extend the obtained results in this paper by using the superposition operators in different hyperbolic classes of functions which introduced in [1,6,26,27] and others.

#### Acknowledgment

The author wishes to thank the referees for their comments which improved the original manuscript.

#### References

- [1] S. Yamashita, Hyperbolic Hardy class H<sup>1</sup>, Math. Scand. 45 (2) (1979) 261–266.
- [2] S. Yamashita, Gap series and α-Bloch functions, Yokohama Math. J. 28 (1980) 31–36.
- [3] S. Yamashita, On hyperbolic Hardy classes, Comment. Math. Univ. St. Paul. 30 (1) (1981) 65–69.
- [4] S. Yamashita, The hyperbolic M. Riesz theorem, Acta Sci. Math. (Szeged) 43 (1–2) (1981) 141–146.
- [5] S. Yamashita, Hyperbolic Hardy classes and hyperbolically Dirichlet-finite functions, Hokkaido Math. J. 10 (1981) 709–722 (Special Issue).
- [6] S. Yamashita, Functions with H<sup>p</sup> hyperbolic derivative, Math. Scand. 53 (2) (1983) 238–244.
- [7] S. Yamashita, Holomorphic functions of hyperbolically bounded mean oscillation, Boll. Un. Mat. Ital. B(6) 5 (3) (1986) 983–1000.
- [8] W. Smith, Inner functions in the hyperbolic little Bloch class, Michigan Math. J. 45 (1) (1998) 103–114.
- [9] X. Li, On hyperbolic Q classes, Dissertation, University of Joensuu, Joensuu, 2005, Ann. Acad. Sci. Fenn. Math. Diss. 145 (2005) 65.
- [10] X. Li, F. Pérez-González, J. Rättyä, Composition operators in hyperbolic Q-classes, Ann. Acad. Sci. Fenn. Math. 31 (2006) 201, 404
- [11] G.A. Cámera, J. Gimenez, The nonlinear superposition operator acting on Bergman spaces, Compos. Math. 93 (1994) 23–35.
- [12] G.A. Cámera, Nonlinear superposition on spaces of analytic functions, in: Harmonic Analysis and Operator Theory (Caracas, 1994), Contemp. Math, vol. 189, Amer. Math. Soc., Providence, RI, 1995, pp. 103–116.
- [13] S.M. Buckley, J.L. Fernández, D. Vukotić, Superposition operators on Dirichlet type spaces, in: Papers on Analysis: A Volume Dedicated to Olli Martio on the Occasion of his 60th Birthday, Rep. Univ. Jyvaskylä Dept. Math. Stat, vol. 83, University of Jyväskylä, Jyväskylä, 2001, pp. 41–61.
- [14] S.M. Buckley, D. Vukotić, Univalent interpolation in Besov spaces and superposition into Bergman spaces, Potential Anal. 29 (2008) 1–16.
- [15] V. Álvarez, M.A. Márquez, D. Vukotić, Superposition operators between the Bloch space and Bergman spaces, Ark. Mat. 42 (2004) 205–216.
- [16] Wen Xu, Superposition operators on Bloch-type spaces, Comput. Methods Funct. Theory Vol. 7 (2) (2007) 501–507.
- [17] T. Hosokawa, Differences of weighted composition operators on the Bloch spaces, Complex Anal. Oper. Theory. (2008) 1–20.

512

[18] Andrei Khrennikov, Einstein's dream-Quantum mechanics as theory of classical random fields, Rev. Theor. Sci. 1 (2013) 34– 57

- [19] A. Eghdami, M. Monajjemi, Quantum modeling of alpha interferon subunits in point of nano anticancer drug, Quantum Matter 2 (2013) 324–331.
- [20] Fabrice Debbasch, Giuseppe Di Molfetta, Discrete time Quantum walks continuous limit in 1 + 1 and 1 + 2 dimension, J. Comput. Theor. Nanosci. 10 (2013) 1621–1625.
- [21] J. Arazy, D. Fisher, J. Peetre, Möbius invariant function spaces, J. Reine Angew. Math. 363 (1986) 110–145.
- [22] René Erlin Castillo, Julio C. Ramos Fernndez, Miguel Salazar, Bounded superposition operators between BlochOrlicz and α-Bloch spaces, Appl. Math. Comput. 218 (7) (2011) 34–41.
- [23] A. El-Sayed Ahmed, M.A. Bakhit, Composition operators on some weighted hyperbolic and meromorphic classes, CUBO A Math. J. 15 (3) (2013) 19–30.

[24] H. Wulan, Y. Zhang, Hadamard products and  $Q_K$  spaces, J. Math. Anal. Appl. 337 (2) (2008) 1142–1150.

A. Kamal

- [25] M. Essén, H. Wulan, J. Xiao, Several function-theoretic characterizations of Mobius invariant  $Q_K$  spaces, J. Funct. Anal. 230 (2006) 78–115.
- [26] F. Pérez-González, J. Rättyä, J. Taskinen, Lipschitz continuous and compact composition operators in hyperbolic classes, Mediterr. J. Math. 8 (2011) 123–135.
- [27] A. Kamal, A. El-Sayed Ahmed, On Lipschitz continuity and properties of composition operators acting on some hyperbolic classes, in: AIP Conference Proceedings, vol. 1558, 2013, pp. 533. (http://dx.doi.org/10.1063/1.4825545).