Contents lists available at ScienceDirect

Original Article

Journal of the Egyptian Mathematical Society

journal homepage: www.elsevier.com/locate/joems

CrossMark

Fuzzy soft connected sets in fuzzy soft topological spaces II

A. Kandil^a, O.A. El-Tantawy^b, S.A. El-Sheikh^c, Sawsan S.S. El-Sayed^{c,*}

^a Mathematics Department, Faculty of Science, Helwan University, Helwan, Egypt

^b Mathematics Department, Faculty of Science, Zagazig University, Zagazig, Egypt

^c Mathematics Department, Faculty of Education, Ain Shams University, Cairo, Egypt

ARTICLE INFO

Article history: Received 18 October 2016 Revised 27 December 2016 Accepted 8 January 2017 Available online 13 February 2017

Keywords: Fuzzy soft sets Fuzzy soft topological space Fuzzy soft separated sets Fuzzy soft connected sets Fuzzy soft connected components

ABSTRACT

In this paper, we introduce some different types of fuzzy soft connected components related to the different types of fuzzy soft connectedness and based on an equivalence relation defined on the set of fuzzy soft points of X. We have investigated some very interesting properties for fuzzy soft connected components. We show that the fuzzy soft C_5 -connected component may be not exists and if it exists, it may not be fuzzy soft closed set. Also, we introduced some very interesting properties for fuzzy soft connected components in discrete fuzzy soft topological spaces which is a departure from the general topology.

> © 2017 Egyptian Mathematical Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

The concept of a fuzzy set was introduced by Zadeh [15] in his classical paper of 1965. In 1968, Chang [2] gave the definition of fuzzy topology. Since Chang applied fuzzy set theory into topology many topological notions were investigated in a fuzzy setting.

In 1999, the Russian researcher Molodtsov [9] introduced the soft set theory which is a completely new approach for modeling uncertainty. He established the fundamental results of this new theory and successfully applied the soft set theory into several directions. Maji et al. [8] defined and studied several basic notions of soft set theory in 2003. Shabir and Naz [12] introduced the concept of soft topological space.

Maji et al. [7] initiated the study involving both fuzzy sets and soft sets. In this paper, Maji et al. combined fuzzy sets and soft sets and introduced the concept of fuzzy soft sets. In 2011, Tanay Kandemir [14] gave the topological structure of fuzzy soft sets.

The notions of fuzzy soft connected sets and fuzzy soft connected components are very important in fuzzy soft topological spaces which in turn reflect the intrinsic nature of it that is in fact its peculiarity. In fuzzy soft setting, connectedness has been introduced by Mahanta and Das [6] and Karataş et al. [5]. Recently, Kandil et al. [4] introduced some types of separated sets and some types of connected sets. They studied the relationship between these types. In this paper, we extend the notion of connected components of fuzzy topological space to fuzzy soft topological space. In Section 3, we introduce and investigate some very interesting properties for fuzzy soft connected components. We define an equivalence relation on the set of fuzzy soft points. The union of equivalence classes turns out to be a maximal fuzzy soft connected set which is called a fuzzy soft connected component. There are many types of connected components deduced from the many types of connected sets due to Kandil et al. [4]. Furthermore, we show that some of these connected components may be not exists and the some if exists, it may not be fuzzy soft closed set. Moreover, we introduced some very interesting properties for fuzzy soft connected components in discrete fuzzy soft topological spaces which is a departure from the general topology.

2. Preliminaries

Throughout this paper X denotes initial universe, E denotes the set of all possible parameters which are attributes, characteristic or properties of the objects in X. In this section, we present the basic definitions and results of fuzzy soft set theory which will be needed in the sequel.

Definition 2.1. [2] A fuzzy set *A* of a non-empty set *X* is characterized by a membership function $\mu_A : X \longrightarrow [0, 1] = I$ whose value $\mu_A(x)$ represents the "degree of membership" of *x* in *A* for $x \in X$. Let I^X denotes the family of all fuzzy sets on *X*.

http://dx.doi.org/10.1016/j.joems.2017.01.006

^{*} Corresponding author. E-mail addresses: sawsan_809@yahoo.com, s.elsayed@mu.edu.sa (S.S.S. El-Sayed).

¹¹¹⁰⁻²⁵⁶X/© 2017 Egyptian Mathematical Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Definition 2.2. [9] Let *A* be a non-empty subset of *E*. A pair (*F*, *A*) denoted by F_A is called a soft set over *X*, where *F* is a mapping given by *F*: $A \rightarrow P(X)$. In other words, a soft set over *X* is a parametrized family of subsets of the universe *X*. For a particular $e \in A$, F(e) may be considered the set of *e*-approximate elements of the soft set (*F*, *A*) and if $e \notin A$, then $F(e) = \phi$ i.e. $F = \{F(e) : e \in A \subseteq E, F : A \rightarrow P(X)\}$.

Aktaş and Çağman [1] showed that every fuzzy set may be considered as a soft set. That is, fuzzy sets are a special class of soft sets.

Definition 2.3. [7] Let $A \subseteq E$. A pair (f, A), denoted by f_A , is called fuzzy soft set over X, where f is a mapping given by $f : A \longrightarrow I^X$ defined by $f_A(e) = \mu_{f_A}^e$; where $\mu_{f_A}^e = \overline{0}$ if $e \notin A$, and $\mu_{f_A}^e \neq \overline{0}$ if $e \in A$, where $\overline{0}(x) = 0 \forall x \in X$. The family of all these fuzzy soft sets over X denoted by $FSS(X)_E$.

Definition 2.4. [3,7,10,11,13,14] The complement of a fuzzy soft set (f, A), denoted by $(f, A)^c$, and defined by $(f, A)^c = (f^c, A)$, f_A^c : $A \longrightarrow I^X$ is a mapping given by $\mu_{f_A^c}^{e_c} = 1 - \mu_{f_A}^e \quad \forall e \in A$. Clearly, $(f_A^c)^c = f_A$.

Definition 2.5. [7,10,11,13,14] A fuzzy soft set f_E over X is said to be a null-fuzzy soft set, denoted by \widetilde{O}_E , if for all $e \in E$, $f_E(e) = \overline{0}$.

Definition 2.6. [7,10,11,13,14] A fuzzy soft set f_E over X is said to be an absolute fuzzy soft set, denoted by $\tilde{1}_E$, if $f_E(e) = \bar{1} \quad \forall e \in E$. Clearly, we have $(\tilde{0}_E)^c = \tilde{1}_E$ and $(\tilde{1}_E)^c = \tilde{0}_E$.

Definition 2.7. [3,7,10,11,13,14] Let f_A , $g_B \in FSS(X)_E$. Then f_A is fuzzy soft subset of g_B , denoted by $f_A \cong g_B$, if $A \subseteq B$ and $\mu_{f_A}^e(x) \leq \mu_{g_B}^e(x) \forall x \in X$, $\forall e \in E$. Also, g_B is called fuzzy soft superset of f_A denoted by $g_B \cong f_A$. If f_A is not fuzzy soft subset of g_B , we written as $f_A \not\subseteq g_B$.

Definition 2.8. [3,7,10,11,13,14] Two fuzzy soft sets f_A and g_B on X are called equal if $f_A \cong g_B$ and $g_B \cong f_A$.

Definition 2.9. [7,10,11,13,14] The union of two fuzzy soft sets f_A and g_B over the common universe X, denoted by $f_A \sqcup g_B$, is also a fuzzy soft set h_C , where $C = A \cup B$ and for all $e \in C$, $h_C(e) = \mu_{h_C}^e = \mu_{f_A}^e \lor \mu_{g_B}^e \forall e \in E$.

Definition 2.10. [7,10,11,13,14] The intersection of two fuzzy soft sets f_A and g_B over the common universe X, denoted by $f_A \sqcap g_B$, is also a fuzzy soft set h_C , where $C = A \cap B$ and for all $e \in C$, $h_C(e) = \mu_{h_C}^e = \mu_{f_A}^e \land \mu_{g_B}^e \forall e \in E$.

Definition 2.11. [14] Let $FSS(X)_E$ be a collection of fuzzy soft sets over a universe X with a fixed set of parameters E. Then $\tau \subseteq FSS(X)_E$ is called fuzzy soft topology on X if

1. $\widetilde{0}_E$, $\widetilde{1}_E \in \tau$, where $\widetilde{0}_E(e) = \overline{0}$ and $\widetilde{1}_E(e) = \overline{1} \forall e \in E$,

- 2. The union of any members of τ belongs to τ .
- 3. The intersection of any two members of τ belongs to τ .

The triplet (X, τ , E) is called fuzzy soft topological space over X. Also, each member of τ is called fuzzy soft open set in (X, τ , E).

Definition 2.12. [14] Let (X, τ, E) be a fuzzy soft topological space. A fuzzy soft set f_A over X is said to be fuzzy soft closed set in X, if its relative complement f_A^c is fuzzy soft open set.

Definition 2.13. [10,11] Let (X, τ, E) be a fuzzy soft topological space and $f_A \in FSS(X)_E$. The fuzzy soft closure of f_A , denoted by $Fcl(f_A)$ is the intersection of all fuzzy soft closed supersets of f_A , i.e. $Fcl(f_A) = \sqcap\{h_C; h_C \in \tau^c \text{ and } f_A \cong h_C\}$. Clearly, $Fcl(f_A)$ is the smallest fuzzy soft closed set over X which contains f_A , and $Fcl(f_A)$ is fuzzy soft closed set.

Definition 2.14. [11,13] The fuzzy soft set $f_A \in FSS(X)_E$ is called fuzzy soft point if there exist $x \in X$ and $e \in E$ such that $\mu_{f_A}^e(x) = \alpha$; $(0 \le \alpha \le 1)$ and $\mu_{f_A}^e(y) = 0 \quad \forall y \in X - \{x\}$ and this fuzzy soft point is denoted by x_{α}^e or f_e . The class of all fuzzy soft points of X, denoted by $FSP(X)_E$.

Definition 2.15. [6] The fuzzy soft point x_{α}^{e} is said to be belonging to the fuzzy soft set f_{A} , denoted by $x_{\alpha}^{e} \in f_{A}$, if for the element $e \in A$, $\alpha \leq \mu_{f_{A}}^{e}(x)$. If x_{α}^{e} is not belong to f_{A} , we write $x_{\alpha}^{e} \notin f_{A}$ and implies that $\alpha > \mu_{f_{A}}^{e}(x)$.

Definition 2.16. [11,13] A fuzzy soft point x_{α}^{e} is said to be a quasicoincident with a fuzzy soft set f_{A} , denoted by $x_{\alpha}^{e} q f_{A}$, if $\alpha + \mu_{f_{A}}^{e}(x) > 1$. Otherwise, x_{α}^{e} is non-quasi-coincident with f_{A} and denoted by $x_{\alpha}^{e} \bar{q} f_{A}$.

Definition 2.17. [11,13] A fuzzy soft set f_A is said to be quasicoincident with g_B , denoted by $f_A q g_B$, if there exists $x \in X$ such that $\mu_{f_A}^e(x) + \mu_{g_B}^e(x) > 1$, for some $e \in A \cap B$. If this is true we can say that f_A and g_B are quasi-coincident at x. Otherwise, f_A and g_B are not quasi-coincident and denoted by $f_A \overline{q} g_B$.

Proposition 2.1. [11, 13] Let f_A and g_B be two fuzzy soft sets. Then, $f_A \cong g_B$ if and only if $f_A \overline{q} (g_B)^c$. In particular, $x_{\alpha}^e \cong f_A$ if and only if $x_{\alpha}^e \overline{q} (f_A)^c$.

Definition 2.18. [10] Let $FSS(X)_E$ and $FSS(Y)_K$ be families of fuzzy soft sets over *X* and *Y*, respectively. Let $u : X \longrightarrow Y$ and $p : E \longrightarrow K$ be mappings. Then the map f_{pu} is called fuzzy soft mapping from $FSS(X)_E$ to $FSS(Y)_K$, denoted by $f_{pu}: FSS(X)_E \longrightarrow FSS(Y)_K$, such that:

1. If $g_B \in FSS(X)_E$, then the image of g_B under the fuzzy soft mapping f_{pu} is a fuzzy soft set over Y defined by $f_{pu}(g_B)$ where $\forall k \in p(E), \forall y \in Y$,

$$f_{pu}(g_B)(k)(y) = \bigvee_{u(x)=y} [\bigvee_{p(e)=k} (g_B(e))](x) \text{ if } x \in u^{-1}(y), 0$$

2. If $h_C \in FSS(Y)_K$, then the pre-image of h_C under the fuzzy soft mapping f_{pu} , $f_{pu}^{-1}(h_C)$ is a fuzzy soft set over X defined by $\forall e \in p^{-1}(K)$, $\forall x \in X$,

$$f_{pu}^{-1}(h_C)(e)(x) = h_C(p(e))(u(x))$$
 for $p(e) \in C, 0$

Definition 2.19. [10] The fuzzy soft mapping f_{pu} is called surjective (resp. injective) if p and u are surjective (resp. injective), also f_{pu} is said to be constant if p and u are constant.

Definition 2.20. [10] Let (X, τ_1, E) and (Y, τ_2, K) be two fuzzy soft topological spaces and f_{pu} : $FSS(X)_E \longrightarrow FSS(Y)_K$ be a fuzzy soft mapping. Then f_{pu} is called:

1. Fuzzy soft continuous if $f_{pu}^{-1}(h_C) \in \tau_1 \forall h_C \in \tau_2$.

2. Fuzzy soft open if $f_{pu}(g_B) \in \tau_2 \forall g_B \in \tau_1$.

Definition 2.21. [5] Two non-null fuzzy soft sets f_E and g_E are said to be fuzzy soft *Q*-separated in a fuzzy soft topological space (*X*, τ , *E*) if $Fcl(f_E) \sqcap g_E = f_E \sqcap Fcl(g_E) = \tilde{0}_E$.

Definition 2.22. [5] Let (X, τ, E) be a fuzzy soft topological space and $f_E \in FSS(X)_E$. Then, f_E is called:

 FSC_1 -connected: if does not exist two non-null fuzzy soft open sets h_E and s_E such that $f_E \cong h_E \sqcup s_E$, $h_E \sqcap s_E \cong G_E^c$, $f_E \sqcap h_E \neq \widetilde{O}_E$, and $f_E \sqcap s_E \neq \widetilde{O}_E$.

*FSC*₂-connected: if does not exist two non-null fuzzy soft open sets h_E and s_E such that $f_E \cong h_E \sqcup s_E$, $f_E \sqcap h_E \sqcap s_E = \widetilde{0}_E$, $f_E \sqcap h_E \neq \widetilde{0}_E$, and $f_E \sqcap s_E \neq \widetilde{0}_E$.

*FSC*₃-connected: if does not exist two non-null fuzzy soft open sets h_E and s_E such that $f_E \cong h_E \sqcup s_E$, $h_E \sqcap s_E \cong f_E^c$, $h_E \not\subseteq f_E^c$, and $s_E \not\subseteq f_E^c$.

*FSC*₄-connected: if does not exist two non-null fuzzy soft open sets h_E and s_E such that $f_E \cong h_E \sqcup s_E$, $f_E \sqcap h_E \sqcap s_E = \widetilde{0}_E$, $h_E \not\subseteq f_E^c$, and $s_E \not\subseteq f_E^c$.

Otherwise, f_E is called FSC_i -disconnected set for i = 1, 2, 3, 4.

In the above definition, if we take $\tilde{1}_E$ instead of f_E , then the fuzzy soft topological space (*X*, τ , *E*) is called *FSC*_i -connected space (*i* = 1, 2, 3, 4).

Remark 2.1. [5] The relationship between FSC_i -connectedness (i = 1, 2, 3, 4) can be described by the following diagram:

 $\begin{array}{cccc} FSC_1 & \Longrightarrow & FSC_2 \\ \downarrow & & \downarrow \\ FSC_3 & \Longrightarrow & FSC_4 \end{array}$

Definition 2.23. [4] Two non-null fuzzy soft sets f_E and g_E are said to be:

- 1. Weakly separated sets in a fuzzy soft topological space (*X*, τ , *E*) if $Fcl(f_E) \overline{q} g_E$ and $f_E \overline{q} Fcl(g_E)$.
- 2. Separated sets in a fuzzy soft topological space (X, τ, E) if there exist non-null fuzzy soft open sets h_E and s_E such that $f_E \cong h_E$, $g_E \cong s_E$ and $f_E \sqcap s_E = g_E \sqcap h_E = \widetilde{0}_E$.

Definition 2.24. [4] Let $f_E \in FSS(X)_E$. The support of $f_E(e)$, denoted by $S(f_E(e))$, is the set, $S(f_E(e)) = \{x \in X: f_E(e)(x) > 0\}$.

Definition 2.25. [4] Two fuzzy soft sets f_E and g_E are said to be quasi-coincident with respect to f_E if $\mu_{f_E}^e(x) + \mu_{g_E}^e(x) > 1$ for every $x \in S(f_E(e))$.

Definition 2.26. [4] Two non-null fuzzy soft sets f_E and g_E are said to be fuzzy soft strongly separated in a fuzzy soft topological space (X, τ, E) if there exist h_E and $s_E \in \tau$ such that $f_E \subseteq h_E$, $g_E \subseteq s_E$, $f_E \sqcap s_E = g_E \sqcap h_E = \tilde{O}_E$, f_E , h_E are fuzzy soft quasi-coincident with respect to f_E , and g_E , s_E are fuzzy soft quasi-coincident with respect to g_E .

Remark 2.2. [4] In fuzzy soft topological space (X, τ , E) the relationship between different notions of fuzzy soft separated sets can be described by the following diagram.

fuzzy soft strongly separated

$$\downarrow \downarrow$$

fuzzy soft separated
 $\downarrow \downarrow$
fuzzy soft Q-separated \Longrightarrow fuzzy soft weakly separated

Definition 2.27. [4] A fuzzy soft set f_E in a fuzzy soft topological space (X, τ , E) is called:

- 1. FSC_M -disconnected set if there exist two non-null fuzzy soft *Q*-separated sets h_E , s_E in *X* such that $f_E = h_E \sqcup s_E$. Otherwise, f_E is called FSC_M -connected set.
- 2. FSC_S -disconnected set if there exist two non-null fuzzy soft weakly-separated sets h_E , s_E in X such that $f_E = h_E \sqcup s_E$. Otherwise, f_E is called FSC_S -connected set.
- 3. FSO-disconnected (respectively, FSO_q -disconnected) set if there exist two non-null fuzzy soft separated (respectively, strongly separated) sets h_E , s_E in X such that $f_E = h_E \sqcup s_E$. Otherwise, f_E is called FSO-connected (respectively, FSO_q-connected) set.
- 4. *FSC*₅-connected set in *X* if there does not exist any non-null proper fuzzy soft clopen set in (f_E , τ_{f_E} , *E*). Note that, this kind of fuzzy soft connectedness was studied by Mahanta and Das [6], Shabir and Naz [12].

In the above definitions, if we take $\tilde{1}_E$ instead of f_E , then the fuzzy soft topological space (*X*, τ , *E*) is called *FSC*_M-connected (respectively, *FSC*_S-connected, *FSO*-connected, *FSO*_q-connected, *FSC*₅-connected) space.

Remark 2.3. [4] In a fuzzy soft topological space (X, τ , E). The classes of *FSO*-connected, *FSO*_q-connected, and *FSC*_i-connected sets for i = 1, 2, 3, 4, S, M can be described by the following diagram.

3. Equivalence relations and components

In disconnected fuzzy soft topological space (X, τ , E), the universe fuzzy soft set $\tilde{1}_E$ can be decomposed into several pieces of fuzzy soft sets, each of which is connected. As in general topological space, the whole space is decomposed into components.

In fuzzy soft setting, this decomposition is obtained in form of unions of equivalence classes of a certain equivalence relation, defined on the set of fuzzy soft points in *X*. The union of equivalence classes turns out to be a maximal fuzzy soft connected set. Accordingly, we have many types of notions of components in fuzzy soft setting.

Proposition 3.1. For fuzzy soft points $x_{\alpha}^{e_1}$ and $y_{\beta}^{e_2}$ in X define a relation E_i as follows:

 $E_i = \{ (x_{\alpha}^{e_1}, y_{\beta}^{e_2}); x_{\alpha}^{e_1}, y_{\beta}^{e_2} \in FSP(X)_E \text{ and there exists a } FSC_i - connected set f_A such that <math>x_{\alpha}^{e_1} \in f_A \text{ and } y_{\beta}^{e_2} \in f_A \text{ for } i = 1, 2, S, M, O, O_q \}$

Then, E_i is an equivalence relation on $FSP(X)_E$.

Proof. As a sample we will prove the case of i = 1. Reflexivity follows from the fact that for each fuzzy soft point x_{α}^{e} in X, there exists a fuzzy soft point x_{1}^{e} in X, which is a FSC_{1} -connected and obviously contains x_{α}^{e} . Symmetry is obvious. To show transitivity, let $x_{\alpha}^{e_{1}}, y_{\beta}^{e_{2}}$ and $z_{\gamma}^{e_{3}}$ be fuzzy soft points in X such that $(x_{\alpha}^{e_{1}}, y_{\beta}^{e_{2}}) \in E_{1}$ and $(y_{\beta}^{e_{2}}, z_{\gamma}^{e_{3}}) \in E_{1}$. Then, there exist FSC_{1} -connected sets f_{A} and g_{B} in X such that $x_{\alpha}^{e_{1}} \in f_{A}, y_{\beta}^{e_{2}} \in f_{A}$ and $y_{\beta}^{e_{2}} \in g_{B}, z_{\gamma}^{e_{3}} \in g_{B}$. Therefore, $\beta \leq \mu_{f_{A}}^{e_{2}}(y)$ and $\beta \leq \mu_{g_{B}}^{e_{2}}(y)$. Hence, $f_{A} \sqcap g_{B} \neq \widetilde{O}_{E}$. So by Theorem 4.10 in [9], $f_{A} \sqcup g_{B}$ is a FSC_{1} -connected. Also, we have $x_{\alpha}^{e_{1}} \in f_{A} \sqcup g_{B}$ and $z_{\gamma}^{e_{3}} \in f_{A} \sqcup g_{B}$. Therefore, E_{1} is an equivalence relation. Similarly, E_{i} is an equivalence relation for i = 2, S, M, O, O_{q} .

Let x_{α}^{e} be a fuzzy soft point in *X* and E_{i} be the equivalence relation on $FSP(X)_{E}$, described as above. Then the equivalence class determined by x_{α}^{e} , is denoted by $E_{i}(x_{\alpha}^{e})$ for $i = 1, 2, S, M, O, O_{q}$.

Definition 3.1. The union $\sqcup E_i(x_{\alpha}^e)$ of all fuzzy soft points contained in the equivalence class $E_i(x_{\alpha}^e)$ is called a C_i -component of the universe fuzzy soft set $\tilde{1}_E$, determined by x_{α}^e . We denoted it by $C_i(x_{\alpha}^e)$ for $i = 1, 2, S, M, O, O_q$.

Theorem 3.1. For each fuzzy soft point $x_{\alpha}^{e} \in FSP(X)_{E}$, the component $C_{i}(x_{\alpha}^{e})$ is the maximal FSC_i-connected (respectively, FSO-connected, FSO_q-connected) set in X containing x_{α}^{e} for i = 1, 2, S, M.

Proof. As a sample we will prove the case of $C_1(x_{\alpha}^e)$. Let $x_{\alpha}^e \in FSP(X)_E$ and let $\{(f_A)_i; i \in I\}$ be the family of FSC_1 -connected sets in X, containing x_{α}^e . We claim $C_1(x_{\alpha}^e) = \underset{i \in I}{\sqcup} (f_A)_i$.

Firstly, we show that $\underset{i \in I}{\sqcup} (f_A)_i \subseteq C_1(x_\alpha^e)$. Let $y \in X$, $e \in E$, $\mu^e_{(f_A)_i}(y) = \beta_i$ for each $i \in I$ and $\underset{i \in I}{\sup} \beta_i = \beta$. Then, $\mu^e_{\underset{i \in I}{\sqcup} (f_A)_i}(y) = \sup \beta_i = \beta$.

Now, if $\beta = 0$, we have nothing to prove. Suppose $\beta \neq 0$. Then for every real number $\epsilon > 0$, there exists $i \in I$ such that $\mu^{e}_{(f_{A})_{i}}(y) = \beta_{i} > \beta - \epsilon$. Therefore, for each fuzzy soft point $y^{e}_{\beta - \epsilon}$ where $0 < \epsilon < \beta$, there exists a fuzzy soft set $(f_{A})_{i}$ such that $y^{e}_{\beta - \epsilon} \in (f_{A})_{i}$. Since $(f_{A})_{i}$ is a *FSC*₁-connected set, containing x^{e}_{α} , it follows that $(x^{e}_{\alpha}, y^{e}_{\beta - \epsilon}) \in E_{1}$ and hence $y^{e}_{\beta - \epsilon} \in E_{1}(x^{e}_{\alpha})$ for every $0 < \epsilon < \beta$.

Now, let $\{(y_{\beta}^{e})_{j}; j \in J\}$ be the family of all fuzzy soft points in *X* with support *y* which are E_1 -related to x_{α}^{e} . Then $\{y_{\beta-\epsilon}^{e}\}_{0<\epsilon<\beta}$ $\subseteq \{(y_{\beta}^{e})_{j}; j \in J\} \subseteq E_1(x_{\alpha}^{e})$. Therefore, $\underset{0<\epsilon<\beta}{\sqcup} y_{\beta-\epsilon}^{e} \in \underset{i\in J}{\sqcup} (y_{\beta}^{e})_{j} \in E_1(x_{\alpha}^{e})$. But $\underset{0<\epsilon<\beta}{\sqcup} y_{\beta-\epsilon}^{e} = y_{\beta}^{e}$. Hence, $y_{\beta}^{e} \in \sqcup E_1(x_{\alpha}^{e}) = C_1(x_{\alpha}^{e})$ and so $\underset{i\in I}{\sqcup} (f_A)_i \in C_1(x_{\alpha}^{e})$.

Conversely, we show that $C_1(x_{\alpha}^e) \cong \bigsqcup_{i \in I} (f_A)_i$. Let $y \in X$, $e \in E$ and $\{(y_{\beta}^e)_j; j \in J\}$ be the family of all fuzzy soft points in X with support y such that $(y_{\beta}^e)_j \in E_1(x_{\alpha}^e)$. Suppose, $\sup_{j \in J} \beta_j = \beta$. Then, $\mu_{\bigsqcup_{i \in I}(x_{\alpha}^e)}^e(y) = \mu_{\bigsqcup_{i \in I}(y_{\beta}^e)_j}^e(y) = \beta$.

Now, since $(y_{\beta}^{e})_{j} \in E_{1}(x_{\alpha}^{e})$, there exists for every $j \in J$ a *FSC*₁ -connected set $(f_{A})_{j}$ such that $x_{\alpha}^{e} \in (f_{A})_{j}$ and $(y_{\beta}^{e})_{j} \in (f_{A})_{j}$. Hence, the family of fuzzy soft sets $\{(f_{A})_{j}; j \in J\} \subseteq \{(f_{A})_{i}; i \in I\}$. Therefore, $\sup_{j \in J} \{\mu_{(f_{A})_{j}}^{e}(y)\} = \mu_{\substack{i \ i \in I}}^{e}(f_{A})_{j}(y) \leq \mu_{\substack{i \ i \in I}}^{e}(f_{A})_{i}(y)$. But, $\beta = \sup_{j \in J} \beta_{j} \leq \sup_{j \in J} \{\mu_{(f_{A})_{j}}^{e}(y)\}$. Therefore, $\beta \leq \mu_{\substack{i \ i \in I}}^{e}(f_{A})_{i}(y)$. Hence, $C_{1}(x_{\alpha}^{e}) \cong \bigcup_{i \in I}^{e}(f_{A})_{i}$.

That $C_1(x_{\alpha}^e)$ is the maximal FSC_1 -connected set containing x_{α}^e , now follows from the fact that, if g_B is any FSC_1 -connected set in X containing x_{α}^e , then $g_B \in \{(f_A)_i; i \in I\}$ and hence $g_B \subseteq \bigcup_{i \in I} (f_A)_i = C_1(x_{\alpha}^e)$. \Box

Theorem 3.2. In a fuzzy soft topological space (X, τ , E), the universe fuzzy soft set $\tilde{1}_E$ is the disjoint union of its C_i -components for i = 1, 2, S, M, O, O_q .

Proof. As a sample we will prove the case of C_1 -component. Let $\{C_1^i(x_{\alpha}^e); i \in I\}$ be the family of C_1 -components of $\widetilde{1}_E$ in *X*. Then $\bigsqcup_{i \in I} C_1^i(x_{\alpha}^e) \cong \widetilde{1}_E$. Since each fuzzy soft point $x_1^e \cong E_1(x_{\alpha}^e)$ $\cong C_1^i(x_{\alpha}^e)$, then $\widetilde{1}_E \cong \bigsqcup_{i \in I} C_1^i(x_{\alpha}^e)$. Moreover, if two C_1 -components $C_1(x_{\alpha}^e)$ and $C_1(y_{\beta}^t)$ are intersecting, then $C_1(x_{\alpha}^e) \sqcup C_1(y_{\beta}^t)$ is a *FSC*₁connected set in *X*. Hence $C_1(x_{\alpha}^e)$ and $C_1(y_{\beta}^t)$ are identical in view of Theorem 3.1 \Box In analogy with the general topological spaces, in an indiscrete fuzzy soft topological space, $\tilde{1}_E$ is the only C_1 -components (C_2 -components). In a discrete general topological space, singletons are connected sets and hence components. This feature is too is retained in the fuzzy soft setting but with an interesting departure in the case of FSC_1 -connectedness, as reflected in the following results.

Theorem 3.3. In a discrete fuzzy soft topological space, the only FSC_1 -connected sets are fuzzy soft points with value one.

Proof. Let x_1^e be a fuzzy soft point in a discrete fuzzy soft topological space (X, τ, E) . Let h_C and s_D be fuzzy soft open sets in X such that $x_1^e \in h_C \sqcup s_D$, $h_C \sqcap s_D \subseteq (x_1^e)^c$. Then we have either $(\mu_{h_C}^e(x) = 1)$ and $\mu_{s_D}^e(x) = 0$) or $(\mu_{h_C}^e(x) = 0$ and $\mu_{s_D}^e(x) = 1$). Therefore, $x_1^e \sqcap$ $h_C = \widetilde{O}_E$ or $x_1^e \sqcap s_D = \widetilde{O}_E$. Hence, x_1^e is a *FSC*₁-connected.

Next, to show that each fuzzy soft point x_{α}^{e} , where $0 < \alpha < 1$, has a *FSC*₁-disconnection, what is required, is the construction of two fuzzy soft open sets u_{N} and j_{L} in *X* satisfying $x_{\alpha}^{e} \in u_{N} \sqcup j_{L}$, $u_{N} \sqcap j_{L} \in (x_{\alpha}^{e})^{c}$ and $x_{\alpha}^{e} \sqcap u_{N} \neq \widetilde{O}_{E} \neq x_{\alpha}^{e} \sqcap j_{L}$. Now, consider any fuzzy soft sets u_{N} and j_{L} in *X* such that $\mu_{u_{N}}^{e}(x) = \max\{\alpha, 1 - \alpha\}$ and $\mu_{j_{L}}^{e}(x) = \min\{\alpha, 1 - \alpha\}$. Then, u_{N} and j_{L} are *FSC*₁-disconnection of x_{α}^{e} .

Finally, we construct a *FSC*₁-disconnection for any fuzzy soft set in *X*, which is not a fuzzy soft point. Let f_A be any fuzzy soft set which takes non-zero values at least at two distinct points *y* and *z* in *X*. Suppose $\mu_{f_A}^e(y) = \alpha$ and $\mu_{f_A}^e(z) = \beta$. Now, define fuzzy soft sets h_C and s_D , as follows:

$$\mu_{h_{c}}^{e}(y) = \alpha, \, \mu_{h_{c}}^{e}(z) = 0 \text{ and } \mu_{h_{c}}^{e}(x) = \mu_{f_{A}}^{e}(x) \,\,\forall x \in X - \{y, z\}$$

$$\mu_{s_D}^e(y) = 0, \ \mu_{s_D}^e(z) = \beta \text{ and } \mu_{s_D}^e(x) = 1 - \mu_{f_A}^e(x) \ \forall x \in X - \{y, z\}$$

It is clear that, h_C and s_D form *FSC*₁-disconnection of f_A .

Theorem 3.4. In a discrete fuzzy soft topological space, fuzzy soft points are only FSC₂-connected sets.

Proof. Let x_{α}^{e} be a fuzzy soft point in discrete fuzzy soft topological space. Let h_{C} and s_{D} be fuzzy soft open sets in X such that $x_{\alpha}^{e} \in h_{C} \sqcup s_{D}$, $x_{\alpha}^{e} \sqcap h_{C} \sqcap s_{D} = \widetilde{0}_{E}$. Then, we have either $(\mu_{h_{C}}^{e}(x) \ge \alpha, \mu_{s_{D}}^{e}(x) = 0)$ or $(\mu_{h_{C}}^{e}(x) = 0, \mu_{s_{D}}^{e}(x) \ge \alpha)$. Therefore, $x_{\alpha}^{e} \sqcap h_{C} = \widetilde{0}_{E}$ or $x_{\alpha}^{e} \sqcap s_{D} = \widetilde{0}_{E}$. Hence, x_{α}^{e} is a *FSC*₂ -connected.

Next, we construct a FSC_2 -disconnection for any fuzzy soft in *X*, which is not a fuzzy soft point. Let f_A be any fuzzy soft set which takes non-zero values at least at two distinct points *y* and *z* in *X*. Suppose $\mu_{f_A}^e(y) = \beta$ and $\mu_{f_A}^e(z) = \gamma$. Now, define fuzzy soft sets h_C and s_D , as follows:

$$\mu_{h_{C}}^{e}(y) = \beta, \, \mu_{h_{C}}^{e}(z) = 0 \text{ and } \mu_{h_{C}}^{e}(x) = \mu_{f_{A}}^{e}(x) \,\,\forall x \in X - \{y, z\}$$

 $\mu_{s_{D}}^{e}(y) = 0, \, \mu_{s_{D}}^{e}(z) = \gamma \text{ and } \mu_{s_{D}}^{e}(x) = 0 \, \forall x \in X - \{y, z\}$

It is clear that, h_C and s_D form FSC_2 -disconnection of f_A . \Box

Corollary 3.1. In a discrete fuzzy soft topological space, fuzzy soft points with value 1 are the only C_1 -components (C_2 -components).

Let $\beta_{\frac{1}{2}}$ be the set of all fuzzy soft points in a fuzzy soft topological space (X, τ , E), whose values are greater than $\frac{1}{2}$.

Proposition 3.2. For fuzzy soft points x_{α}^{e} and y_{β}^{t} in $\beta_{\frac{1}{2}}$ define a relation $E_{3}^{*}(E_{A}^{*})$ as follows:

 $E_3^*(E_4^*) = \{(x_{\alpha}^e, y_{\beta}^t); \text{ there exists a FSC}_3\text{-connected} (FSC}_4\text{-connected}) \text{ set } f_A \text{ in } X \text{ such that } x_{\alpha}^e \in f_A \text{ and } y_{\beta}^t \in f_A \}$

Then $E_3^*(E_4^*)$ is an equivalence relation on $\beta_{\frac{1}{2}}$.

Proof. Reflexivity follows from the fact that each fuzzy soft point x^e_{α} in $\beta_{\frac{1}{2}}$ is a FSC₃-connected set and obviously contains x^e_{α} . Symmetry is obvious. To show transitivity, let $x_{\alpha}^{e_1}$, $y_{\beta}^{e_2}$ and $z_{\gamma}^{e_3}$ be fuzzy soft points in $\beta_{\frac{1}{2}}$ such that $(x_{\alpha}^{e_1}, y_{\beta}^{e_2}) \in E_3^*$ and $(y_{\beta}^{e_2}, z_{\gamma}^{e_3}) \in E_3^*$. Then, there exist FSC_3 -connected sets f_A and g_B in X such that $x_{\alpha}^{e_1} \in f_A$, $y_{\beta}^{e_2} \in f_A$ and $y_{\beta}^{e_2} \in g_B$, $z_{\gamma}^{e_3} \in g_B$. Therefore, $\beta \leq \mu_{f_A}^{e_2}(y)$ and $\beta \leq \mu_{g_B}^{e_2}(y)$. Hence, f_A and g_B are overlapping at y. So by Theorem 4.12 in [9], $f_A \sqcup g_B$ is a FSC₃-connected. Also, we have $x_{\alpha}^{e_1} \in f_A \sqcup g_B$ and $z_{\gamma}^{e_3} \in f_A \sqcup g_B$. Therefore, E_3^* is an equivalence relation. Similarly, E_4^* is an equivalence relation.

Here, the equivalence relation $E_3^*(E_4^*)$ partitions the set of fuzzy soft points $\beta_{\frac{1}{2}}$ into equivalence classes. As usual, we shall denote an equivalence class containing the fuzzy soft point x^e_{α} by $E_3^*(x_\alpha^e)(E_4^*(x_\alpha^e)).$

Definition 3.2. Let x_{α}^{e} be a fuzzy soft point in $\beta_{\frac{1}{2}}$ and $\{(f_{A})_{i}; i \in$ *I*} be the family of FSC_3 -connected (FSC_4 -connected) sets in X containing x_{α}^{e} . Then, the union $\bigsqcup_{i \in I} (f_{A})_{i}$ is called a C_{3} -quasicomponent (respectively, C_4 -quasicomponent) of $\tilde{1}_E$ containing x^e_{α} and is denoted by $C_3^*(x_{\alpha}^e)$ (respectively, $C_4^*(x_{\alpha}^e)$).

Theorem 3.5. For each fuzzy soft point x^e_{α} in $\beta_{\frac{1}{2}}$, the quasicomponent $C_3^*(x_{\alpha}^e)(C_4^*(x_{\alpha}^e))$ is a FSC₃-connected (FSC₄-connected) set in X, containing the union $\sqcup E_3^*(x_\alpha^e)(\sqcup E_4^*(x_\alpha^e))$.

Proof. In view of Corollary 4.2 in [9], $C_3^*(x_{\alpha}^e)$ is a FSC₃-connected set in X, since $x_{\alpha}^{e} \in \prod_{i \in I} (f_{A})_{i}$. Now, $E_{3}^{*}(x_{\alpha}^{e}) \subseteq C_{3}^{*}(x_{\alpha}^{e})$ follows from the fact that if $y_{\beta}^{t} E_{3}^{*} x_{\alpha}^{e}$, there is a FSC₃-connected set $(f_{A})_{i_{0}}$ in X containing x^e_{α} and y^t_{β} . \Box

Theorem 3.6. In a fuzzy soft topological space (X, τ, E) , the universe fuzzy soft set 1_E is the overlapping union of its C_3 -quasicomponents (*C*₄-quasicomponents).

Proof. Let $\{C_3^{*i}(x_\alpha^e); i \in I\}$ be the family of C_3 -quasicomponents of $\widetilde{1}_E$ in X. Then $\underset{i \in I}{\sqcup} C_3^{*i}(x_{\alpha}^e) \cong \widetilde{1}_E$. Since each fuzzy soft point $x_1^e \in$ $E_3^*(x_\alpha^e) \cong C_3^{*i}(x_\alpha^e)$, then $\widetilde{1}_E \cong \bigsqcup_{i \in I} C_3^{*i}(x_\alpha^e)$. Moreover, let $C_3^*(x_\alpha^e)$ be the C_3 -quasicomponents of 1_E containing x^e_{α} , and y^t_{β} be a fuzzy soft point in $\beta_{\frac{1}{2}}$ such that $y_{\beta}^t \notin E_3^*(x_{\alpha}^e)$. Now, if the quasicomponent $C_3^*(x_{\alpha}^e)$ and $C_3^*(y_{\beta}^t)$ are overlapping, then $C_3^*(x_{\alpha}^e) \sqcup C_3^*(y_{\beta}^t)$ is a *FSC*₃connected set in X, by Theorem 3.6 and Theorem 4.12 in [9]. Hence, $y_{\beta}^{t} E_{3}^{*} x_{\alpha}^{e}$ and so $y_{\beta}^{t} \in E_{3}^{*}(x_{\alpha}^{e})$ which is a contradiction. \Box

Now, in order to introduce the concept of C_3 -components (respectively, C_4 -components), we begin with the following notions. Let φ be the family of C₃-quasicomponents (C₄-quasicomponents) of 1_E and let ψ be the family of arbitrary unions of members of φ .

Then, we prove the following proposition.

Proposition 3.3. For any fuzzy soft points x_{α}^{e} and y_{β}^{t} in $FSP(X)_{E}$, define a relation $E_3(E_4)$, as follows: $x_{\alpha}^e E_3 y_{\beta}^t (x_{\alpha}^e E_4 y_{\beta}^t)$ iff there exists a FSC_3-connected (FSC_4-connected) set f_A in ψ such that $x^e_\alpha \in f_A$ and $y_{\beta}^{t} \in f_{A}$. Then $E_{3}(E_{4})$ is an equivalence relation on $FSP(X)_{E}$.

Proof. Let x_{α}^{e} be a fuzzy soft point in *X*. Then there exists a C_{3} component, in particular $C_3^*(x_1^e)$, which contains x_{α}^e . Hence, the relation E_3 is reflexive. Symmetry is obvious. Next, let x^e_{α} , y^t_{β} and z^s_{γ} be fuzzy soft points in $\beta_{\frac{1}{2}}$ such that $x^e_{\alpha} E_3 y^t_{\beta}$ and $y^t_{\beta} E_3 z^s_{\gamma}$. Then,

there exist *FSC*₃-connected sets f_A and g_B in ψ such that $x^e_\alpha \in f_A$, $y_{\beta}^{t} \in f_{A}$ and $y_{\beta}^{t} \in g_{B}, z_{\gamma}^{s} \in g_{B}$. Now, two cases arise:

Case I. $\beta > \frac{1}{2}$. Then, the fuzzy soft sets overlap at y. Hence, by Theorem 4.12 in [9], $f_A \sqcup g_B$ is a FSC₃ -connected set in ψ such that $x_{\alpha}^{e} \in f_{A} \sqcup g_{B}$ and $z_{\gamma}^{s} \in f_{A} \sqcup g_{B}$. So, $x_{\alpha}^{e} E_{3} z_{\gamma}^{s}$.

Case II. $\beta \leq \frac{1}{2}$. Choose the C₃-quasicomponent C₃^{*}(y₁^t), which contains y_1^t , hence also y_{β}^t . Now, the fuzzy soft sets g_B and $C_3^*(y_1^t)$ overlap at y, so $g_B \sqcup C_3^*(y_1^t)$ is a FSC₃-connected set. By the same argument $f_A \sqcup g_B \sqcup C_3^*(y_1^t)$ is also FSC_3 -connected set in ψ , containing both x_{α}^{e} and z_{ν}^{s} . Hence, E_{3} is an equivalence relation.

Now, we attain the desired objective of decomposing $\tilde{1}_E$ into disjoint, maximal FSC3-connected (FSC4-connected) sets via the equivalence classes defected by the equivalence relation $E_3(E_4)$, as defined in Proposition 3.2 Let $E_3(x^e_{\alpha})(E_4(x^e_{\alpha}))$ denoted the equivalence class containing the fuzzy soft point x^e_{α} . \Box

Definition 3.3. The union $\sqcup E_3(x_{\alpha}^e)(\sqcup E_4(x_{\alpha}^e))$ of all fuzzy soft points contained in the equivalence class $E_3(x_{\alpha}^e)(E_4(x_{\alpha}^e))$ is called C_3 -component (C_4 -component) of 1_E , and is denoted by $C_3(x^e_\alpha)(C_4(x^e_\alpha)).$

Theorem 3.7. For each fuzzy soft point $x^e_{\alpha} \in FSP(X)_E$, the C_3 - component (C_4 -component) $C_3(x^e_{\alpha})(C_4(x^e_{\alpha}))$ is the maximal FSC₃- connected (FSC₄-connected) set in X, containing x^e_{α} .

Proof. We claim that, for each fuzzy soft point x_{α}^{e} , $C_{3}(x_{\alpha}^{e}) =$ $\bigsqcup_{i=l} (f_A)_i$, where $\{(f_A)_i; i \in l\}$ is the family of those members of ψ which are FSC_3 -connected, and contains the fuzzy soft point x_1^e . The family $\{(f_A)_i; i \in I\}$ is non-empty since C_3 -quasicomponent $C_3^*(x_\alpha^e) \in \psi$.

Firstly, we show that $\bigsqcup_{i \in I} (f_A)_i \subseteq C_3(x_\alpha^e)$. Let $y \in X$, $t \in E$ and suppose $\mu_{\substack{i \in I \\ i \in I}}^{t}(f_A)_i(y) = \beta$. If $\beta = 0$, we have nothing to prove. If β \neq 0, suppose $\mu_{(f_A)_i}^t(y) = \beta_i$ for each $i \in I$. Now, the fuzzy soft point $y_{\beta_i}^t \in (f_A)_i$ for each $i \in I$. Therefore, $y_{\beta_i}^t E_3 x_1^e$, since the C_3 -quasicomponent $C_3^*(x_1^e)$ is a FSC₃-connected set such that x_{α}^e $\widetilde{\in} C^*_3(x^e_1) \in \psi$. Therefore, $y^t_{eta_i}$ E_3 x^e_{lpha} for each $i \in I$. Hence, $y^t_{eta_i}$ $\widetilde{\in}$ $C_3(x^e_{\alpha}) = \sqcup E_3(x^e_{\alpha})$, for each $i \in I$ and so $\beta_i \leq \mu^t_{C_3(x^e_{\alpha})}(y)$ for each $i \in I$ *I*. Then $\beta = \sup_{i \in I} \{\beta_i\} \le \mu_{C_3(x_{\alpha}^e)}^t(y)$ implies $y_{\beta}^t \in C_3(x_{\alpha}^e)$. Hence $\bigsqcup_{i \in I} (f_A)_i$ $\widetilde{\subseteq} C_3(x^e_{\alpha}).$

Conversely, we show that $C_3(x_{\alpha}^e) \cong \underset{i \in I}{\sqcup} (f_A)_i$. Let $y \in X$, $t \in$ *E* and suppose $\mu_{C_3(x_{\alpha}^e)}^t(y) = \gamma$. Again if $\gamma = 0$, we have nothing to prove. Suppose $\gamma \neq 0$, and $\{y_{\gamma_l}^t; i \in I_1\}$ be the family of fuzzy soft points such that $y_{\gamma_i}^t E_3 x_{\alpha}^e$. Then, clearly, $\mu_{C_3(x_{\alpha}^e)}^t(y) = \mu_{i \in I_1}^t y_{\gamma_i}^t(y) = \sup_{i \in I_1} \{\gamma_i\} = \gamma$. Since $y_{\gamma_i}^t E_3 x_{\alpha}^e$ for each $i \in I_1$, there exists a FSC₃-connected set $(f_A)_{\gamma_i} \in \psi$ such that $x^e_{\alpha} \in (f_A)_{\gamma_i}$ and $y^t_{\gamma_i} \in (f_A)_{\gamma_i}$. Now, for each $i \in I_1$, consider the fuzzy soft set $(f_A)_i$, define as follows: $(f_A)_i = (f_A)_{\gamma_i} \sqcup C_3^*(x_1^e)$. Then, $(f_A)_i \in \psi$ is a FSC₃connected set, such that $x_1^e \in (f_A)_i$ and $y_{\gamma_i}^t \in (f_A)_i$. Therefore, $\underset{i \in I}{\sqcup} y_{\gamma_i}^t \neq (f_A)_i$. $\widetilde{\in} \bigsqcup_{i \in I_1} (f_A)_i$, but $\{(f_A)_i; i \in I_1\} \cong \{(f_A)_i; i \in I\}$ and so, we have $\bigsqcup_{i \in I_1} y_{\gamma_i}^t$ $\widetilde{\in} \underset{i \in I}{\sqcup} (f_A)_i$. Now, $\gamma = \mu_{\underset{i \in I_1}{\sqcup} y_{\gamma_i}^t}^t(y) \le \mu_{\underset{i \in I}{\sqcup} (f_A)_i}^t(y)$. Therefore, $\mu_{\mathcal{C}_3(x_{\alpha}^e)}^t(y) \le \mu_{\mathcal{C}_3(x_{\alpha}^e)}^t(y)$

$$\mu_{\underset{i \in I}{\sqcup}(f_A)_i}^{\iota}(y)$$
 and so, $C_3(x_{\alpha}^e) \subseteq \underset{i \in I}{\sqcup}(f_A)_i$.

In view of Corollary 4.2 in [9], the C_3 -component $C_3(x^e_\alpha)$ is a FSC₃-connected set, since $x_1^e \in \bigcap_{i \in I} (f_A)_i$. To show that $C_3(x_\alpha^e)$ is a maximal FSC₃-connected set containing x^e_{α} , let g_B be any FSC₃connected set containing x_{α}^{e} , such that $C_{3}(x_{\alpha}^{e}) \cong g_{B}$. Then, the fuzzy soft set, defined as $g_B \sqcup C_3^*(y_1^e)$ for every $y \in S(g_B(e))$. Therefore, g_B

 $\cong \sqcup E_3^*(x_1^e) \cong C_3^*(x_1^e)$. But, $C_3^*(x_1^e) \cong C_3(x_\alpha^e)$ as $C_3^*(x_1^e) \in \psi$ is a FSC_3 -connected set, containing x_1^e . Thus, we have $g_B = C_3(x_\alpha^e)$. \Box

Theorem 3.8. In a fuzzy topological space (X, τ , E), the universe fuzzy soft set $\tilde{1}_E$ is the disjoint union of its C_3 -components (respectively, C_4 -components).

Proof. As a sample, we prove the case of C_3 -components. Let $\{C_3^i(x_\alpha^e); i \in I\}$ be the family of C_3 -components of $\hat{1}_E$ in X. Then, it can be verified that $\bigsqcup_{i \in I} C_3^i(x_\alpha^e) = \widetilde{1}_E$. Next, suppose the C_3 components $C_3(x^e_{\alpha})$ and $C_3(y^t_{\beta})$ intersect at a point *z*. Then $\mu_{C_3(x_\alpha^{\varrho}) \sqcap C_3(y_R^{t})}^{s}(z) \neq 0. \text{ Hence, } \mu_{C_3(x_\alpha^{\varrho})}^{s}(z) = \gamma_1 \text{ and } \mu_{C_3(y_R^{t})}^{s}(z) = \gamma_2$ where $\gamma_1 \neq 0$ and $\gamma_2 \neq 0$. Now, consider the *C*₃-quasicomponent $C_3^*(z_1^s)$, containing the fuzzy soft point z_1^s , which overlaps with C_3 -component $C_3(x^e_{\alpha})$ and $C_3(y^t_{\beta})$ at z. Therefore, $C_3(x^e_{\alpha}) \sqcup C^*_3(z^s_1)$ and $C_3(y_{\beta}^t) \sqcup C_3^*(z_1^s)$ are FSC₃-connected sets, containing the fuzzy soft points x^e_{lpha} and y^t_{eta} respectively, and also the fuzzy soft point z_1^s . Since $C_3(z_1^s)$ is the maximal FSC₃-connected set containing the fuzzy soft point z_1^s . Therefore, $C_3(x_\alpha^e) \sqcup C_3^*(z_1^s) \subseteq C_3(z_1^s)$ and $C_3(y^t_\beta) \sqcup C_3^*(z_1^s) \cong C_3(z_1^s)$ so that $C_3(x^e_\alpha) \cong C_3(z_1^s)$ and $C_3(y^t_\beta) \cong$ $C_3(z_1^s)$. Now, as $C_3(x_{\alpha}^e)$ and $C_3(y_{\beta}^t)$ are maximal *FSC*₃-connected sets containing the fuzzy soft points x^e_{α} and y^t_{β} respectively, $C_3(x^e_{\alpha})$ and $C_3(y_{\beta}^t)$ are identical. \Box

Theorem 3.9. For each fuzzy soft point x_{α}^{e} in X, the C_3 -component $(C_4$ -component) $C_3(x_{\alpha}^{e})$ $(C_4(x_{\alpha}^{e}))$ is a fuzzy soft closed set in X.

Proof. In view of Theorem 4.15 in [9], $Fcl(C_3(x_{\alpha}^e))$ is a FSC_3 connected set in X. Moreover, x_{α}^e is contained in $Fcl(C_3(x_{\alpha}^e))$, as $x_{\alpha}^e \in C_3(x_{\alpha}^e) \subseteq Fcl(C_3(x_{\alpha}^e))$. Since $C_3(x_{\alpha}^e)$ is the maximal FSC_3 connected set containing x_{α}^e , it follows that $C_3(x_{\alpha}^e)$ and $Fcl(C_3(x_{\alpha}^e))$ are identical. \Box

Again, it is obvious that an indiscrete fuzzy soft topological space, $\tilde{1}_E$ is the only C_3 -component (C_4 -component). Moreover, when the fuzzy soft topological space is discrete, we state the following result:

Theorem 3.10. In a discrete fuzzy soft topological space, fuzzy soft points are the only FSC_3 -connected (FSC_3 -connected) sets.

Proof. Immediate.

Therefore, in a discrete fuzzy soft topological space, the C_3 -component (C_4 -component) are only the fuzzy soft points with value 1.

Definition 3.4. Let f_A be a fuzzy soft set in a fuzzy soft topological space (*X*, τ , *E*). The maximal *FSC*₅-connected set containing f_A is called the *C*₅-component of f_A .

Remark 3.1. The C₅-component of a fuzzy soft set may not exist as shown by the following example:

Example 3.1. Let $X = \{a, b\}$, $E = \{e_1, e_2\}$ and $\tau = \{\tilde{1}_E, \tilde{0}_E, \{(e_1, \{a_{\frac{1}{2}}\}), (e_2, \{b_{\frac{1}{2}}\})\}, \{(e_1, \{b_{\frac{1}{2}}\}), (e_2, \{a_{\frac{1}{2}}\})\}, \{(e_1, \{a_{\frac{1}{2}}, b_{\frac{1}{2}}\}), (e_2, \{a_{\frac{1}{2}}, b_{\frac{1}{2}}\})\}\}$ be a fuzzy soft topology defined on *X*. Let $f_A = \{(e_1, \{b_{0.7}\})\}$. Since $\{(e_1, \{b_{\frac{1}{2}}\})\}$ is a non-null proper fuzzy soft clopen set in f_A , then f_A is not a *FSC*₅-connected set. Also, there does not exist any *FSC*₅-connected set containing f_A . So, f_A has no C_5 -component.

Definition 3.5. For any fuzzy soft points x_{α}^{e} and y_{β}^{t} in $FSP(X)_{E}$, define a relation E_{5} , as follows: $x_{\alpha}^{e} \ E_{5}y_{\beta}^{t}$ iff there exists a FSC_{5} -connected set f_{A} such that $x_{\alpha}^{e} \ \in f_{A}$ and $y_{\beta}^{t} \ \in f_{A}$.

Example 3.1 shows that E_5 may not be reflexive. E_5 is obviously symmetric. By using Theorem 4.10 in [9], it can be readily verified that E_5 is transitive.

Theorem 3.11. Let (X, τ, E) be a fuzzy soft topological space and $x_{\alpha}^{e} \in FSP(X)_{E}$. Then, x_{α}^{e} is not a FSC₅-connected iff there exists a $0 \neq \beta < \alpha$, f_{A} and $g_{B} \in \tau$ such that $\mu_{f_{A}}^{e}(x) = \beta$ and $\mu_{g_{B}}^{e}(x) = 1 - \beta$.

Proof. Let x_{α}^{e} be not *FSC*₅-connected. Then, x_{α}^{e} contains a non-null proper fuzzy soft clopen set x_{β}^{e} (say). Therefore, there exist fuzzy soft sets $f_{A} \in \tau$, $g_{B} \in \tau^{c}$ such that $f_{A} \sqcap x_{\alpha}^{e} = g_{B} \sqcap x_{\alpha}^{e} = x_{\beta}^{e}$. Since $g_{B} \in \tau^{c}$, then $g_{B}^{c} \in \tau$ and $\mu_{g_{R}^{c}}^{e}(x) = 1 - \beta$.

Conversely, let there exist a $0 \neq \beta < \alpha$ such that there exist f_A and $g_B \in \tau$ satisfying $\mu_{f_A}^e(x) = \beta$ and $\mu_{g_B}^e(x) = 1 - \beta$. Then, $g_B^c \in \tau^c$ and $\mu_{g_B^c}^e(x) = \beta$. Also, $f_A \sqcap x_{\alpha}^e = g_B^c \sqcap x_{\alpha}^e = x_{\beta}^e$ and so x_{β}^e is non-null proper fuzzy soft clopen set in x_{α}^e . Therefore, x_{α}^e is not *FSC*₅-connected. \Box

Remark 3.2. E_5 is an equivalence relation iff $\tilde{1}_E$ is a *FSC*₅-connected set and then it is the only *C*₅-component of (*X*, τ , *E*).

Remark 3.3. The C₅-component of a fuzzy soft set if it exists, may not be fuzzy soft closed as shown by the following example:

Example 3.2. Consider the fuzzy soft topological space (X, τ, E) defined in Example 3.1. $f_E = \{(e_1, \{a_{\frac{1}{2}}\}), (e_2, \{b_{\frac{1}{2}}\})\}$ is a *FSC*₅-connected.

Solution. Let g_E be any fuzzy soft subset of X containing f_E . Then, g_E is of the form $f_E \subseteq g_E = \{(e_1, \{a_\alpha, b_\beta\}), (e_2, \{a_\gamma, b_\delta\})\}$ where $\alpha, \delta \ge \frac{1}{2}$ and $\gamma, \beta > 0$. Then, $\{(e_1, \{a_{\frac{1}{2}}, b_\beta\}), (e_2, \{a_\gamma, b_{\frac{1}{2}}\})\}$ or $\{(e_1, \{a_{\frac{1}{2}}, b_{\frac{1}{2}}\}), (e_2, \{a_{\frac{1}{2}}, b_{\frac{1}{2}}\})\}$ is a non-null proper fuzzy soft clopen set in g_E according as $\gamma, \beta < \frac{1}{2}$ or $\gamma, \beta \ge \frac{1}{2}$. So, g_E is not *FSC*₅-connected. Therefore, f_E is the C₅-component of f_E and it is not fuzzy soft closed.

4. Conclusion

In this paper, we define on the set of fuzzy soft points in X an equivalence relation. The union of equivalence classes turns out to be a maximal fuzzy soft connected set which is called a fuzzy soft connected component. According to Remark 2.3, we have many types of connected components in fuzzy soft setting. The universe fuzzy soft set 1_E is the disjoint union of its C_i -components for $i = 1, 2, S, M, O, O_q$. Furthermore, we introduced some very interesting properties for fuzzy soft connected components in discrete fuzzy soft topological spaces which is a departure from the general topology such that in a discrete fuzzy soft topological space, the C_3 -component (C_4 -component) are only the fuzzy soft points with value 1. Also, we find that: for each fuzzy soft point x_{α}^{e} in X, the C₃-component (C₄-component) $C_3(x^e_{\alpha})$ (C₄($x^e_{\alpha})$) is a fuzzy soft closed set in X. Moreover, we prove that the C_5 -component of a fuzzy soft set may not exist and the C_5 -component of a fuzzy soft set if it exists, may not be fuzzy soft closed set.

Acknowledgment

The author would like to thank the referees for their useful comments and valuable suggestions given to this paper.

References

- [1] H. Aktaş, N. Çağman, Soft sets and soft groups, Inf. Sci. 177 (2007) 2726-2735.
- [2] C.L. Chang, Fuzzy topological spaces, J. Math. Appl. 24 (1968) 182-193.
- [3] T. Jochineog, D.K. Sut, Some new operations of fuzzy soft sets, J. Math. Comput. Sci. 2 (5) (2012) 1186–1199.
- [4] A. Kandil, O.A. El-Tantawy, S.A. El-shiekh, S.S.S. El-Sayed, Fuzzy soft connected sets in fuzzy soft topological spaces I, J. Adv. Math. 8 (12) (2016) 6473–6488.
- [5] S. Karataş, B. Kincç, M. Telloğlu, On fuzzy soft connected topological spaces, J. Linear Topol. Algebra 3 (4) (2015) 229–240. [6] J. Mahanta, P.K. Das, Results on fuzzy soft topological spaces (2012). arXiv:
- 1203.0634v1 [7] P.K. Maji, R. Biswas, A.R. Roy, A.R. fuzzy soft sets, J. Fuzzy Math. 9 (3) (2001) 589-602.
- [8] P.K. Maji, R. Biswas, A.R. Roy, Soft set theory, Comput. Math. Appl. 45 (2003) 555-562.
- [9] D. Molodtsov, Soft set theory-first results, Comput. Math. Appl. 37 (4–5) (1999) 19-31.
- [10] B.P. Varol, H. Aygün, Fuzzy sot topology, Hacettepe J. Math. Stat. 41 (3) (2012) 407-419.
- [11] S. Roy, T.K. Samanta, An introduction to open and closed sets on fuzzy topological spaces, Ann. Fuzzy Math. Inf. 6 (2) (2013) 425–431. [12] M. Shabir, M. Naz, On soft topological spaces, Comput. Math. Appl. 61 (2011)
- 1786-1799.
- [13] T. Simsekler, S. Yuksel, Fuzzy soft topological spaces, Ann. Fuzzy Math. Inf. 5 (1) (2013) 87–96.
- B. Tanay, M.B. Kandemir, Topological structures of fuzzy soft sets, Comput. Math. Appl. 61 (2011) 412–418.
 L.A. Zadeh, Fuzzy sets, Inf. Control 8 (1965) 338–353.