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1. Introduction and preliminaries 

Recently, Baker (resp. Ekici, Noiri and Popa) introduced and

investigated the notions of contra almost β-continuity [1] (resp.

almost contra pre-continuity [2,3] ) as a continuation of research

done by Caldas and Jafari [4] (resp. Jafari and Noiri [5] ) on the

notion of contra- β-continuity (resp. contra pre-continuity). In this

paper, new generalizations of contra βθ-continuity [6] by using

βθ-closed sets called almost contra βθ-continuity are presented.

We obtain some characterizations of almost contra βθ-continuous

functions and investigate their properties and the relationships be-

tween almost contra βθ-continuity and other related generalized

forms of continuity. 

Throughout this paper, by ( X, τ ) and ( Y, σ ) (or X and Y ) we al-

ways mean topological spaces. Let A be a subset of X . We denote

the interior, the closure and the complement of a set A by Int ( A ),
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l ( A ) and X \ A , respectively. A subset A of X is said to be regular

pen (resp. regular closed ) if A = Int(Cl(A ) ) (resp. A = Cl(Int(A )) ).

 subset A of a space X is called preopen [7] (resp. semi-open

8] , β-open [9] , α-open [10] ) if A ⊂ Int ( Cl ( A )) (resp. A ⊂ Cl ( Int ( A )),

 ⊂ Cl ( Int ( Cl ( A ))), A ⊂ Int ( Cl ( Int ( A )))). The complement of a preopen

resp. semi-open, β-open, α-open) set is said to be preclosed

resp. semi-closed, β-closed, α-closed). The collection of all open

resp. closed, regular open, preopen, semiopen, β-open) subsets

f X will be denoted by O ( X ) (resp. C ( X ), RO ( X ), PO ( X ), SO ( X ),

O ( X )). We set RO (X, x ) = { U : x ∈ U ∈ RO (X, τ ) } , SO (X, x ) = { U :

 ∈ U ∈ SO (X, τ ) } and βO (X, x ) = { U : x ∈ U ∈ βO (X, τ ) } . We denote

he collection of all regular closed subsets of X by RC ( X ). We set

C(X, x ) = { U : x ∈ U ∈ RC(X, τ ) } . We denote the collection of all β-

egular (i.e., if it is both β-open and β-closed) subsets of X by

R ( X ). A point x ∈ X is said to be a θ-semi-cluster point [11] of

 subset S of X if Cl ( U ) ∩ A � = ∅ for every U ∈ SO ( X, x ). The set of

ll θ-semi-cluster points of A is called the θ-semi-closure of A and

s denoted by θsCl ( A ). A subset A is called θ-semi-closed [11] if

 = θsCl(A ) . The complement of a θ-semi-closed set is called

-semi-open. 

The βθ-closure of A [12] , denoted by βCl θ ( A ), is defined to be

he set of all x ∈ X such that βCl ( O ) ∩ A � = ∅ for every O ∈ βO ( X,

) with x ∈ O . The set { x ∈ X : βCl θ ( O ) ⊂ A for some O ∈ βO ( X, x )}
. This is an open access article under the CC BY-NC-ND license. 
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(4) f (sCl(A ))) is βθ-closed for every A ∈ PO ( Y ) . 
s called the βθ-interior of A and is denoted by βInt θ ( A ). A subset

 is said to be βθ-closed [12] if A = βCl θ (A ) . The complement of

 βθ-closed set is said to be βθ-open. The family of all βθ-open

resp. βθ-closed) subsets of X is denoted by βθO ( X, τ ) or βθO ( X )

resp. βθC ( X, τ )). We set βθO (X, x ) = { U : x ∈ U ∈ βθO (X, τ ) } and

θC(X, x ) = { U : x ∈ U ∈ βθC(X, τ ) } . 
We recall the following two lemmas which were obtained by

oiri [12] . 

emma 1.1 [12] . Let A be a subset of a topological space ( X, τ ) . 

(i) If A ∈ βO ( X, τ ), then βCl ( A ) ∈ βR ( X ) . 

(ii) A ∈ βR ( X ) if and only if A ∈ βθO ( X ) ∩ βθC ( X ) . 

emma 1.2 [12] . For the βθ-closure of a subset A of a topological

pace ( X, τ ), the following properties are hold: 

(i) A ⊂βCl ( A ) ⊂βCl θ ( A ) and βCl(A ) = βCl θ (A ) if A ∈ βO ( X ) . 

(ii) If A ⊂ B, then βCl θ ( A ) ⊂βCl θ ( B ) . 

(iii) If A α ∈ βθC ( X ) for each α ∈ A, then 
⋂ { A α | α ∈ A } ∈ βθC(X ) . 

(iv) If A α ∈ βθO ( X ) for each α ∈ A, then 
⋃ { A α | α ∈ A } ∈ βθO (X ) .

(v) βCl θ (βCl θ (A )) = βCl θ (A ) and βCl θ ( A ) ∈ βθC ( X ) . 

efinition 1. A function f : X → Y is said to be: 

(1) βθ-continuous [12] if f −1 (V ) is βθ-closed for every closed

set V in Y , equivalently if the inverse image of every open

set V in Y is βθ-open in X . 

(2) Almost βθ-continuous if f −1 (V ) is βθ-closed in X for every

regular closed set V in Y . 

(3) Contra R -maps [13] (resp. contra-continuous [14] , contra βθ-

continuous [6] ) if f −1 (V ) is regular closed (resp. closed, βθ-

closed) in X for every regular open (resp. open, open) set V

of Y . 

(4) Almost contra pre-continuous [2] (resp. almost contra β-

continuous [1] , almost contra -continuous [1] ) if f −1 (V ) is

preclosed (resp. β-closed, closed) in X for every regular open

set V of Y . 

(5) Regular set-connected [15] if f −1 (V ) is clopen in X for every

regular open set V in Y . 

. Characterizations 

efinition 2. A function f : X → Y is said to be almost contra βθ-

ontinuous if f −1 (V ) is βθ-closed in X for each regular open set V

f Y . 

efinition 3. Let A be a subset of a space ( X, τ ). The set 
⋂ { U ∈

O (X ) : A ⊂ U} is called the r-kernel of A [13] and is denoted by

ker ( A ). 

emma 2.1 (Ekici [13] ) . For subsets A and B of a space X, the follow-

ng properties hold: 

(1) x ∈ rker ( A ) if and only if A ∩ F � = ∅ for any F ∈ RC ( X, x ) . 

(2) A ⊂ rker ( A ) and A = r ker (A ) if A is regular open in X. 

(3) If A ⊂ B, then rker ( A ) ⊂ rker ( B ). 

heorem 2.2. For a function f : X → Y, the following properties are

quivalent: 

(1) f is almost contra βθ-continuous; 

(2) The inverse image of each regular closed set in Y is βθ-open in

X; 

(3) For each point x in X and each V ∈ RC ( Y, f ( x )), there is a U ∈
βθO ( X, x ) such that f ( U ) ⊂ V; 

(4) For each point x in X and each V ∈ SO ( Y, f ( x )), there is a U ∈
βθO ( X, x ) such that f ( U ) ⊂ Cl ( V ) ; 

(5) f ( βCl θ ( A )) ⊂ rker ( f ( A )) for every subset A of X; 

(6) βCl θ ( f −1 (B )) ⊂ f −1 (r ker (B )) for every subset B of Y ; 
(7) f −1 (Cl(V )) is βθ-open for every V ∈ βO ( Y ) ; 

(8) f −1 (Cl(V )) is βθ-open for every V ∈ SO ( Y ) ; 

(9) f −1 (Int(Cl(V ))) is βθ-closed for every V ∈ PO ( Y ) ; 

(10) f −1 (Int(Cl(V ))) is βθ-closed for every V ∈ O ( Y ) ; 

(11) f −1 (Cl(Int(V ))) is βθ-open for every V ∈ C ( Y ) . 

roof. (1) ⇔ (2): see Definition 2 . 

(2) ⇔ (4): Let x ∈ X and V be any semiopen set of Y contain-

ng f ( x ), then Cl ( V ) is regular closed. By (2) f −1 (Cl(V )) is βθ-open

nd therefore there exists U ∈ βθO ( X, x ) such that U ⊂ f −1 (Cl(V )) .

ence f ( U ) ⊂ Cl ( V ). 

Conversely, suppose that (4) holds. Let V be any regular closed

et of Y and x ∈ f −1 (V ) . Then V is a semiopen set containing f ( x )

nd there exists U ∈ βθO ( X, x ) such that U ⊂ f −1 (Cl(V )) = f −1 (V ) .

herefore, x ∈ U ⊂ f −1 (V ) and hence x ∈ U ⊂ βInt θ ( f −1 (V )) . Con-

equently, we have f −1 (V ) ⊂ βInt θ ( f −1 (V )) . Therefore f −1 (V ) =
Int θ ( f −1 (V )) , i.e., f −1 (V ) is βθ-open. 

(2) ⇒ (3): Let x ∈ X and V be a regular closed set of Y containing

 ( x ). Then x ∈ f −1 (V ) . Since by hypothesis f −1 (V ) is βθ-open, there

xists U ∈ βθO ( X, x ) such that x ∈ U ⊂ f −1 (V ) . Hence x ∈ U and

 ( U ) ⊂ V . 

(3) ⇒ (5): Let A be any subset of X . Suppose that y �∈ rker ( f ( A )).

hen, by Lemma 2.1 there exists V ∈ RC ( Y, y ) such that f (A ) ∩ V =
 . For any x ∈ f −1 (V ) , by (3) there exists U x ∈ βθO ( X, x ) such

hat f ( U x ) ⊂ V . Hence f (A ∩ U x ) ⊂ f (A ) ∩ f (U x ) ⊂ f (A ) ∩ V = ∅ and

 ∩ U x = ∅ . This shows that x �∈ βCl θ ( A ) for any x ∈ f −1 (V ) . There-

ore, f −1 (V ) ∩ βCl θ (A ) = ∅ and hence V ∩ f (βCl θ (A )) = ∅ . Thus,

 �∈ f ( βCl θ ( A )). Consequently, we obtain f ( βCl θ ( A )) ⊂ rker ( f ( A )). 

(5) ⇔ (6): Let B be any subset of Y . By (5) and Lemma 2.1 ,

e have f (βCl θ ( f −1 (B ))) ⊂ r ker ( f f −1 (B )) ⊂ r ker (B ) and

Cl θ ( f −1 (B )) ⊂ f −1 (r ker (B )) . 

Conversely, suppose that (6) holds. Let B = f (A ) , where A is

 subset of X . Then βCl θ (A ) ⊂ βCl θ ( f −1 (B )) ⊂ f −1 (r ker ( f (A ))) .

herefore f ( βCl θ ( A )) ⊂ rker ( f ( A )). 

(6) ⇒ (1): Let V be any regular open set of Y . Then, by (6) and

emma 2.1 (2) we have βCl θ ( f −1 (V )) ⊂ f −1 (r ker (V )) = f −1 (V ) and

Cl θ ( f −1 (V )) = f −1 (V ) . This shows that f −1 (V ) is βθ-closed in X .

herefore f is almost contra βθ-continuous. 

(2) ⇒ (7): Let V be any β-open set of Y . It follows from ( [16] ,

heorem 2.4) that Cl ( V ) is regular closed. Then by (2) f −1 (Cl(V ))

s βθ-open in X . 

(7) ⇒ (8): This is clear since every semiopen set is β-open.

8) ⇒ (9): Let V be any preopen set of Y . Then Int ( Cl ( V )) is regu-

ar open. Therefore Y \ Int ( Cl ( V )) is regular closed and hence it is

emiopen. Then by (8) X\ f −1 (Int(Cl(V ))) = f −1 (Y \ Int(Cl(V ))) =
f −1 (Cl(Y \ Int(Cl(V )))) is βθ-open. Hence f −1 (Int(Cl(V ))) is βθ-

losed. 

(9) ⇒ (1): Let V be any regular open set of Y . Then V is preopen

nd by (9) f −1 (V ) = f −1 (Int(Cl(V ))) is βθ-closed. It shows that f

s almost contra βθ-continuous. 

(1) ⇔ (10): Let V be an open subset of Y . Since Int ( Cl ( V )) is regu-

ar open, f −1 (Int(Cl(V ))) is βθ-closed. The converse is similar. 

(2) ⇔ (11): Similar to (1) ⇔ (10). �

emma 2.3 [17] . For a subset A of a topological space ( Y, σ ), the

ollowing properties hold: 

(1) αCl(A ) = Cl(A ) for every A ∈ βO ( Y ) . 

(2) pCl(A ) = Cl(A ) for every A ∈ SO ( Y ) . 

(3) sCl(A ) = Int(Cl(A )) for every A ∈ PO ( Y ) . 

orollary 2.4. For a function f : X → Y, the following properties are

quivalent: 

(1) f is almost contra βθ-continuous; 

(2) f −1 (αCl(A )) is βθ-open for every A ∈ βO ( Y ) ; 

(3) f −1 (pCl(A )) is βθ-open for every A ∈ SO ( Y ) ; 
−1 
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continuous, then g ◦ f is almost contra βθ-continuous. 
Proof. It follows from Lemma 2.3 . �

Theorem 2.5. For a function f : X → Y, the following properties are

equivalent: 

(1) f is almost contra βθ-continuous; 

(2) the inverse image of a θ-semi-open set of Y is βθ-open; 

(3) the inverse image of a θ-semi-closed set of Y is βθ-closed; 

(4) f −1 (V ) ⊂ βInt θ ( f −1 (Cl(V ))) for every V ∈ SO ( Y ) ; 

(5) f ( βCl θ ( A )) ⊂ θsCl ( f ( A )) for every subset A of X; 

(6) βCl θ ( f −1 (B )) ⊂ f −1 (θsCl(B )) for every subset B of Y; 

(7) βCl θ ( f −1 (V )) ⊂ f −1 (θsCl(V )) for every open subset V of Y; 

(8) βCl θ ( f −1 (V )) ⊂ f −1 (sCl(V )) for every open subset V of Y; 

(9) βCl θ ( f −1 (V )) ⊂ f −1 (Int(Cl(V ))) for every open subset V of Y. 

Proof. (1) ⇒ (2): Since any θ-semiopen set is a union of regular

closed sets, by using (1) and Theorem 2.2 , we obtain that (2) holds.

(2) ⇒ (1): Let x ∈ X and V ∈ SO ( Y ) containing f ( x ). Since Cl ( V ) is

θ-semiopen in Y , there exists a βθ-open set U in X containing x

such that x ∈ U ⊂ f −1 (Cl(V )) . Hence f ( U ) ⊂ Cl ( V ). 

(1) ⇒ (4): Let V ∈ SO ( Y ) and x ∈ f −1 (V ) . Then f ( x ) ∈ V . By (1) and

Theorem 2.2 , there exists a U ∈ βθO ( X, x ) such that f ( U ) ⊂ Cl ( V ). It

follows that x ∈ U ⊂ f −1 (Cl(V )) . Hence x ∈ βInt θ ( f −1 (Cl(V ))) . Thus

f −1 (V ) ⊂ βInt θ ( f −1 (Cl(V ))) . 

(4) ⇒ (1): Let F be any regular closed set of Y . Since F ∈ SO ( Y ),

then by (4), f −1 (F ) ⊂ βInt θ ( f −1 (F )) . This shows that f −1 (F ) is

βθ-open, by Theorem 2.2 , (1) holds. 

(2) ⇔ (3): Obvious. 

(1) ⇒ (5): Let A be any subset of X . Suppose that x ∈ βCl θ ( A ) and

G is any semiopen set of Y containing f ( x ). By (1) and Theorem 2.2 ,

there exists U ∈ βθO ( X, x ) such that f ( U ) ⊂ Cl ( G ). Since x ∈ βCl θ ( A ),

U ∩ A � = ∅ and hence ∅ � = f ( U ) ∩ f ( A ) ⊂ Cl ( G ) ∩ f ( A ). Therefore, we ob-

tain f ( x ) ∈ θsCl ( f ( A )) an hence f ( βCl θ ( A )) ⊂ θsCl ( f ( A )). 

(5) ⇒ (6): Let B be any subset of Y . Then f (βCl θ ( f −1 (B ))) ⊂
θsCl( f ( f −1 (B )) ⊂ θsCl(B ) and βCl θ ( f −1 (B )) ⊂ f −1 (θsCl( f (B )) . 

(6) ⇒ (1): Let V be any semiopen set of Y containing f ( x ).

Since Cl(V ) ∩ (Y \ Cl(V )) = ∅ . we have f ( x ) �∈ θsCl ( Y \ ClV )) and x /∈
f −1 (θsCl(Y \ Cl(V ))) . By (6), x / ∈ βCl θ ( f −1 (Y \ Cl(V ))) . Hence, there

exists U ∈ βθO ( X, x ) such that U ∩ f −1 (Y \ Cl(V )) = ∅ and f (U) ∩
(Y \ Cl(V )) = ∅ . It follows that f ( U ) ⊂ Cl ( V ). Thus, by Theorem 2.2 , we

have that (1) holds. 

(6) ⇒ (7): Obvious. 

(7) ⇒ (8): Obvious from the fact that θsCl(V ) = sCl(V ) for an

open set V . 

(8) ⇒ (9): Obvious from Lemma 2.3 . 

(9) ⇒ (1): Let V ∈ RO ( Y ). Then by (9) βCl θ ( f −1 (V )) ⊂
f −1 (Int(Cl(V ))) = f −1 (V ) . Hence, f −1 (V ) is βθ-closed which

proves that f is almost contra βθ-continuous. �

Corollary 2.6. For a function f : X → Y, the following properties are

equivalent: 

(1) f is almost contra βθ-continuous; 

(2) βCl θ ( f −1 (B )) ⊂ f −1 (θsCl(B )) for every B ∈ SO ( Y ) . 

(3) βCl θ ( f −1 (B )) ⊂ f −1 (θsCl(B )) for every B ∈ PO ( Y ) . 

(4) βCl θ ( f −1 (B )) ⊂ f −1 (θsCl(B )) for every B ∈ βO ( Y ) . 

Proof. In Theorem 2.5 , we have proved that the following are

equivalent: 

(1) f is almost contra βθ-continuous; 

(2) βCl θ ( f −1 (B )) ⊂ f −1 (θsCl(B )) for every subset B of Y . 

Hence the corollary is proved. �

Recall that a topological space ( X, τ ) is said to be extremally

disconnected if the closure of every open set of X is open in X . 

Theorem 2.7. If ( Y, σ ) is extremally disconnected, then the following

properties are equivalent for a function f : X → Y: 
(1) f is almost contra βθ-continuous; 

(2) f is almost βθ-continuous. 

roof. (1) ⇒ (2): Let x ∈ X and U be any regular open set of Y con-

aining f ( x ). Since Y is extremally disconnected, by Lemma 5.6 of

18] U is clopen and hence U is regular closed. Then f −1 (U) is βθ-

pen in X . Thus f is almost βθ-continuous. 

(2) ⇒ (1): Let B be any regular closed set of Y . Since Y is ex-

remally disconnected, B is regular open and f −1 (B ) is βθ-open in

 . Thus f is almost contra βθ-continuous. 

The following implications are hold for a function f : X → Y : 

A ← B ← C 
↗ ↑ ↖ ↓ 

H ← D → E G 

↖ ↑ ↗ 

F 

Notation: A = almost contra β-continuity, B = almost con-

ra βθ-continuity, C = contra βθ-continuity, D = almost contra-

ontinuity, E = almost contra pre-continuity, F = contra R -map,

 = contra β-continuity, H = almost contra semi-continuity. �

xample 2.8. Let ( X, τ ) be a topological space such that

 = { a, b, c} and τ = {∅ , { b} , { c} , { b, c} , X} . Clearly βθO (X, τ ) =
∅ , { b} , { c} , { a, b} , { a, c} , { b, c} , X} . Let f : X → X be defined by f (a ) =
, f (b) = b and f (c) = a . Then f is almost contra βθ-continuous

ut f is not contra βθ-continuous, not βθ-continuous and also is

ot contra continuous. 

Other implications not reversible are shown in [2,3,5,6,13,15] . 

heorem 2.9. If f : X → Y is an almost contra βθ-continuous func-

ion which satisfies the property βIn t θ (( f −1 ( Cl (V )))) ⊂ f −1 (V ) for

ach open set V of Y, then f is βθ-continuous. 

roof. Let V be any open set of Y . Since f is almost con-

ra βθ-continuous by Theorem 2.2 f −1 (V ) ⊂ f −1 ( Cl (V )) =
In t θ (βIn t θ ( f −1 ( Cl (V )))) ⊂ βIn t θ ( f −1 (V )) ⊂ f −1 (V ) . Hence

f −1 (V ) is βθ-open and therefore f is βθ-continuous. 

Recall that a topological space is said to be P � [19] if for any

pen set V of X and each x ∈ V , there exists a regular closed set F

f X containing x such that x ∈ F ⊂ V . �

heorem 2.10. If f : X → Y is an almost contra βθ-continuous func-

ion and Y is P �, then f is βθ-continuous. 

roof. Suppose that V is any open set of Y . By the fact that Y is P �,

o there exists a subfamily � of regular closed sets of Y such that

 = 

⋃ { F | F ∈ �} . Since f is almost contra βθ-continuous, then

f −1 (F ) is βθ-open in X for each F ∈ �. Therefore f −1 (V ) is βθ-

pen in X . Hence f is βθ-continuous. 

Recall that a function f : X → Y is said to be: 

a) R -map [20] (resp. pre βθ-closed [21] ) if f −1 (V ) is regular

closed in X for every regular closed V of Y (resp. f ( V ) is βθ-

closed in Y for every βθ-closed V of X ). 

b) weakly β-irresolute [12] if f −1 (V ) is βθ-open in X for every

βθ-open set V in Y . �

heorem 2.11. Let f : X → Y and g : Y → Z be functions. Then the

ollowing properties hold: 

(1) If f is almost contra- βθ-continuous and g is an R-map, then

g ◦ f : X → Z is almost contra βθ-continuous. 

(2) If f is almost βθ-continuous and g is a contra R-map, then

g ◦ f : X → Z is almost contra βθ-continuous. 

(3) If f is weakly β-irresolute and g is almost contra βθ-
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heorem 2.12. If f : X → Y is a pre βθ-closed surjection and g : Y →
 is a function such that g ◦ f : X → Z is almost contra βθ-continuous,

hen g is almost contra βθ-continuous. 

roof. Let V be any regular open set in Z . Since g ◦ f is almost

ontra βθ-continuous, f −1 (g −1 ((V ))) = (g ◦ f ) −1 (V ) is βθ-closed.

ince f is a pre βθ-closed surjection, f ( f −1 (g −1 ((V )))) = g −1 (V ) is

θ-closed. Therefore g is almost contra βθ-continuous. �

heorem 2.13. Let { X i : i ∈ �} be any family of topological spaces. If

 : X → 

∏ 

X i is an almost contra βθ-continuous function, then Pr i ◦ f :

 → X i is almost contra βθ-continuous for each i ∈ �, where Pr i is

he projection of 
∏ 

X i onto X i . 

roof. Let U i be an arbitrary regular open set in X i . Since Pr i is

ontinuous and open, it is an R -map and hence P r −1 
i 

(U i ) is regular

pen in 

∏ 

X i . Since f is almost contra βθ-continuous, we have by

efinition f −1 (P r −1 
i 

(U i )) = (P r i ◦ f ) −1 (U i ) is βθ-closed in X . There-

ore Pr i ◦ f is almost contra βθ-continuous for each i ∈ �. �

efinition 4. A function f : X → Y is called weakly βθ-continuous

f for each x ∈ X and every open set V of Y containing f ( x ), there

xists a βθ-open set U in X containing x such that f ( U ) ⊂ Cl ( V ). 

heorem 2.14. For a function f : X → Y, the following properties hold:

(1) If f is almost contra βθ-continuous, then it is weakly βθ-

continuous, 

(2) If f is weakly βθ-continuous and Y is extremally disconnected,

then f is almost contra βθ-continuous. 

roof. 

(1) Let x ∈ X and V be any open set of Y containing f ( x ).

Since Cl ( V ) is a regular closed set containing f ( x ), by

Theorem 2.2 there exists a βθ-open set U containing x such

that f ( U ) ⊂ Cl ( V ). Therefore, f is weakly βθ-continuous. 

(2) Let V be a regular closed subset of Y . Since Y is extremally

disconnected, we have that V is a regular open set of Y

and the weak βθ-continuity of f implies that f −1 (V ) ⊂
βInt θ ( f −1 (Cl(V ))) = βInt θ f −1 (V ) . Therefore f −1 (V ) is βθ-

open in X . This shows that f is almost contra βθ-

continuous. �

efinition 5. A function f : X → Y is said to be: 

a) neatly ( βθ , s )-continuous if for each x ∈ X and each V ∈ SO ( Y,

f ( x )), there is a βθ-open set U in X containing x such that

Int ( f ( U )) ⊂ Cl ( V ). 

b) ( βθ , s )-open if f ( U ) ∈ SO ( Y ) for every βθ-open set U of X . 

heorem 2.15. If a function f : X → Y is neatly ( βθ , s ) -continuous

nd ( βθ , s ) -open, then f is almost contra βθ-continuous. 

roof. Suppose that x ∈ X and V ∈ SO ( Y, f ( x )). Since f is neatly

 βθ , s )-continuous, there exists a βθ-open set U of X containing

 such that Int ( f ( U )) ⊂ Cl ( V ). By hypothesis, f is ( βθ , s )-open. This

mplies that f ( U ) ∈ SO ( Y ). It follows that f ( U ) ⊂ Cl ( Int ( f ( U ))) ⊂ Cl ( V ).

his shows that f is almost contra βθ-continuous. �

. Some fundamental properties 

efinition 6 [6,22] . A topological space ( X, τ ) is said to be: 

(1) βθ- T 0 (resp. βθ- T 1 ) if for any distinct pair of points x and y

in X , there is a βθ-open set U in X containing x but not y or

(resp. and) a βθ-open set V in X containing y but not x . 

(2) βθ- T 2 (resp. β- T 2 [7] ) if for every pair of distinct points x

and y , there exist two βθ-open (resp. β-open) sets U and V
such that x ∈ U, y ∈ V and U ∩ V = ∅ . 
heorem 3.1. For a topological space ( X, τ ), the following properties

re equivalent: 

(1) ( X, τ ) is βθ- T 0 ; 

(2) ( X, τ ) is βθ- T 1 ; 

(3) ( X, τ ) is βθ- T 2 ; 

(4) ( X, τ ) is β- T 2 ; 

(5) For every pair of distinct points x, y ∈ X, there exist U, V ∈
βO ( X ) such that x ∈ U, y ∈ V and βCl(U) ∩ βCl(V ) = ∅ ; 

(6) For every pair of distinct points x, y ∈ X, there exist U, V ∈
βR ( X ) such that x ∈ U, y ∈ V and U ∩ V = ∅ . 

(7) For every pair of distinct points x, y ∈ X, there exist U ∈ βθO ( X,

x ) and V ∈ βθO ( X, y ) such that βCl θ (U) ∩ βCl θ (V ) = ∅ . 

roof. It follows from ( [6] , Remark 3.2 and Theorem 3.4 ). 

Recall that a topological space ( X, τ ) is said to be: 

(i) Weakly Hausdorff [23] (briefly weakly- T 2 ) if every point of X

is an intersection of regular closed sets of X . 

(ii) s -Urysohn [24] if for each pair of distinct points x and y

in X , there exist U ∈ SO ( X, x ) and V ∈ SO ( X, x ) such that

Cl ( U ) ∩ Cl ( V ) � = ∅ . �

heorem 3.2. If X is a topological space and for each pair of dis-

inct points x 1 and x 2 in X, there exists a map f of X into a Urysohn

opological space Y such that f ( x 1 ) � = f ( x 2 ) and f is almost contra βθ-

ontinuous at x 1 and x 2 , then X is βθ- T 2 . 

roof. Let x 1 and x 2 be any distinct points in X . Then by hypothe-

is, there is a Urysohn space Y and a function f : X → Y , which sat-

sfies the conditions of the theorem. Let y i = f (x i ) for i = 1 , 2 . Then

 1 � = y 2 . Since Y is Urysohn, there exist open sets U y 1 and U y 2 of y 1 
nd y 2 , respectively, in Y such that Cl(U y 1 ) ∩ Cl(U y 2 ) = ∅ . Since f is

lmost contra βθ -continuous at x i , there exists a βθ-open set W x i 

ontaining x i in X such that f (W x i ) ⊂ Cl(U y i ) for i = 1 , 2 . Hence we

et W x 1 ∩ W x 2 = ∅ since C l(U y 1 ) ∩ C l(U y 2 ) = ∅ . Hence X is βθ- T 2 . �

orollary 3.3. If f is an almost contra βθ-continuous injection of a

opological space X into a Urysohn space Y, then X is βθ- T 2 . 

roof. For each pair of distinct points x 1 and x 2 in X , f is an al-

ost contra βθ-continuous function of X into a Urysohn space Y

uch that f ( x 1 ) � = f ( x 2 ) since f is injective. Hence by Theorem 3.2 , X

s βθ- T 2 . �

heorem 3.4. 

(1) If f is an almost contra βθ-continuous injection of a topological

space X into a s-Urysohn space Y, then X is βθ- T 2 . 

(2) If f is an almost contra βθ-continuous injection of a topological

space X into a weakly Hausdorff space Y, then X is βθ- T 1 . 

roof. 

(1) Let Y be s -Urysohn. Since f is injective, we have f ( x ) � = f ( y ) for

any distinct points x and y in X . Since Y is s -Urysohn, there

exist V 1 ∈ SO ( Y, f ( x )) and V 2 ∈ SO ( Y, f ( y )) such that Cl(V 1 ) ∩
Cl(V 2 ) = ∅ . Since f is almost contra βθ-continuous, there ex-

ist βθ-open sets U 1 and U 2 in X containing x and y , respec-

tively, such that f ( U 1 ) ⊂ Cl ( V 1 ) and f ( U 2 ) ⊂ Cl ( V 2 ). Therefore

U 1 ∩ U 2 = ∅ . This implies that X is βθ- T 2 . 

(2) Since Y is weakly Hausdorff and f is injective, for any dis-

tinct points x 1 and x 2 of X , there exist V 1 , V 2 ∈ RC ( Y ) such

that f ( x 1 ) ∈ V 1 , f ( x 2 ) �∈ V 1 , f ( x 2 ) ∈ V 2 and f ( x 1 ) �∈ V 2 . Since

f is almost contra βθ-continuous, by Theorem 2.2 f −1 (V 1 )

and f −1 (V 2 ) are βθ-open sets and x 1 ∈ f −1 (V 1 ) , x 2 / ∈
f −1 (V 1 ) , x 2 ∈ f −1 (V 2 ) , x 1 / ∈ f −1 (V 2 ) . Then, there exists U 1 ,

U 2 ∈ βθO ( X ) such that x 1 ∈ U 1 ⊂ f −1 (V 1 ) , x 2 �∈ U 1 , x 2 ∈ U 2 ⊂
−1 
f (V 2 ) and x 1 �∈ U 2 . Thus X is βθ- T 1 . �
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The union of two βθ-closed sets is not necessarily βθ-closed as

shown in the following example. 

Example 3.5. Let X = { a, b, c} , τ = {∅ , X, { a } , { b} , { a, b}} . The sub-

sets { a } and { b } are βθ-closed in ( X, τ ) but { a, b } is not βθ-closed.

Recall that a topological space is called a βθc-space [25] if the

union of any two βθ-closed sets is a βθ-closed set. 

Theorem 3.6. If f, g : X → Y are almost contra βθ-continuous func-

tions, X is a βθc-space and Y is s-Urysohn, then E = { x ∈ X | f (x ) =
g(x ) } is βθ-closed in X. 

Proof. If x ∈ X �E , then f ( x ) � = g ( x ). Since Y is s -Urysohn, there ex-

ist V 1 ∈ SO ( Y, f ( x )) and V 2 ∈ SO ( Y, g ( x )) such that Cl(V 1 ) ∩ Cl(V 2 ) =
∅ . By the fact that f and g are almost contra βθ-continuous,

there exist βθ-open sets U 1 and U 2 in X containing x such that

f ( U 1 ) ⊂ Cl ( V 1 ) and g ( U 2 ) ⊂ Cl ( V 2 ). We put U = U 1 ∩ U 2 . Then U is βθ-

open in X . Thus f (U) ∩ g(U) = ∅ . It follows that x �∈ βCl θ ( E ). This

shows that E is βθ-closed in X . 

We say that the product space X = X 1 × . . . × X n has Property

P βθ if A i is a βθ-open set in a topological space X i , for i =
1 , 2 , . . . n, then A 1 × . . . × A n is also βθ-open in the product space

X = X 1 × . . . × X n . �

Theorem 3.7. Let f 1 : X 1 → Y and f 2 : X 2 → Y be two functions, where

(1) X = X 1 × X 2 has the Property P βθ . 

(2) Y is a Urysohn space. 

(3) f 1 and f 2 are almost contra βθ-continuous. Then { (x 1 , x 2 ) :

f 1 (x 1 ) = f 2 (x 2 ) } is βθ-closed in the product space X = X 1 ×
X 2 . 

Proof. Let A denote the set { (x 1 , x 2 ) : f 1 (x 1 ) = f 2 (x 2 ) } . In or-

der to show that A is βθ-closed, we show that ( X 1 × X 2 ) \ A
is βθ-open. Let ( x 1 , x 2 ) �∈ A . Then f 1 ( x 1 ) � = f 2 ( x 2 ). Since Y is

Urysohn , there exist open sets V 1 and V 2 containing f 1 ( x 1 )

and f 2 ( x 2 ), respectively, such that Cl(V 1 ) ∩ Cl(V 2 ) = ∅ . Since f i (i =
1 , 2) is almost contra βθ-continuous and Cl ( V i ) is regular closed,

then f −1 
i 

(Cl(V i )) is a βθ-open set containing x i in X i (i = 1 , 2) .

Hence by (1), f −1 
1 

(Cl(V 1 )) × f −1 
2 

(Cl(V 2 )) is βθ-open. Furthermore

(x 1 , x 2 ) ∈ f −1 
1 

(Cl(V 1 )) × f −1 
2 

(Cl(V 2 )) ⊂ (X 1 × X 2 ) \ A . It follows that

( X 1 × X 2 ) \ A is βθ-open. Thus A is βθ -closed in the product space

X = X 1 × X 2 . �

Corollary 3.8. Assume that the product space X × X has the Property

P βθ . If f : X → Y is almost contra βθ-continuous and Y is a Urysohn

space. Then A = { (x 1 , x 2 ) : f (x 1 ) = f ( x 2 )} is βθ -closed in the product

space X × X. 

Theorem 3.9. Let f : X → Y be a function and g : X → X × Y the

graph function, given by g(x ) = (x, f (x )) for every x ∈ X. Then f is

almost contra βθ-continuous if g is almost contra βθ-continuous. 

Proof. Let x ∈ X and V be a regular open subset of Y containing

f ( x ). Then we have that X × V is regular open. Since g is almost

contra βθ-continuous, g −1 (X × V ) = f −1 (V ) is βθ-closed. Hence f

is almost contra βθ-continuous. �

Recall that for a function f : X → Y , the subset {( x, f ( x )): x ∈
X } ⊂ X × Y is called the graph of f and is denoted by G ( f ). 

Definition 7. A function f : X → Y has a βθ-closed graph if for

each ( x, y ) ∈ ( X × Y ) \ G ( f ), there exists U ∈ βθO ( X, x ) and an open

set V of Y containing y such that (U × V ) ∩ G ( f ) = ∅ . 

Lemma 3.10. The graph, G ( f ) of a function f : X → Y is βθ-closed if

and only if for each ( x, y ) ∈ ( X × Y ) \ G ( f ) there exists U ∈ βθO ( X, x )

and an open set V of Y containing y such that f (U) ∩ V = ∅ . 
heorem 3.11. If f : X → Y is a function with a βθ-closed graph, then

or each x ∈ X , f (x ) = ∩{ Cl( f (U)) : U ∈ βθO (X, x ) } . 
roof. Suppose the theorem is false. Then there exists a y � = f ( x )

uch that y ∈ ∩ { Cl ( f ( U )) : U ∈ βθO ( X, x )}. This implies that y ∈
l ( f ( U )), for every U ∈ βθO ( X, x ). So V ∩ f ( U ) � = ∅ , for every V ∈ O ( Y,

 ). which contradicts the hypothesis that f is a function with a βθ-

losed graph. Hence the theorem. �

heorem 3.12. If f : X → Y is almost contra βθ-continuous and Y is

audsorff, then G ( f ) is βθ-closed. 

roof. Let ( x, y ) ∈ ( X × Y ) \ G ( f ). Then y � = f ( x ). Since Y is Haus-

orff, there exist disjoint open sets V and W of Y such that

 ∈ V and f ( x ) ∈ W . Then f ( x ) �∈ Y \ Cl ( W ). Since Y \ Cl ( W ) is a

egular open set containing V , it follows that f ( x ) �∈ rker( V ) and

ence x / ∈ f −1 ( rker (V )) . Then by Theorem 2.2 (6) x / ∈ βCl θ ( f −1 (V ) .

herefore we have (x, y ) ∈ (X\ βCl θ (( f −1 (V ))) × V ⊂ (X × Y ) \ G ( f ) ,

hich proves that G ( f ) is βθ-closed. �

heorem 3.13. Let f : X → Y have a βθ-closed graph. 

(1) If f is injective, then X is βθ- T 1 . 

(2) If f is surjective, then Y is T 1 . 

roof. 

(1) Let x 1 and x 2 be any distinct points in X . Then ( x 1 , f ( x 2 )) ∈
( X × Y ) \ G ( f ). Since f has a βθ-closed graph, there exist U ∈
βθO ( X, x 1 ) and an open set V of Y containing f ( x 2 ) such that

f (U) ∩ V = ∅ . Then U ∩ f −1 (V ) = ∅ . Since x 2 ∈ f −1 (V ) , x 2 �∈ U .

Therefore U is a βθ-open set containing x 1 but not x 2 , which

proves that X is βθ- T 1 . 

(2) Let y 1 and y 2 be any distinct points in Y . Since Y is surjec-

tive, there exists x ∈ X such that f (x ) = y 1 . Then ( x, y 2 ) ∈
( X × Y ) \ G ( f ). Since f has a βθ-closed graph, there exist U ∈
βθO ( X, x ) and an open set V of Y containing y 2 such that

f (U) ∩ V = ∅ . Since y 1 = f (x ) and x ∈ U, y 1 ∈ f ( U ). Therefore

y 1 �∈ V , which proves that Y is T 1 . �

heorem 3.14. If f : X → Y has a βθ-closed graph and X is a βθc-

pace, then f −1 (K) is βθ-closed for every compact subset K of Y . 

roof. Let K be a compact subset of Y and let x ∈ X\ f −1 (K) . Then

or each y ∈ K , ( x, y ) ∈ ( X × Y ) \ G ( f ). So there exist U y ∈ βθO ( X, x )

nd an open set V y of Y containing y such that f (U y ) ∩ V y = ∅ . The

amily { V y : y ∈ K } is an open cover of K and hence there is a finite

ubcover { V y i : i = 1 , . . . , n } . Let U = ∩ 

n 
i =1 

U y i . Then U ∈ βθO ( X, x )

nd f (U) ∩ K = ∅ . Hence U ∩ f −1 (K) = ∅ , which proves that f −1 (K)

s βθ-closed in X . �

efinition 8. A topological space X is said to be: 

(1) strongly βθC-compact [6] if every βθ-closed cover of X has

a finite subcover. (resp. A ⊂ X is strongly βθC-compact if the

subspace A is strongly βθC-compact). 

(2) nearly-compact [26] if every regular open cover of X has a

finite subcover. 

heorem 3.15. If f : X → Y is an almost contra βθ-continuous sur-

ection and X is strongly βθC-compact, then Y is nearly compact. 

roof. Let { V α : α ∈ I } be a regular open cover of Y . Since f is

lmost contra βθ-continuous, we have that { f −1 (V α) : α ∈ I} is a

over of X by βθ-closed sets. Since X is strongly βθC-compact,

here exists a finite subset I 0 of I such that X = 

⋃ { f −1 (V α) : α ∈
 0 } . Since f is surjective Y = 

⋃ { V α : α ∈ I 0 } and therefore Y is nearly

ompact. 

A topological space X is said to be almost-regular [27] if for

ach regular closed set F of X and each point x ∈ X \ F , there exist

isjoint open sets U and V such that F ⊂ V and x ∈ U . �
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heorem 3.16. If a function f : X → Y is almost contra βθ-continuous

nd Y is almost-regular, then f is almost βθ-continuous. 

roof. Let x be an arbitrary point of X and V an open set of

 containing f ( x ). Since Y is almost-regular, by Theorem 2.2 of

27] there exists a regular open set W in Y containing f ( x ) such

hat Cl ( W ) ⊂ Int ( Cl ( V )). Since f is almost contra βθ -continuous,

nd Cl ( W ) is regular closed in Y , by Theorem 3.1 there exists U

 βθO ( X, x ) such that f ( U ) ⊂ Cl ( W ). Then f ( U ) ⊂ Cl ( W ) ⊂ Int ( Cl ( V )).

ence, f is almost βθ-continuous. 

The βθ-frontier of a subset A , denoted by Fr βθ ( A ), is defined

s F r βθ (A ) = βCl θ (A ) \ βInt θ (A ) , equivalently F r βθ (A ) = βCl θ (A ) ∩
Cl θ (X\ A ) . �

heorem 3.17. The set of points x ∈ X which f : ( X, τ ) → ( Y, σ ) is not

lmost contra βθ-continuous is identical with the union of the βθ-

rontiers of the inverse images of regular closed sets of Y containing

 ( x ) . 

roof. Necessity. Suppose that f is not almost contra βθ-

ontinuous at a point x of X . Then there exists a regular closed

et F ⊂ Y containing f ( x ) such that f ( U ) is not a subset of F for ev-

ry U ∈ βθO ( X, x ). Hence we have U ∩ (X \ f −1 (F )) � = ∅ for every

 ∈ βθO ( X, x ). It follows that x ∈ βCl θ (X \ f −1 (F )) . We also have

 ∈ f −1 (F ) ⊂ βCl θ ( f −1 (F )) . This means that x ∈ F r βθ ( f −1 (F )) . 

Sufficiency. Suppose that x ∈ F r βθ ( f −1 (F )) for some F ∈ RC ( Y,

 ( x )) Now, we assume that f is almost contra βθ-continuous at x

 X . Then there exists U ∈ βθO ( X, x ) such that f ( U ) ⊂ F . There-

ore, we have x ∈ U ⊂ f −1 (F ) and hence x ∈ βInt θ ( f −1 (F )) ⊂ X \
 r βθ ( f −1 (F )) . This is a contradiction. This means that f is not al-

ost contra βθ-continuous. �
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