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1. Introduction

Blyth and Varlet [2] have studied a new variety of the so-called
Morgan Stone algebras (briefly MS-algebras) as a common abstrac-
tion of the classes of de Morgan and Stone algebras. Such alge-
bras are bounded distributive lattices with a unary operation sat-
isfying certain identities. Blyth and Varlet [3] described the lattice
of subvarieties of the variety MS of all MS-algebras. The class MS
contains the well-known classes such as Boolean algebras, de Mor-
gan algebras, Kleene algebras and Stone algebras. In 2012 Badawy
et al. [1] presented a simple triple construction of principal MS-
algebras and they showed that there exists a one-to-one corre-
spondence between the principal MS-algebras and the principal
MS-triples. They also introduced the class of decomposable MS-
algebras which contains the class of principal MS-algebras and they
presented a triple construction of decomposable MS-algebras gen-
eralizing the construction of principal MS-algebras. Moreover, they
investigated that there exists a one-to-one correspondence be-
tween the decomposable MS-algebras and the decomposable MS-
triples. Luo [4] considered special kind of Principal congruences
on MS-algebras. Also, Luo [5] investigated the relationship between
principal congruence and Kernel ideals of Symmetric de-Morgan
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algebras. Also, Badawy [6] introduced the notion of d;-filters of
principal MS-algebras. S. El-Assar and A. Badawy [7] studied ho-
momorphisms and subalgebras of MS-algebras for the class K. Re-
cently, Badawy [8] characterized a subclass of the class of modular
generalized MS-algebras which contains the class of K;-algebras by
means of quadruples. Moreover, Badawy [9] constructed principal
generalized K,-algebras in terms of triples.

According to the characterization [1] of decomposable MS-
algebras by means of the decomposable MS-triple (M, D, ¢), we
study some properties of this triple. In Section 3, we define the
homomorphism between two decomposable MS-triples. We show
that homomorphisms of decomposable MS-algebras are the same
as the homomorphisms of their associated decomposable MS-
triples. In Section 4, using decomposable MS-triples, we character-
ize subalgebras of decomposable MS-algebras. Also, we solve the
following fill in problem:

“Let L be a decomposable MS-algebra, M; a subalgebra of L°°,
and D; a sublattice of D(L) containing 1. We can fill in (M1, D1,?)
such that it will become the decomposable MS-triple associated
with a subalgebra of L.”

Moreover, we solve the above fill in problem to obtain K-
subalgebras and Stone subalgebras of a decomposable MS-algebra
L.

Finally, a subalgebra of a decomposable MS-algebra L=
{(a,a°¢p v [x)):aeM,xeD} associated with the decomposable
MS-triple (M, D, ¢) is characterized. Also, the greatest Stone subal-
gebra of L is determined.
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2. Preliminaries

In this section, we present certain definitions and results. We
refer the reader to Refs. [1-3,9-12] as a guide references.

A de Morgan algebra is an algebra (L;v,A,”,0,1) of type
(2,2,1,0,0) where (L; v, A, 0, 1) is a bounded distributive lattice and
~ the unary operation of involution satisfies:

X=X (XVY)=XAY, X AY)=XVY.

An MS-algebra is an algebra (L; v, A, °, 0, 1) of type (2,2,1,0,0)
where (L; v, A, 0, 1) is a bounded distributive lattice and the unary
operation ° satisfies:

X<x°, (xAy) =x"vy, 1°=0.

The class MS of all MS-algebras is equational. A de Morgan al-
gebra is an MS-algebra satisfying the identity, x = x°°. A K,-algebra
is an MS-algebra satisfying the additional two identities,

XAX =X AXC, (XAX)V (YVY)=yVvy°.

The class S of Stone algebras is a subclass of MS and is character-
ized by the identity x A x° = 0. A Boolean algebra is an MS-algebra
satisfying the identity x v x° = 1.

We recall some of the basic properties of MS-algebras which
were proved in [2] or [11].

Theorem 2.1. [2] For any two elements a, b of an MS-algebra L, we
have

(1) 0° =1,

(2) a < b=b° < a°,

(3) a>° = a°,

(4) (avb)y =a° Abe,
(5) (avb)>™=a>°vb>,
(6) (anb)°=a>°Ab>.

Definition 2.2. [11] A bounded sublattice L; of an MS-algebra L is
called a subalgebra of L if x° € Ly for every x € L;.

Definition 2.3. A subalgebra L; of an MS-algebra L is called a de
Morgan (Boolean) subalgebra of L if x°° = x (x v x° = 1) for every x
€ L].

Definition 2.4. A de Morgan subalgebra L; of an MS-algebra L is
called a Kleene subalgebra of L if xAx° < yvy° for every x, y € Ly.

Theorem 2.5. [1] Let L be an MS-algebra. Then

(1) L° ={x e L: x =x°°} is a de Morgan subalgebra of L,
(2) D(L) = {x e L : x° = 0} is a filter (filter of dense elements) of L.

For any lattice L, let F(L) denote to the set of all filters of L. It is
known that (F(L); A, V) is a distributive lattice if and only if L is a
distributive lattice, where

FAG=FNnGand FvG={xel:x>fAg feF geG}
for every F, G € F(L).

If L is a distributive lattice, then FvG={xel:x=fArg fe
F,g e G}. Also, [a) ={xeL:x>a} is a principal filter of L gener-
ated by a.

Definition 2.6. [12] Let L= (L;v,A,0,1;) and L;=
(Ly; v, A, 0, 11,) be bounded lattices. The map h: L — L; is
called (0,1) lattice homomorphism if

(1) OLh = OLl and 1Lh = 1L17

(2) his a v-homomorphism, that is, (x v y)h = xh v yh for every
X, yel,

(3) his a A-homomorphism, that is, (x A y)h = xh A yh for every
X,y el

Now we recall some important definitions and results from
[1] which needed throughout this paper.

Definition 2.7. [1] An MS-algebra (L; v, A, °, 0, 1) is called decom-
posable MS-algebra if for every x € L there exists d € D(L) such that
X=x"°nd.

The class of decomposable MS-algebras contains the class M of
all de Morgan algebras and the class S of all Stone algebras.

Definition 2.8. [1] A decomposable MS-triple is (M, D, ¢), where

(i) M is a de Morgan algebra,
(ii) D is a distributive lattice with 1,
(iii) ¢ is a (0, 1)-homomorphism from M into F(D)

such that for every element a € M and for every y € D there exists
an element t € D with ap N[y) = [t).

Let L be a decomposable MS-algebra. Define ¢(L): L°° — F(D(L))
by
ap(L) =[a°)ND(L) for all a € L*°.

It is known that ¢(L) is a (0,1) lattice homomorphism and
ap(L)N[y) is a principal filter of D(L) (see [1]). The triple (L°°, D(L),
©(L)) is called the decomposable MS-triple associated with L.

The following Theorem presents a triple construction for de-
composable MS-algebras which was proved in [1].

Theorem 2.9. [1] Let (M, D, ¢)be a decomposable MS-triple. Then
L={(a,a°p Vv [x)):aeM,xeD}
is a decomposable MS-algebra, if we define

(a.a°¢ v [x)) v (b.b’g Vv[y)) =(avb. (a¢v[x)n(beVy)).
(a.a’¢ v [x)) A (b.b’g Vv [y)) =(arb. (@ V)V (beVy)).
(a.a°¢ v [x)° = (a. ap),

1= (1. [),

0, = (0,D).

Conversely, every decomposable MS-algebra L can be associated with
the decomposable MS-triple (L°°, D(L), ¢(L)), where agp(L) = [a°) N
D(L).

The decomposable MS-algebra L constructed by Theorem 2.9 is
called the decomposable MS-algebra associated with the de-
composable MS-triple(M, D, ¢), the construction of L described
in Theorem 2.9 is called a decomposable MS-construction and
Theorem 2.9 is called the construction Theorem.

Lemma 2.10. [1] Let L be a decomposable MS-algebra associated with
the decomposable MS-triple (M, D, ¢). Then

(1) L°° = {(a,a°¢p) : a € M},
(2) D(L) ={(1,[x)) : x e D},
(3) D=D(L) and M=L°°.

3. Homomorphisms of decomposable MS-algebras

In this section, we define a homomorphisms between two de-
composable MS-triples. A one-to-one correspondence between ho-
momorphisms of decomposable MS-algebras and homomorphisms
of decomposable MS-triples is obtained.

Definition 3.1. A (0,1) lattice homomorphism h: L — L; of an MS-
algebra L into an MS-algebra L; is called a homomorphism if x°h =
(xh)° for all x € L.

Let h: L — L; be a homomorphism of an MS-algebra into an
MS-algebra Ly. Then, we use hy., hp() to denote the restrictions of
a homomorphism h to L°° and D(L), respectively.



A.E.-M. Badawy, Ragaa. El-Fawal/Journal of the Egyptian Mathematical Society 25 (2017) 119-124 121

Lemma 3.2. A homomorphism h: L — L; of a decomposable MS-
algebra into a decomposable MS-algebra L, is onto (one-to-one) if and
only if hje. and hpy are onto (one-to-one).

Proof. Combine with

Definition 2.7. O

homomorphism'’s properties

Now, we define a homomorphism of decomposable MS-triples.

Definition 3.3. Let (M, D, ¢) and (M, D;, ¢1) be decomposable
MS-triples. A homomorphism of the triple (M, D, ¢) into (My, Dy,
©1) is a pair (f; g), where f is a homomorphism of M into My, g
is @ homomorphism of D into D; preserving 1 such that for every
aeM,

apg < afe; (1)

Lemma 3.4. Let (f, g) be a homomorphism of a decomposable MS-
triple (M, D, ¢) into a decomposable MS-triple (M, D1, ¢1). Let a, b
€ Mand x, y, t € D. Then

(i) ap nly) = [t) implies afpr N [yg) = [tg).

(i) (a°fe1 v [xg)) N (b°fe1 v [yg)) = (av b)°foq v [tg).
Proof.

(i) Let apn[y)=1[t). Then t=2xqVvyxiecap, SO Xxg
e apgcafpr, If tyeafpinlyg), then & >xgvyg=
(1 vy)g=tg,. Hence afpin[yg) C[tg). Conversely,

afprnlyg) 2 apgnlyg) = (ap N[y))g = [t)g = [tg).

(ii) Let a°p N[y) =[t1) and b°p N [x) = [t,) for some ¢, t, € D.
Then by (1).a°fg1 N [yg) = [t1g) and b° fe; N [xg) = [t28). So
by distributivity of F(D;), we get
(@ fo1) vIxg) N (b°for v [yg))

= (@forn b for1vIye)) v ([xg) n (b fer1 v [ye)))
= (@ fo1)nbfe1) v (@ forn[yg)) v ([xg) Nb° fer)
v([xg) N[yg))
(avb)yfeivtg) vitg vIxvy)e
= (avb)yforv[tintaAn(xvy))g=(avb) fovI[tg).
where, t =t; Aty A(xVvy)eD. O

The following Theorem shows that homomorphisms of decom-
posable MS-algebras are the same as homomorphisms of decom-
posable MS-triples.

Theorem 3.5. Let L and L, be decomposable MS-algebras, (M, D, ¢)
and (My, D1, ¢1) be the associated decomposable MS-triples, respec-
tively. Let h be a homomorphism of L into Ly and hy, hp the restric-
tions of h to M and D, respectively. Then (hy, hp) is a homomorphism
of the decomposable MS-triples. Conversely, every homomorphism (f,
g) of the decomposable MS-triples uniquely determines a homomor-
phism h of L into Ly with hy; = f, hp = g by the following rule:
xh=x*fndg, forall xel,

where x = x>° A d for some d € D(L).
Proof. To prove the first statement, we have to verify that agpg <
afpq, Ya € M with g = hp and f = hy. Evidently,
aph = {xh : x € ap}

= {xh:x e[a°) N D}

c {y:yelah)*)nDi}

= ahgy.
Then (hy, hp) is a homomorphism of the decomposable MS-triples
(M, D, ) and (My, Dy, ¢1).

Conversely, let apg < afpq, Ya € M holds. We represent the el-

ements of L and L; as in the construction Theorem (Theorem 2.9),
that is,

L={(a,a°p Vv[x)):aeM,x e D},

and
Ly ={(b.b°p1 v[y)) : be M,y e Dy}.
Define h: L — Ly by

(a,a°¢ v [x)h = (af, (@’ f)e v [xg))

We will show that h is well defined. Let (a,a°¢p Vv [x)) =
(b,b°¢@ Vv [y)). Then a=b and a°¢p v [x) =b°¢ Vv [y). Hence, x >
x1Ay and y > yiAx for some xq, y; € a°p. Since g is a homo-
morphism and apgcafe;, Ya € M, we have xg > x;gryg and
yg > yi1gnxg for some x18 yi1g& € a°pgca’fp,. So we obtain
(@ f)er vIxg) = (b° o1 vIyg). Thus (a,a°¢Vv[x)h= (b b°¢; v
[¥))h. Therefore h is a map of L into Ly. Obviously, hy = f and
hD =8

To prove that h is a homomorphism, let (a, a°¢ v [X)), (b, b°p v
[¥)) € L. We get
((a,a°p v [x)) A (b, b°¢ v [y)))h
(anb, (@ vix) v (b vIy))h
(anb,(@anb)’p vixay))h
((anb)f. (anb) fovIxry)g))

(af. (@ f)er v [xg)) A (bf. (b° e v [ve))
(a,a°¢p v [x))h A (b, b°@ v [y))h,

Let a°¢pN[y) =[t;) and b°p N[x) = [ty)for t;, t; € D. Thus by
Lemma 4.2 (ii), we have

((a,a°p v [x)) v (b, b°p v I[y)))h

(avb, (@evix)ndeviy))h
(avb,(@avb)yevit))h

((avb)f, (avb) forv[tg))

((avDb)f (afo1vIxg) N (b°fer v Iye))
(af.a’fo1 v [xg) v (bf. D fer v [yg))
(a,a°¢ v [x)hv (b, b°p v [y)h,

where

(@pvix)ndBeviy)

((@pvx)nbe)v (@ vI[x)nly)
(@pnbe)v(x)nb’e) v (@enly)) v (x)N[y))
(avb)evit)vit)vixvy)
(avbyovitintaan(xvy))

= (avb)pv|t) wheret=t; Aty A (XVY).
Also
(a,a°p Vv [x))°h = (a°,ap)h
= (a°f,afe1)
= (af. (af)°¢1 v [x8))°
= ((a,a’p v [x)h)".

Therefore h s a homomorphism of L into Ly. It is easy to see the
uniqueness of h with hyy = f and hp =g. O

4. Subalgebras of decomposable MS-algebras

According to the characterization of a decomposable MS-algebra
by means of the decomposable MS-triple (M, D, ¢), we characterize
the subalgebras of decomposable MS-algebra and solve the fill-in
problem for their associated decomposable MS-triples.

Definition 4.1. A bounded sublattice L; of a decomposable MS-
algebra L is called a subalgebra of L if

(1) x° € Ly for every x € Ly,
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(2) for every x e Ly, there exists d € D(L;) such that x = x*°> A d.

The decomposable MS-triple associated with a subalgebra of a
decomposable MS-algebras is determined in the following:

Theorem 4.2. Let L; be a subalgebra of the decomposable MS-algebra
L. Then L® = Ly N L*° is a subalgebra of L°° and D(L1) =Ly ND(L) is a
sublattice of D(L) containing 1. The decomposable MS-triple associated
with Ly is (L°, D(Ly). ¢1), where @ is given by ap; =ap ND(L;)
for every a e L{°.

Proof. Obviously 0,1eLjNL* =1L3°. Let x,yel}®. Then x, y €
LynL*>®, so xAy, xvy € Ly, L*°. Thus x Ay, xvy e Ly°. Then L{° is a
bounded sublattice of L°°. Now, let x € L{°. Then x € L; and x € L.
Thus x° € Ly and x° € L°° as L; is a subalgebra of a decomposable
MS-algebra L and L{° is a subalgebra of a de Morgan algebra L°°, re-
spectively. Therefore L{° is a subalgebra of L°°. Since each of L; and
D(L) is a sublattice of L containing 1, then D(L{) =L; nD(L) is a
sublattice of D(L) containing 1. Recall that the map ¢: L*° — F(D(L))
defined by ap = [a°) N D(L) is a (0,1) lattice homomorphism. Now,
define ¢ : L3° — F(D(Ly)) by

ap, =ap ND(Ly) for all a e L{°.

We have to show that ¢4 is a (0,1) lattice homomorphism and
apq N[x) is a principal filter of D(L,) for every a e L{° and for every
x € D(Ly). 1t is clear that Op; =[1) and 1¢; = D(L). Let a,b € L{°.
Then we get
(@Ab)gr = (@nb)p ND(Ly)

= (ap Nnbp)ND(Ly) as ¢ is a A —homomorphism
= (ap N D(Ly)) N (b N D(Ly)) by distributivity of
F(D(L1))
= ag1 N by,
and
(avb)pr = (avb)p1 N D(Ly)
= (ap v bp) ND(Ly) as ¢ is a v —homomorphism
= (ap N D(Ly)) v (bo N D(Ly)) by distributivity of
F(D(L1))
= ag1 v bey.
For every a e L{° and every x € D(L;), we have
agy N [x) = ap ND(Ly) N[x)
ap N[x) as x € D(Ly)
[a®) nD(L) N [x) where ap = [a°) N D(L)
=[a°)N[x) as x e D(L)
= [a° v X).
Since D(L¢) is a filter of Ly and x € D(L;), then a°vx € D(L;). There-
fore agpq, N[x) is a principal filter of D(L;) and (L, D(L1), ¢q) is
the decomposable MS-triple associated with Ly. O

A characterization of subalgebras of a decomposable MS-algebra
is given by solving the following fill-in problem.

Theorem 4.3. Let L be a decomposable MS-algebra, M, a subalgebra
of L*°, and Dq a sublattice of D(L) containing 1. We can fill-in (M,
D4, ?) such that it will become the decomposable MS-triple associated
with a subalgebra of L iff

avd e D, for every a € M; and for every d € D;. (2)

Proof. If (My, Dy, ¢1) is the decomposable MS-triple associated
with a subalgebra L; of L, then My =L{° and Dy = D(L;). Thus
for every a € M; and for every d € D;, we have avd € Ly. Then
(avd)°=a>rd° =a° A0=0 implies that avd € D(L). Hence avd
€ LynD(L). Thus by Theorem 4.2, avd € D;.

Conversely, assume that avd € D¢, Ya € M;,Yd € Dy. Let M =
L*°,D=D(L) and ¢ = ¢(L). Represent the elements of L as in the
construction Theorem (Theorem 2.9), that is,

L={(a,a°p VvI[x)):aeM,xeD}.

Let

Ly ={(a,a°p v [x)):ae M, xeD}.

We will show that L; is a subalgebra of L. It is clear that 0; = (0, D)

and 1; = (1,[1)) belong to Ly. Now, let (a, a°p v [x)), (b,b°¢ Vv [¥))

€ Ly. Then we get

(a,a°p Vv I[x))A(b,b°p Vv [y)) = (anb,(anb)pVv[xAry)) el

(a,a°¢ v [x) v (b,b°¢p Vv[y)) = (avb, (@pV[x)n(bevy))
= (avb,(avb)yevit) ely,

where

(@pvix)n®Beviy)

((@pvx)nbe)v (@evI[x)nly)
(@pnbo)v(x)nbe)v@en[y) v ((x)n[y)
(avb)yev(b)ynDn[x))v(a)nDn(y)) vxvy)
(avb)yevibvx)viavy)v|xvy) where bvx,avye D
by (2)

(avb)yevity) vit) vixvy) wheret;y =bvx,tp=avy
(avb)@v[t), wheret =t; Aty A(xVvYy) € Dy.

Then L; is a bounded sublattice of L. Let (a, a°pv|[x)) € L;. Then
(a,a°p v [x))° = (a°,ap) € L; as a° € M;. Then L; is a subalgebra
of an MS-algebra L. Now, we show that L; is decomposable. It is
observed that

°={(a,a°¢) :a e M1} and D(L;) = {(1,[x)) : x € D1 }.
For any (a,a°p v [X)) € L1, we have
(a,a°p v [x)) = (a,a°p) A (1,[x)) = (a,a°p v [x))*° A (1, [x)),
where (1,[x)) € D(Ly).

Thus L; is a decomposable MS-algebra. Therefore L is a subalgebra
of L.
Now we show that L{° = M; and D(L;)=D;. Define

Y My — LY° by ay = (a, a°¢p), for all a e My,
and
X : D1 — D(Ly) by xx = (1,[x)), for all a € D;.

By easy computation we can prove that ¢ and x are iso-
morphisms. Hence we can fill-in (My, Dy, ?) by ap; = ap(Ly) =
ap(L) N Dy such that it will become the decomposable MS-triple
associated with a subalgebra of L. O

For Stone subalgebras of a decomposable MS-algebra, we con-
sider the following fill in problem.

Corollary 4.4. Let L be a decomposable MS-algebra, B a Boolean sub-
algebra of L°°, and Dy a sublattice of D(L) containing 1. We can fill in
(B, Dy, ?) such that it will become the decomposable MS-triple asso-
ciated with a Stone subalgebra S of L iff

avd e D, for every a € B and for every d € D;.
Proof. By the above Theorem 4.3, it is observed that
S={(a,a°p v[x)):aeB,xeD}

is a subalgebra of a decomposable MS-algebra
L={(a,a°pVvI[x)):ael” xeD()}

It reminds only to prove that S satisfies the Stone identity, z° v
z°° =1 for every z € S. Since B is a Boolean algebra, then for any a
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€ B, we have ana®° =0 and ava®° = 1. Let (a, a°v[x)) € S. Then we
have

(a,a° v [x))° v (a,a v[x))”

= (a°,ap) v (a,a°p)
(a°va,apnay)

(1, (ana’)e) as ¢ is a v —homomorphism
(1,0¢) where 0¢p = [1)
(1, [D).

Therefore S is a Stone subalgebra of L. O

Definition 4.5. A subalgebra L; of a decomposable MS-algebra L is
called a K;-subalgebra of L if for every x, y € Ly, the following two
condition are hold.

(1) x AX° =Xx° AX°,

(2) xAx° < yvy©.

For K,-subalgebras of a decomposable MS-algebra, we solve the
following fill-in problem.

Theorem 4.6. Let L be a decomposable MS-algebra, K a Kleene subal-
gebra of L*°, and D, a sublattice of D(L)containing 1. We can fill-in (K,
D4, ?) such that it will become the decomposable MS-triple associated
with a Ky-subalgebra Ly if the following conditions are hold:

(1) avd € Dq for every a € K and for every d € Dy,
(2) ap va°ep =D for every a € K

Proof. By Theorem 4.3,

Li={(a,a°p v[x)):aeK xeD}.

is a subalgebra of L= {(a,a°¢ v[x)):ael* xeD(L)} such that
L3° =K nd D(L;)=D,. Therefore we can fill-in (K, D;, ?) by ap; =
ap(Ly) = ap(L) N Dy such that it will become the decomposable
MS-triple associated with a subalgebra L; of L.

Now, we have to prove that L; satisfies conditions (1) and (2) of
Definition 4.5. Let (a, a°¢ Vv [x)), (b, b°¢ v [y)) € L;. Then we get
(a,a°¢ v [x) A(a,a’@ Vv [x))°

= (a,a°¢ Vv [x) A (a°, ap)
(ana°,a°pvapvi(x))
(ana’,a°pvap)asxeD=apvae
(a,a°¢) A (a°, ap)

= (@@ V[x)”A@aev[x).
Since K is a Kleene subalgebra of L°°, then ara® < b v be° for any a
e K and

((a,a°p v [x)) A (a,a°p v [x))°) v ((b,b°¢ v [y)) v (b, b°¢ Vv [y))°)

= ((a,a°@ v [x) A (a°,ap)) v (b, b°p Vv [y)) v (b°, bp))

= (ana’,a°pvapvx))v(bvb, (b°pv[y)) nby)
(ana’,D)v (bvb, (b°pv]y)) nbyp), as a’¢vap =D 2 [x)
((ana’)v (bvb),Dn (b°¢ vI[y))nbp)

= (bvb,(b°pVvIy))nbp)asana <bvb°

and (b°¢ v [y)) Nbg) <D

= (b.b’evIy)) v (b, bp)

= (b.b’@Vvy)) v (b beviy).
Consequently L; is a K»-subalgebra of L. O

In closing this paper, we introduce important results concerning
subalgebras of a decomposable MS-algebra constructing from the
decomposable MS-triple (M, D, ¢).

Theorem 4.7. Let L be a decomposable MS-algebra associated with
the decomposable MS-triple (M, D, ¢), My a subalgebra of M, and

D; a sublattice of D containing 1. Then Ly = {(a,a°¢p v[x))el:ae

My, x € Dy} is a subalgebra of L iff
ap N[x) is a principal filter of D, for every a € M;
and for every x € Dy.

3)

Proof. Let L; ={(a,a°¢pVv[x))el:aeM;,xe D} is a subalge-
bra of a decomposable MS-algebra L= {(a,a°¢p Vv [x)):aeM,xe
D}. Then L ={(a.a°¢):aeM;}=M; and D(L;)={(1.[x)):
xeDi} =D;. Also, a map ¢(Ly):L® - F(D(Ly)) defined by
(a,a°@)p(Ly) =[(a,a°p)°) ND(Ly) is (0,1) lattice homomorphism
and (a, a°p)p(L;)N[(1, [x))) is a principal filter of D(L;) for every
(a,a°¢) € L7° and for every (1, [x)) € D(L;). Hence

(a,a°p)p (L) N[(1,[x))) =[(1,][2))) for some z € D.

Then
(a,a°@)p(L) N[(1,[x)) =[(1,[2))) for some z € D,
[(a,a’p)) ND(L1) N[(1. [x)) =[(1.[2)))
[(a°,ap)) N[(1,[x)) =[(1,[2))) as (1,[x)) € D(Ly)
[(a.ap) v (1.[x))) =[(1.[2)))
[(@*v1,apn[x)=[(1,[2))
[(1.ap N[x))) = [(1,[2)))
(1,apnix)) = (1.[2))
ap N [x) = [z) where z € Dy.
Then apn[x) is a principal filter of D; for every a € M; and for

every x € D;. Then condition (3) is hold. Conversely, let

L={(a,a°p Vv[x)):aeM,xeD}.

R A

4

be the decomposable MS-algebra constructing from (M, D, ¢) (see
Theorem 2.9). Then by Lemma 2.10 (1) and (2), respectively, we
have

L[° ={(a,a°p) :ae M} and D(L) = {(1,[x)) : x € D1}
It is clear that (0, D), (1, [1)) € L;. Let (a, a°pV|x)), (b, b°pv]y))
€ Ly. Then we get
(a,a’@ v [x)) A (b, b v[y))
=(anb,apvix)vbevly))
=(anb,(anb)pv|xay)eliasavbeM; and xvy € Dy,
and
(a,a°¢ v [x)) v (b,b°p Vv [y))
(avb, (@evx)nbeviy))
= (avb,(avb)epv]t)) €L for some t € D;

where

(@ v[x)n®Beviy)
= ((@°p VvI[x))nbp)Vv ((a°p VvI[x))N[y)) by distributivity
= (@pnbe)v (b°en[x) v ((@enly) v ((x)NI[y)

by distributivity

(avb)yevit) vi) vixvy) asbpn[x) =[t),t; € Dy

and a’p N[y) = [t2),t, € D1 by (3)

(avb)pv|t) wheret=t; Aty A (xVvYy) eDy.

Hence L; is a bounded sublattice of L. Also, let (a, a°pV[x)) € L;.
Then (a,a°¢ v [x))° = (a°, ap) € Ly, because a° € M;. Now,

D(L) = {(a,a’p v [x)) €L : (a,a°p v [x))° = (0,D)}
={(a.apv(x)) el : (a°,ap) = (0,D)}
={(a,a°pVv[x))el;:a=1}
={(1,[x)) : xe Dy}
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= Dq.
If (a, a°pV|x)) € Ly, then (1, [x)) € D(L;) and
(@, a°p v I[x) A, [x) = (a,a°¢) A(1,[x))
=(anl,apvVvix))
= (a,a’¢ v [x)).

Therefore Ly is a subalgebra of L. Consequently, L{° is a subalgebra
of [°° and

Iy ={(a.a’p v [x)”: (a,apVv[x) e}
={(a,a°p) :ae M}
= M,
completing the proof of Theorem 4.7. O
Let (L; v, A, °, 0, 1) be a de Morgan algebra. Consider the set
ZL)y={xel:xvx =1}
The set Z(L) is called the center of L. Then we verify the following:

Lemma 4.8. Let (L; v, A, °, 0, 1) be a de Morgan algebra. Then the
center Z(L) is the greatest Boolean subalgebra of L.

Proof. Clearly, 0, 1 € Z(L). Let x, y € Z(L). Then xvx° =1 and y v
y° = 1. Now
xvy)vxvy) = &xvy)vE Ay)
=xXVYVvx)AXvVyvy®)
=1,

KAY)VEAY) = XAY)V (X VY)
=@&XVXVY)AFVX VY)
=1.
Thus Z(L) is a bounded sublattice of L. Let x € Z(L). Thus
X°vx*=x"vx=1asx=x> forall xeL

Then x° v x*° =1 implies x° € Z(L). Therefore Z(L) is a subalgebra
of L. Now, suppose that B is any Boolean subalgebra of L. Let x € B.
Thus x v x° = 1. Then x € Z(L). This deduce that BCZ(L) and Z(L) is
the largest Boolean subalgebra of L. O

In the following Theorem we obtain the greatest Stone subalge-
bra of a decomposable MS-algebra constructing from the decom-
posable MS-triple (M, D, ¢).

Theorem 4.9. Let L be a decomposable MS-algebra associated with
the decomposable MS-triple (M, D, ¢), Z(M) the center of M and D; =
D. Then we have

(1) Z(L>) = {(a. a°p) : a e Z(M)},
(2) Ly ={(a,a°¢p Vv [x)) e L: a e Z(M)} is the greatest Stone subal-
gebra of L such that D(Ly) = D(L) and L3® = Z(L>).

Proof. Since L is constructed from the decomposable MS-triple (M,
D, ¢), then by Theorem 2.9, we have

L={(a,a°¢p Vv[x)) :aeM,xeD}.

Consequently by Corollary 2.10 (1) and (2), respectively, we
have

L° = {(a,a°p) : a e M}.
and
D(L) ={(1,[x)) : x e D}.

(1) By Lemma 4.8, the center Z(L°°) of L*° is the greatest Boolean
subalgebra of the de Morgan algebra L°°. Now we get

Z(L*) ={(a.a’p) e L” : (a,a°p)° v (a,a°p)> = (1,[1))}

= {(a,a°p) e L : (a°,ap) v (a,a°¢p) = (1,[1))}
={(aap)el”:(ava, (ava)p)=(1,[1)}
={(a,a°p) el :ava° =1}
={(a,a°p) el :aecZ(M)}.

(2) Since D1 =D, then apn[x) is a principal filter of D for
every a € Z(M) and for every x < D. Hence the suffi-
cient condition (3) of Theorem 4.7 holds. Thus by Theorem
47, Ly ={(a,a°¢ v [x)) eL:aeZ(M),x € D} is a subalgebra
of a decomposable MS-algebra L such that L{° =Z(M) and
D(Ly)=D;.

It is observed that

D(Ly) ={(a,a’¢ v[x)) €Ly : (a,a°¢ v [x))* = (0,D)}
={(a,a°p v [x)) €Ly : (a°, ap)° = (0, D)}
={(a,a°pVv[x))eli:a=1,xeD}
={(1,[x)) :xe D}
= D(),

and

P ={(aapv[x):(aapvx))ecl}
={(a.a°p) :a e Z(M)}
=Z(L™).

Now we will verify that the Stone identity, z° v z°° =1 holds for
every z = (a,a°p v [x)) € L.

(a,a°¢ v [x)° v (a,a°pVI[x)” = (a°,ap) v (a,a’p)
=(ava,(ava)y)
= (1,[1)) as a € Z(M).

Therefore L; is a Stone subalgebra of a decomposable MS-algebra
L. To prove that L; is the greatest Stone subalgebra of L, let S be
any Stone subalgebra of L. Let (a, a°pVv[x)) € S. Hence (a,a°¢p v
[x))° v (a,a°@ v [x))° = (1,[1)). Then a v a° =1 implies a € Z(M).
This deduce that (a, a°pVv|[x)) € L;. Therefore SCL;. O
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