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a b s t r a c t 

The linear stability of viscoelastic nanofluid layer is investigated. The rheological behavior of the vis- 

coelastic fluid is described through the Walter’s model. The normal modes analysis is utilized to treat the 

equations of motion for stationary and oscillatory convection. The stability analysis resulted in a third- 

degree dispersion equation with complex coefficients. The Routh–Hurwitz theory is employed to inves- 

tigate the dispersion relation. The stability criteria divide the plane into several parts of stable/unstable 

regions. This shows some analogy with the nonlinear stability theory. The relation between the elas- 

ticity and the longitudinal wave number is graphically analyzed. The numerical calculations show that 

viscoelastic flows are more stable than those of the Newtonian ones. 
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1. Introduction 

Nanofluids are engineering colloids made of a base fluid and

nanoparticles (1–100 nm). The nanofluids have higher thermal

conductivity and single-phase heat transfer coefficients than their

base fluid [1] . The nanofluids have many various applications

including electric chip cooling and coolants for advanced nuclear

systems. The physical properties of the base fluid; density, specific

heat capacity, thermal conductivity and viscosity are affected by

the existence of the nanoparticles. The experimental results for

the nanofluid thermo-physical properties were reported in [2] .

Applications of nanofluids are being studied in many researches

for both the nanofluids with Newtonian or non-Newtonian base

through different geometrical shapes. Hayat et al. [3–8] studied the

peristaltic transport of nanofluid with Newtonian/non-Newtonian

base. The peristaltic transport of nanofluid in a channel with

complaint walls was considered with the combined effects of

Brownian motion and thermophoretic diffusion of nanoparticles

[3] . Meanwhile, the thermal effects of convection, mixed convec-

tion and radiation were considered for the peristaltic transport of

nanofluids [4–7] . The influences of magnetohydrodynamics (MHD)

and thermal radiation on peristaltic transport of a pseudoplas-

tic nanofluid in a tapered asymmetric channel with convective

boundary conditions were considered in [4] . It was found that the
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hermal radiation parameter has a decreasing effect upon heat

ransfer coefficient. The same authors for the previous Ref. [4] ap-

lied the same assumptions of the peristaltic flow to study the

oret and Dufour effects with the existence of chemical reaction

5] . It was found that Soret and Dufour numbers have an opposite

ffect on the volume fraction and temperature. Also, the thermal

adiation on peristaltic transport of nanofluid in a channel satis-

ying wall properties and convective conditions was investigated

n [6] . A quite opposite effect of thermal radiation parameter

nd the Biot number on the temperature and concentration was

ound. Two thermal conductivity models were applied, namely the

axwell’s model and the Hamilton–Crosser’s model, in Ref. [7] . It

as found a quite difference in the results between the two mod-

ls for higher nanoparticles volume fraction and for nanoparticles

ith higher thermal conductivity. The non-Newtonian Maxwell

anofluid with mixed convection was analyzed by Hayat et al.

8] . It was found that the thermophoresis parameter enhances the

emperature profile and thermal boundary layer thickness. The

anofluid flows over a stretching sheet and disk were studied by

ayat et al. [9,10] . It was shown that the thermophoretic forces

nhance the thickness of thermal and nanoparticle volume fraction

oundary layers, for the flow over a stretching sheet. Meanwhile,

he boundary layer thickness decreases with an increase in the

adial stretching of the disk. Convective heat and mass conditions

or the non-Newtonian electrically conducting nanofluid flow with

he thermal radiation effects were investigated by Hayat et al.

11] . The authors deduced that the thermophoresis and Brownian

otion parameters enhance both the temperature and the thermal
. This is an open access article under the CC BY-NC-ND license. 
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oundary layer thickness. The stagnation point flow of nanofluid

ear a permeable stretched surface with convective boundary

ondition in the presence of porous medium and internal heat

eneration/ absorption was discussed by Hayat et al. [12] . Also,

he effect of thermal radiation on Al 2 O 3 –water nanofluid flow and

eat transfer in an enclosure with a constant heating flux was

tudied numerically by Hayat et al. [13] . 

The interaction between the perturbations and the main flow

s an important factor in the development of instability for the

onvective flows. The instability mechanism of the convective

ow occurs due to the energy transfer from the main flow to the

elocity perturbations, corresponding to the presence of thermal

odes. Also, for the convective flow, the unstable stratification of

he medium arises due to heating. The instability occurs due to

he influence of density, temperature, and gravity inhomogeneities.

herefore, there exists an interaction between the thermal insta-

ility and the hydrodynamic perturbations which complicates the

roblems [14] . The stability of free convective boundary layer flow

ver a vertical heated flat plate, with respect to two dimensional

ave disturbances, was studied by Manosh et al. [15] . They de-

uced that the external geometry of the fluid domain exerts a con-

iderable influence on stability criteria. Sheu [16] presented a lin-

ar stability analysis of the natural convection in a horizontal layer

f viscoelastic nanofluid. He deduced that oscillatory instability is

ossible in both bottom- and top-heavy nanoparticle distributions. 

The convective flow of non-Newtonian fluids is of considerable

mportance in many applications such as; food processing, oil

ecovery, spread of contaminants in the environment and in many

rocesses in chemical and material industries. The earliest work of

tudying the instability of non-Newtonian fluids was carried out by

ong and Walters [17] . They found that, according to the infinitesi-

al disturbance theory, the elasticity destabilizes the flow. But this

s not in agreement with some experimental results. Many types of

on-Newtonian fluids, such as viscoelastic, Burgers, pseudoplastic,

randtl, Powell–Eyring, Carreau–Yasuda, Walters-B, Williamson, 

effrey and Sisko fluids, were studied by Hayat et al. [18–30] . The

eristaltic transport of Walters-B fluid in a compliant wall channel

n the presence of both velocity and thermal slip conditions were

tudied in Ref. [18] . Meanwhile, in Ref. [19] the Carreau–Yasuda

on-Newtonian model was employed to study the mixed convec-

ive peristaltic flow bounded in a compliant wall channel. Also, the

arreau–Yasuda model was employed to study the Hall and MHD

ffects on peristaltic flow in a convectively curved configuration

20] . The peristaltic flow of Powell–Eyring fluid through curved

assage with complaint walls was studied in the presence of

iscous dissipation and thermophoresis effects [21] . The authors

educed that the influence of Powell–Eyring fluid parameters on

he flow fields is qualitatively opposite. The mixed convective

eristaltic flow of Prandtl fluid in a planar channel with compliant

alls with the effects of applied magnetic field and Hall current

ere studied Hayat et al. [22] . A theoretical analysis was presented

o study the peristaltic flow and heat transfer characteristics of

urgers’ fluid [23] . Also, the same non-Newtonian model, Burgers’

uid, was applied with CattaneoChristov heat flux model of the

nergy equation instead of Fourier’s law of heat conduction [24] .

he authors deduced that the temperature distribution is higher in

he case of Fourier’s law as compared to CattaneoChristov heat flux

odel. Also, the Cattaneo–Christov heat flux model was applied to

nvestigate the stagnation point flow toward a nonlinear stretched

urface with variable thickness and with temperature dependent

hermal conductivity [25] . The flow of non-Newtonian magnetic

isko nanofluid over a bidirectional stretching surface was inves-

igated [26] . The authors illustrated that the effects of Brownian

otion and thermophoresis parameters on the nanoparticles con-

entration distribution are quite opposite. Also, the temperature

nd nanoparticles concentration distributions are enhanced for
he larger values of magnetic parameter. The non-Newtonian

seudoplastic (shear-thinning/shear-thickening) fluid flow through 

 peristaltic curved channel with the effect of wall properties was

tudied by Hayat et al. [27] . The results showed that the heat

ransfer coefficient at the wall is bigger in shear-thinning fluid

hen compared with the shear-thickening fluid. The homogeneous

nd heterogeneous reactions in the boundary layer viscoelastic

lectrically conducting fluid flow over a stretching cylinder with

elting heat transfer were investigated in Ref. [28] . It was ob-

erved that the heterogeneous reaction parameter decreases the

emperature profile. The convective conditions of heat and mass

ransfer were employed to study the influence of inclined magnetic

eld on peristaltic flow of an incompressible Williamson fluid in

n inclined channel [29] . Also, the mixed convective peristaltic

ow of Jeffrey nanofluid in a channel with complaint walls was

tudied by Hayat et al. [30] . The study included the viscous dissi-

ation, thermal radiation, Joule heating, Hall and ion slip effects. 

The recent evolution in the stability analysis of the non-

ewtonian fluids is to study the stability of the nanofluids

ith non-Newtonian base. The linear stability analysis for the

ewtonian nanofluid horizontal layer was studied by Nield and

uznetsov [31] . They found that the primary effect for a typical

anofluid (for which the Lewis number is large) is due to a

uoyancy effect coupled with the conservation of nanoparticles. A

revious study was developed by Umavathi [32] to study the sta-

ility of a viscoelastic nanofluid. He found that the nanofluids have

ore stabilizing effect when compared by regular fluid. Contribut-

ng for the previous studies, Sheu [16] studied the same problem

or the nanofluid with the non-Newtonian Oldroyd-B base fluid. 

A careful reading of references [16,31,32] has shown that the

asic state is taken to be quiescent, which means that the stream-

ng velocity in the basic state is zero. This is logically valid for the

orizontal flow, but what happens for the vertical flow? To find

he answer for this question, we study the flow of the vertical vis-

oelastic nanofluid layer. Therefore, the present paper deals with

he existing of non-zero stationary streaming velocity. During the

ollowing calculations, the stabilizing/destabilizing factors for the

roblem will be discussed. The Walter’s fluid model is employed to

escribe the rheological behavior of the viscoelastic nanofluid. The

rownian diffusion, thermophoretic diffusion and viscoelasticity 

ffects on the stability criteria are also discussed. In Section 2 , the

hysical description of the problem including the basic equations

nd the appropriate boundary conditions are presented. Section

 is devoted to deduce the forms of the basic state for the velocity,

emperature and nanoparticles volume fraction. The basic equa-

ions of the perturbed state are presented in Section 4 . Two cases

re considered in Section 5 : The first case considers the stability

nalysis according to the Routh–Hurwitz condition; and the sec-

nd one concerns the stability analysis due to the stationary and

scillatory states of the dispersion relation. Throughout Section 6 ,

e derived the transition curves and introduce a discussion of the

tability pictures according to the elasticity parameter. Finally, in

ection 7 , we give the concluding remarks for this study based on

he obtained results of the stability analysis. 

. Mathematical formulation 

Consider an infinite incompressible viscoelastic nanofluid in a

ertical layer, subjected to a transverse temperature gradient. The

ow is assumed to take place between two vertical boundaries,

ocated at the planes x = 0 and x = h . These plates are considered

s heat conductive parallel plates, at which the temperature at the

late x = 0 is kept at T 1 . Meanwhile, the temperature at the plate

 = h is held at T 0 , where T 0 � = T 1 . The rheology of the viscoelastic

on-Newtonian fluid is prescribed by the Walter to model the

omentum equations. The gravitational acceleration g acts along
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Fig. 1. Physical model and coordinate system. 
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the negative y -direction. The Cartesian coordinates ( x, y, z ) are

used, where the x -axis is taken normal to the flow channel, y -axis

along the vertical flow and z -axis along the horizontal plane. The

volumetric fraction of the nanoparticles at the rigid boundaries

are considered as constants, namely φ0 and φ1 , respectively. Con-

sidering constant values of the volume fraction at the boundaries

are valid for the basic state according to the constant value of the

temperature at the boundaries. A sketch of the physical model is

shown in Fig. 1 . The Boussinesq approximation is adopted through

the problem at hand. The velocity vector v is taken as ( u , v , w ). 

The incompressibility condition yields 

∂ v r 
∂ x r 

= 0 , (1)

According to the work of Buongiorno [1] , the momentum

equation, in case of the nanofluid, is the same as that of the pure

fluid. Taking into account that the spatial variation of the fluid

viscosity μ is negligible, the momentum equation according to the

Walter’s model may be written as [33] 

ρ0 
D v r 
Dt 

= − ∂ P 

∂ x r 
+ μ

∂ 2 v r 
∂ x 2 

k 

− η

(
∂ 

∂ t 

(
∂ 2 v r 
∂ x 2 

k 

)
+ v q 

∂ 3 v r 
∂ x q ∂ x 2 k 

− ∂ v r 
∂ x q 

∂ 2 v q 
∂ x 2 

k 

− 2 

∂ 2 v r 
∂ x q ∂ x k 

∂ v q 
∂ x k 

)
+ ρ g r , (2)

where, D 
Dt = 

∂ 
∂ t 

+ v k ∂ 
∂ x k 

and g r = (0, −g , 0) is the gravity accelera-

tion vector. 

According to the Boussinesq approximation, the thermal con-

ductivity of the nanofluid k is considered as a constant. Therefore,

the energy equation may be written in the form [16] 

( ρc ) f 

(
DT 

Dt 

)
= k 

∂ 2 T 

∂ x 2 
k 

+ ( ρc ) p 

[
D B 

(
∂φ

∂ x k 

∂ T 

∂ x k 

)
+ 

D T 

T 0 

(
∂ T 

∂ x k 

∂ T 

∂ x k 

)]
(3)

the volumetric nanoparticle fraction, yields 

Dφ

Dt 
= D B 

∂ 2 φ

∂ x 2 
k 

+ 

D T 

T 0 

∂ 2 T 

∂ x 2 
k 

, (4)

and the overall density of the nanofluid ρ is given by 

ρ = [ φ ρp + ( 1 − φ) ρ0 ( 1 − βT ( T − T 0 ) ) ] . (5)

where, ρp is the particle density, ρ0 is a reference density of the

fluid, β is the thermal volumetric expansion, φ is the nanoparticle
T 
olume fraction, D B is the Brownian diffusion coefficient, η is the

lasticity parameter, P is the pressure, D T is the thermophoretic

iffusion coefficient, c p is the specific heat of the nanoparticle

aterial, c f is the specific heat of the fluid, T is the temperature

nd t is the time. 

As stated above, the temperature and the volumetric fraction

re assumed constants at the boundaries. Also, the two vertical

lates are stationary. So, the no-slip boundary conditions for the

elocity, the temperature and the volumetric fraction are: 

v = 0 , T = T 1 , φ = φ0 , , x = 0 

and 

v = 0 , T = T 0 , φ = φ1 , , x = h 

} 

, (6)

Before dealing with the numerical calculation, it is convenient

o rewrite the obtained equations in an appropriate dimensionless

orm. This can be done in a number of ways depending primarily

n the choice of the characteristic length, time and mass. Consider

he following dimensionless forms depending on the characteristic

ength = h , the characteristic time = h 2 / α f and the characteristic

ass = μ h 3 / α f , where αf is the thermal diffusivity of the fluid.

he other dimensionless quantities are given as follows: 

x ∗ = 

x 

h 

, t ∗ = 

t α f 

h 

2 
, α f = 

k 

( ρ c ) f 
, v ∗

i 
= 

v i h 

α f 

, 

P ∗ = 

P h 

2 

μα f 

, φ∗ = 

φ − φ0 

φ1 − φ0 

, T ∗ = 

T − φ0 

T 1 − φ0 

⎫ ⎪ ⎬ 

⎪ ⎭ 

. (7)

With the aid of Eq. (1) , together with the dimensionless quan-

ities as given by Eq. (7) , the equations of motion ( 2–4 ), after

ropping the star for simplicity, may be rewritten as 

∂ v r 
∂ x r 

= 0 , (8)

1 

P r 

D v r 
Dt 

= − ∂ P 

∂ x r 
+ 

∂ 2 v r 
∂ x 2 

k 

− λ

(
∂ 

∂ t 

(
∂ 2 v r 
∂ x 2 

k 

)
+ v q 

∂ 3 v r 
∂ x q ∂ x 2 k 

−∂ v r 
∂ x q 

∂ 2 v q 
∂ x 2 

k 

− 2 

∂ 2 v r 
∂ x q ∂ x k 

∂ v q 
∂ x k 

)
(9)

−R M r + R a r T − R N r φ

DT 

Dt 
= 

∂ 2 T 

∂ x 2 
k 

+ 

N B 

Le 

∂ φ

∂ x k 

∂ T 

∂ x k 
+ 

N B N A 

Le 

∂ T 

∂ x k 

∂ T 

∂ x k 
, (10)

nd 

Dφ

Dt 
= 

1 

Le 

∂ 2 φ

∂ x 2 
k 

+ 

N A 

Le 

∂ 2 T 

∂ x 2 
k 

, (11)

here, R c r = (0, R c , 0), and c=M, a and N . 

Physically, the dilute nanofluid suspension (small value of the

anoparticle volume fraction φ) is considered. Also, the temper-

ture gradient is taken as a small quantity. Therefore, the term

0 βT φ T can be excluded from Eq. (5) . It follows the contribution

f the term ρ g in Eq. (2) , which yields the last three terms in

q. (9) [31] . 

The other non-dimensional numbers are defined as follows: 

Pr = 

μ
ρ0 α f 

, is the Prandtl number. 

λ = 

ηα f 

h 2 μ
, is the elasticity parameter. 

R a = 

ρ0 g βT h 
3 ( T 1 −T 0 ) 

μα f 
, is the thermal Rayleigh number. 

R M 

= 

(ρp φ0 + ρ0 (1 −φ0 )) g h 
3 

μ α f 
, is the basic density Rayleigh number. 

R N = 

(ρp −ρ0 )(φ1 −φ0 ) g h 
3 

μ α f 
, is the concentration Rayleigh number. 

N A = 

D T 
D B T 0 

(T 1 −T 0 ) 
(φ1 −φ0 ) 

, is the modified diffusivity ratio. 

N B = 

(ρ c) p 
ρ0 c f 

(φ1 − φ0 ) , is the modified particle density increment.



G.M. Moatimid, M.A. Hassan / Journal of the Egyptian Mathematical Society 25 (2017) 220–229 223 

 

b

 

t  

i

v

 

v  

d  

t

3

 

[  

P  

A  

fl  

s  

t  

v  

v  

v  

fl

0

0

a

0

0

0

 

(

T

a

φ

 

l  

t  

E

T

φ

 

o  

w  

v

v

w

4

 

f  

E  

a  

A  

f

 

a

w

 

i  

h

5

 

a  

p⎛
⎝
w  

z  

θ  

w

V  

 

t  

t  

t  
and 

Le = 

α f 

D B 
, is the Lewis number. 

The corresponding boundary conditions, as given in Eq. (6) ,

ecome 

v = 0 , T = 1 , φ = 0 , x = 0 

v = 0 , T = 0 , φ = 1 , x = 1 

}
. (12) 

Now, to study the stability of the system, we assume that

he velocity, temperature, volume fraction and the pressure have

nfinitesimal perturbations from the basic state, such that 

 r = v r b + v ′ r , T = T b + T ′ , φ = φb + φ′ and P = P b + P ′ . (13) 

This implies that the basic state of the velocity represents a

ariable streaming velocity. It is an unknown to be determined

uring the calculations. In the following sections, we determine

he solutions of the basic and perturbed states. 

. The basic state 

In the previous studies of the horizontal motion (for example

16,31] ), the fluid is considered to be quiescent in the basic state.

hysically, this assumption may be true for the horizontal flow.

ccording to the geometry of the present problem, the fluid is

owing vertically due to gravity and then the fluid cannot be con-

idered at rest in the basic state. Therefore, the fluid is flowing in

he basic state along y -axis only and the velocity vector becomes

 r = (0, v , 0). According to the continuity Eq. (8) , this streaming

elocity v must be a function of x only. Also, the temperature and

olumetric fraction gradients are along the normal direction to the

ow. So, the momentum ( Eq. 9 ) yields, 

 = −∂ P b 
∂ x 

, (14) 

 = −∂ P b 
∂ y 

+ 

d 2 v b 
d x 2 

− R M 

+ R a T b − R N φb , (15) 

nd 

 = −∂ P b 
∂ z 

. (16) 

The energy Eq. (10) gives 

 = 

d 2 T b 
d x 2 

+ 

N B 

Le 

dφb 

d x 

d T b 
d x 

+ 

N B N A 

Le 

(
d T b 
d x 

)2 

. (17) 

The volumetric fraction Eq. (11) becomes 

 = 

1 

Le 

d 2 φb 

d x 2 
+ 

N A 

Le 

d 2 T b 
d x 2 

. (18) 

The solution of Eqs. (17) and ( 18 ) under boundary conditions

 12 ) is in the form 

 b = 

1 − e 
N B 
Le ( 1 −N A ) ( 1 −x ) 

1 − e 
N B 
Le ( 1 −N A ) 

, (19) 

nd 

b = ( 1 − N A ) x + N A ( 1 − T ) . (20) 

According to Nield and Kuznetsov [31] , most nanofluids have

arge value for Lewis number Le of order 10 2 to 10 3 . Meanwhile,

he modified diffusivity ratio N A is not greater than 10. By analogy,

qs. (19) and ( 20 ) have approximate forms as 

 b = 1 − x, (21) 

= x. (22) 
b 
According to Eqs. (14) and ( 16 ), the pressure must be a function

f y only. So, we can assume that A = ∂ P b / ∂ y which is a constant

ith respect to x . Therefore, the general solution of the basic state

elocity in Eq. (15) may be written as 

 b = c 1 x + c 2 x 
2 + c 3 x 

3 (23) 

here, the constant coefficients c 1 −c 3 are given in the Appendix . 

. The perturbed state 

To obtain the equations for the perturbed state, we substitute

rom the solutions of the basic state, Eqs. (21) –(23) into the basic

qs. (9) –(11) . To eliminate the pressure gradient form Eq. (9) , we

pply curle twice ( curl curl ) e y to this equation, (see [16,31,32] ).

ccordingly, the equations for the perturbed state, in the linear

orm, and after dropping the dash become 

1 

P r 

(
∂ 

∂t 

(∇ 

2 v 
)

+ ( 2 c 2 + 6 c 3 x ) 
∂ v 
∂ y 

+ 

(
c 1 x + c 2 x 

2 + c 3 x 
3 
) ∂ 

∂ y 

(∇ 

2 v 
))

= ∇ 

4 v + R a ∇ 

2 
1 T − R N ∇ 

2 
1 φ

− λ

(
∂ 

∂t 

(∇ 

4 v 
)

+ 

(
c 1 x + c 2 x 

2 + c 3 x 
3 
) ∂ 

∂ y 

(∇ 

4 v 
)

− 2 

(
c 1 x + 2 c 2 x + 3 c 3 x 

2 
) ∂ 2 

∂ y ∂x k 

(∇ 

2 v 
)

− 12 c 3 
∂ 2 v 

∂ y ∂x k 

)
, (24)

∂ T 

∂ t 
+ 

(
c 1 x + c 2 x 

2 + c 3 x 
3 
)∂T 

∂ y 
= ∇ 

2 T + 

N B 

Le 

(
∂ T 

∂ x k 
− ∂φ

∂ x k 

)

−2 

N B N A 

Le 

∂ T 

∂ x k 
, (25) 

nd 

∂φ

∂ t 
+ 

(
c 1 x + c 2 x 

2 + c 3 x 
3 
)∂φ

∂ y 
= 

1 

Le 
∇ 

2 φ + 

N A 

Le 
∇ 

2 T , (26) 

here ∇ 

2 
1 = 

∂ 2 

∂ x 2 
+ 

∂ 2 

∂ z 2 
. 

We use the previous Eqs. (24 )–( 26 ) for the perturbed state

n the following section to establish the dispersion relation and

ence, to study the stability analysis in the linear case. 

. The linear stability analysis 

To determine the dispersion relation of the linear stability, our

nalysis will base on the normal modes technique. Therefore, all

erturbed quantities may be expressed as 

 

 

v 

T 

φ

⎞ 

⎠ = 

⎛ 

⎝ 

V ( x ) 

θ ( x ) 


( x ) 

⎞ 

⎠ e i ( � y + m z+ ω t ) , (27) 

here, i = 

√ −1 , � and m are the wave numbers along the y and

 -directions and ω is the growth rate. Also, the solutions of V ( x ),

( x ) and 
( x ) that satisfy the boundary conditions Eq. (6) can be

ritten in the form 

 ( x ) = v 0 sin π x, θ ( x ) = θ0 sin π x 
( x ) = 
0 sin π x. (28)

Substituting from Eqs. (27) and (28) into Eqs. (24) –(26) , and

hen multiply the resulting equation by sin π x . By integrating

hese equations from x = 0 to x = 1 and performing some integra-

ion by parts, one may set the obtained equations in a matrix
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Fig. 2. Stability diagram for a system having the particulars: Pr = 10 0 0, Rn = 50 0 0, Ra = 30 0 0, Le = 100, Rm = 50 0 0, m = 0. 
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form as given by ( 

M 11 −R a a 
2 R N a 

2 

0 M 22 0 

0 

N A δ
2 

Le 
M 33 

) ( 

v 0 
θ0 


0 

) 

= 

( 

0 

0 

0 

) 

, (29)

where, δ2 = π2 + � 2 + m 

2 is the total wave number and

a 2 = 

1 
2 ( π

2 + m 

2 ) . The other elements, M 11 , M 22 and M 33 are

defined in the Appendix . 

The nontrivial solution of the Eq. (29) requires that the deter-

minant of coefficients must vanish. Therefore, one directly obtains

M 11 M 22 M 33 =0, which produces the following dispersion relation 

h 0 ω 

3 + ( h 1 + i k 1 ) ω 

2 + ( h 2 + i k 2 ) ω + ( h 3 + i k 3 ) = 0 . (30)

where, the coefficients k 1 −k 3 and h 0 −h 3 are given in the

Appendix . 

According to the normal modes technique as given by Eq. (27) ,

the system becomes stable when the real part of i ω is negative.

This corresponds to the case where all roots of ω in Eq. (30) have

positive coefficients of the imaginary parts. According to the

Routh-Hurwitz theory, the necessary and sufficient stability

criteria may be written as [34] ∣∣∣∣h 0 h 1 

0 k 1 

∣∣∣∣ < 0 , (31)

∣∣∣∣∣∣∣
h 0 h 1 h 2 0 

0 k 1 k 2 0 

0 h 0 h 1 h 2 

0 0 k 1 k 2 

∣∣∣∣∣∣∣ > 0 , (32)

and ∣∣∣∣∣∣∣∣∣∣

h 0 h 1 h 2 h 3 0 0 

0 k 1 k 2 k 3 0 0 

0 h 0 h 1 h 2 h 3 0 

0 0 k 1 k 2 k 3 0 

0 0 h 0 h 1 h 2 h 3 

0 0 0 k 1 k 2 k 3 

∣∣∣∣∣∣∣∣∣∣
< 0 . (33)

The previous three conditions, in Eqs. (31 )–( 33 ), govern the

linear stability conditions. The numerical calculations of these

conditions divide the plane into several parts of stable/unstable
egions. The stable regions occur when these conditions are si-

ultaneously satisfied. Meanwhile, invalidation for one of these

onditions (at least) gives an unstable region. This shows some

nalogy with the nonlinear stability theory. These conditions will

e represented graphically to discuss the stabilizing parameters in

he next section. 

Another algorithm to study the stability criteria is to determine

he stationary and oscillatory states from the dispersion relation

q. (30) . To do this, we assume that ω = i ω i , then collecting

he real and imaginary parts according to the coefficients of the

lasticity parameter λ in the dispersion relation ( 30 ) to obtain the

ollowing form 

= 

( �3 + i �4 ) 

( �1 + i �2 ) 
, (34)

here, 

1 = n 1 ω 

3 
i 

− n 2 ω 

2 
i 

− n 3 ω i + n 4 , 

2 = −n 5 ω 

2 
i 

+ n 6 ω i + n 7 , 

3 = −m 1 ω 

3 
i 

+ m 2 ω 

2 
i 

+ m 3 ω i − m 4 , 

nd 

4 = m 5 ω 

2 
i − m 6 ω i − m 7 . 

here, the coefficients n 1 −n 7 and m 1 −m 7 are defined in the

ppendix . 

The steady convection state occurs at ω i =0, then the dispersion

elation given in Eq. (34) tends to the form 

S = 

(
−n 4 m 4 − n 7 m 7 

n 

2 
4 

+ n 

2 
7 

)
+ i 

(
−n 4 m 7 + n 7 m 4 

n 

2 
4 

+ n 

2 
7 

)
. (35)

The elasticity parameter λ must be real. So, the imaginary

art of the previous Eq. (35) must vanish. This gives the equation

 7 m 4 −n 4 m 7 =0. The simplification of this equation gives a com-

on factor bracket which tends to a restriction on the pressure

radient in the form 

 = 

1 

2 

( R a − 2 R M 

− R N ) . (36)

The application of the previous restriction, during the calcu-

ations for the stability conditions [31–33] , gives real values only
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Fig. 3. Stability diagram for a system having the particulars: Pr = 10 0 0, Rn = 50 0 0, Le = 100, Rm = 50 0 0, m = 0. 

Fig. 4. Stability diagram for a system having the particulars: Pr = 10 0 0, Ra = 30 0 0, Le = 100, Rm = 50 0 0, m = 0. 
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or all roots of the stability conditions. This will discuss in details

n the next section. Meanwhile, the oscillatory state occurs for

 i � = 0. By taking the real part only from Eq. (34) , the dispersion

elation of the oscillatory states can be written as 

OSC = 

�1 �3 + �2 �4 

�2 
1 

+ �2 
2 

. (36) 

Graphically, the departure of the curve from the steady state

eans a destabilizing effect of the parameter. This will be illus-

rated in the next section graphically. 

. Results and discussion 

Through this section, we shall discuss the stability criteria

raphically. Our discussions are dividing into two categories.
irstly, the stability criteria, that is depending on the Routh–

urwitz conditions in Eqs. (31) –(33) , is discussed. Secondly, the

tability is discussed depending on the graphical representation

f the steady and oscillatory states of the elasticity parameter in

qs. (35) and (36) . 

One of the main aims of the present study is to discuss the

on-Newtonian rheology effect according to the elasticity param-

ter. Therefore, we confine our attention to graph the relation

etween the elasticity parameter λ and the wave number in the

ongitudinal direction � . The expansion of the determinant in

q. (31) gives a second order equation of λ and for the determi-

ant in Eq. (32) gives a fourth degree equation of λ. Meanwhile,

he determinant in Eq. (33) produces a sixth order equation of λ.

t is expected that some of the roots of these equations are real

nd the others are imaginary. The application of the restriction
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Fig. 5. Stability diagram for a system having the particulars: Pr = 10 0 0, Rn = 50 0 0, Ra = 30 0 0, Le = 100, Rm = 50 0 0. 

Fig. 6. Stability diagram for a system having the particulars: Rn = 0.3, Ra = 30 0 0, Le = 100, Rm = 50 0 0, m = 0. 
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in Eq. (36) during the calculations induces real roots only for all

conditions (31) –(33) . 

In Fig. 2 , the neutral curves of the linear stability conditions

(31) –(33) divide the plane into a stable region and an unstable

region. The region symbolized S refers the stabilized region, while

the region symbolized U is a destabilized region. The dotted line

represents the first root for all conditions (31) –(33) . The region

under this curve is a stable region according to the inequalities

(31) –(33) . This implies that the stable region under the dotted

curve is a very thin negligible layer represents the range 0 < λ ≤
10 −4 of the elasticity parameter. This means that the stability en-

hances in case of nanofluid with non-Newtonian base. Meanwhile,

this mechanism dose not appears for the case of nanofluid with

Newtonian base. The solid curve in Fig. 2 represents the second
nd third roots for all conditions (31) –(33) . Meanwhile, the dashed

urve represents the fourth root of the condition (32) and the

fth and sixth roots of condition (33) . The shaded region under

he dashed curve represents an unstable region. This occurs due

o unsatisfying the stability conditions (31) –(33) simultaneously.

o, for the small range of the elasticity parameter (the unstable

egion in the figure), instability is of hydrodynamic nature due to

he development of vortices between countercurrent flows. 

Fig. 3 illustrates the effect of thermal Rayleigh number on the

tability picture. One can see that the thermal Rayleigh number

tabilizes the nanofluid layer according to the increasing of the

tability region with increasing the Rayleigh number. Similar result

as obtained by Sheu [16] , where the stationary convection state

as obtained by increasing the Rayleigh number. 
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Fig. 7. Stability diagram for a system having the particulars: Pr = 10 0 0, Rn = 50 0 0, Ra = 30 0 0, Le = 5, Rm = 50 0 0, m = 0. 

Fig. 8. Stability diagram for a system having the particulars: Pr = 100, Rn = 300, Ra = 100, Le = 100, Rm = 500, m = 0.5. 
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The particle density stabilizes the nanofluid layer. This occurs

ue to the stabilizing effect of the concentration Rayleigh number

s shown in Fig. 4. 

Physically, the large values of the wave number are corresponds

o short wave lengths. In other words, for large values of the wave

umber, the wave length is very small and this induces a stabi-

ized fluid waves. This is illustrated in Fig. 5 , where the increasing

f the transverse wave number m stabilizes the nanofluid waves. 

The results obtained experimentally by Chieruzzi et al.

35] show that the addition of 1.0 wt.% (wt.% means weight

ercent, i.e. weight of solute/weight of solvent) of nanoparticles to

he base salt increases the specific heat of 15% to 57% in the solid

hase and of 1% to 22% in the liquid phase. Increasing the specific
eat of the nanofluid means a reduction of its ability to heating.

n other words, increasing the nanofluid temperature tends to

vaporate the fluid easily and provokes higher instabilities of the

uid particles. So, increasing of the specific heat of the base fluid

 f , according to the existence of the nanoparticles, increases the

randtl number ( Pr ) and stabilizes the fluid layer as shown in

ig. 6 (due to increasing the stability region). 

The modified particle density N B in Eq. (25) is cancelled due to

ntegration of orthogonal functions. In similar way, the modified

iffusivity ratio N A in Eq. (29) is cancelled due to the determi-

ant expansion. Also, the basic density Rayleigh number R M 

is

ancelled when applying the restriction of the pressure gradient

q. (36) . This means that the stability analysis is not affect by
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the thermophoretic parameter. Meanwhile, the Brownian motion

effect appears only through the Lewis number. Increasing of Lewis

number destabilizes the motion as shown in Fig. 7. 

Another approach to study the stability criteria is obtained by

deforming the stationary elasticity parameter λS (the real part of

Eq. (35) ) and oscillatory state of the elasticity parameter λOSC (as

given in Eq. (36) ). Fig. 8 illustrates the stationary state λS by the

solid curve (for zero growth rate ω i =0) and the oscillatory state

λOSC (for non-zero growth rate ω i � = 0). This figure shows that the

oscillatory state departures from the stationary state for a small

range of the longitudinal wave number 0 ≤ � ≤ 0.6. But for higher

values of the wave number (short wave length) the fluid becomes

stable anywhere (according to conceding the curves for � ≥ 0.6).

This confirms the previous result for the transverse wave number

m as illustrated before in Fig. 5. 

7. Conclusion 

In this paper, we have examined the stability of the viscoelastic

nanofluid vertical layer. In case of the vertical flow, it is convenient

to consider the existence of the vertical streaming velocity at the

stationary state. Also, it was expected that the non-Newtonian

rheology and the nanoparticles have considerable influence on the

stability picture. The solution of the equations of motion along

the normal modes technique leads to a cubic dispersion equation

with complex coefficients. The main results of our study can be

epitomized in the following points: 

1. The application of the Routh–Hurwitz stability conditions

divides the plane into several stable/unstable parts. 

2. The nanofluid of non-Newtonian base is more stable than of

Newtonian base. 

3. The thermal Rayleigh number stabilizes the nanofluid layer. 

4. The stability is restricted by a condition on the pressure

gradient ( Eq. (36) ). This condition gives real values for all

Routh–Hurwitz conditions. 

5. The particle density stabilizes the nanofluid layer. 

6. The Prandtl number ( Pr ) stabilizes the nanofluid layer due to

increasing of the specific heat of the base fluid c f . 
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Appendix 

The constants c 0 −c 3 that appear in Eq. (23) , may be listed as

follows 

c 0 = 

(
π4 + � 4 + m 

4 
)
, c 1 = −1 

2 

∂ P 

∂ y 
− 1 

2 

R M 

+ 

1 

3 

R a − 1 

6 

R N , 

c 2 = 

1 

2 

∂ P 

∂ y 
+ 

1 

2 

R M 

− 1 

3 

R a , c 3 = 

1 

6 

R a + 

1 

6 

R N . 

The constants M 11 , M 22 and M 33 that appear in Eq. (29) , may

be written as follows 

M 11 = i a 1 ω + ( a 2 + i b 2 ) , 
M 22 = i ω + ( a 3 + i b 3 ) , 
M 33 = i ω + ( a 4 + i b 4 ) . 

where, the constants a 1 −a 4 and b 2 −b 4 are given by 

a 1 = 

−1 

2 Pr 
δ2 + 

1 

2 
λ c 2 0 , 

a 2 = 

−1 

2 
c 2 0 − λ

(
� 2 + � m 

) [ 
δ2 

(
c 1 + c 2 + 6 c 3 

(
1 

6 
− 1 

4 π2 

))
+ 6 c 3 

] 
, 
a 3 = δ2 , a 4 = 

1 

Le 
δ2 , 

 2 = 

1 

2 
� 
(
1 − λδ2 

)
( 2 c 2 + 3 c 3 ) 

+ � 
(
λ c 2 0 − δ2 

)(
1 

4 
c 1 + c 2 

(
1 

6 
− 1 

4 π2 

)
+ c 3 

(
1 

8 
− 3 

8 π2 

))
, 

 3 = � 

[ 
1 

2 
c 1 + 

(
1 

3 
− 1 

2 π2 

)
c 2 + 

(
1 

4 
− 3 

4 π2 

)
c 3 

] 
, b 4 = b 3 

The dispersion relation Eq. (30) coefficients h 0 −h 3 and k 1 −k 3 
re given by 

 0 = −a 1 , h 1 = −a 1 b 3 − a 1 b 4 − b 2 , 
 2 = a 1 ( a 3 a 4 − b 3 b 4 ) + a 2 ( a 3 + a 4 ) − b 2 ( b 3 + b 4 ) , 
 3 = a 2 ( a 3 b 4 + b 3 a 4 ) + b 2 ( a 3 a 4 − b 3 b 4 ) , 
 1 = a 1 a 3 + a 1 a 4 + a 2 , 
 2 = a 1 ( a 3 b 4 + b 3 a 4 ) + a 2 ( b 3 + b 4 ) − b 2 ( a 3 + a 4 ) , 
 3 = −a 2 ( a 3 a 4 − b 3 b 4 ) − b 2 ( a 3 b 4 + b 3 a 4 ) . 

The constants m 1 −m 7 and n 1 −n 7 appearing in Eqs. (34) and

 35 ) are defined as 

 1 = 

1 

2 Pr 
δ2 , n 1 = −1 

2 

c 2 0 

 2 = 

1 

2 Pr 
δ2 ( a 3 + a 4 ) + 

1 

2 

c 2 0 , 

 2 = 

−1 

2 

c 2 0 ( a 3 + a 4 ) 

+ 

(
� 2 + � m 

)(
δ2 

(
c 1 + c 2 + 6 c 3 

(
1 

6 

− 1 

4 π2 

))
− 6 c 3 

)
, 

 3 = 

−1 

2 Pr 
δ2 ( a 3 a 4 − b 3 b 4 ) − 1 

2 

c 2 0 ( a 3 + a 4 ) 

−( b 3 + b 4 ) 

[ 
1 

2 

� ( 2 c 2 + 3 c 3 ) 

− � δ2 
(

1 

4 

c 1 + c 2 

(
1 

6 

− 1 

4 π2 

)
+ c 3 

(
1 

8 

− 3 

8 π2 

))] 
, 

 3 = 

1 

2 

c 2 0 ( a 3 a 4 − b 3 b 4 ) + ( a 3 + a 4 ) 
(
� 2 + � m 

)
×
[ 
−δ2 

(
c 1 + c 2 + 6 c 3 

(
1 

6 

− 1 

4 π2 

))
+ 6 c 3 

] 
−( b 3 + b 4 ) 

[ 
−1 

2 

� δ2 ( 2 c 2 + 3 c 3 ) 

+ � c 2 0 

(
1 

4 

c 1 + c 2 

(
1 

6 

− 1 

4 π2 

)
+ c 3 

(
1 

8 

− 3 

8 π2 

))] 
, 

 4 = −1 

2 

c 2 0 ( a 3 a 4 − b 3 b 4 ) − ( a 3 b 4 + b 3 a 4 ) 

[ 
1 

2 

� ( 2 c 2 + 3 c 3 ) 

− � δ2 
(

1 

4 

c 1 + c 2 

(
1 

6 

− 1 

4 π2 

)
+ c 3 

(
1 

8 

− 3 

8 π2 

))] 
, 

 4 = ( a 3 a 4 − b 3 b 4 ) + 

(
� 2 + � m 

)
×
[ 
−δ2 

(
c 1 + c 2 + 6 c 3 

(
1 

6 

− 1 

4 π2 

))
+ 6 c 3 

] 
−( a 3 b 4 + b 3 a 4 ) 

[ 
−1 

2 

� δ2 ( 2 c 2 + 3 c 3 ) 

+ � c 2 
(

1 

c + c 

(
1 − 1 

)
+ c 

(
1 − 3 

))] 
, 
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[  

 

 5 = 

1 

2 Pr 
δ2 ( b 3 + b 4 ) −

[ 
1 

2 

� ( 2 c 2 + 3 c 3 ) 

− � δ2 
(

1 

4 

c 1 + c 2 

(
1 

6 

− 1 

4 π2 

)
+ c 3 

(
1 

8 

− 3 

8 π2 

))] 
, 

 5 = −1 

2 

c 2 0 ( b 3 + b 4 ) −
[ 
−1 

2 

� δ2 ( 2 c 2 + 3 c 3 ) 

+ � c 2 0 

(
1 

4 

c 1 + c 2 

(
1 

6 

− 1 

4 π2 

)
+ c 3 

(
1 

8 

− 3 

8 π2 

))] 
, 

 6 = 

−1 

2 Pr 
δ2 ( a 3 b 4 + b 3 a 4 ) + 

1 

2 

c 2 0 ( b 3 + b 4 ) 

−( a 3 + a 4 ) 

[ 
1 

2 

� ( 2 c 2 + 3 c 3 ) 

− � δ2 
(

1 

4 

c 1 + c 2 

(
1 

6 

− 1 

4 π2 

)
+ c 3 

(
1 

8 

− 3 

8 π2 

))] 
, 

 6 = −1 

2 

c 2 0 ( a 3 b 4 + b 3 a 4 ) − ( b 3 + b 4 ) 
(
� 2 + � m 

)
×
[ 
−δ2 

(
c 1 + c 2 + 6 c 3 

(
1 

6 

− 1 

4 π2 

))
+ 6 c 3 

] 
−( a 3 + a 4 ) 

[ 
−1 

2 

� δ2 ( 2 c 2 + 3 c 3 ) 

+ � c 2 0 

(
1 

4 

c 1 + c 2 

(
1 

6 

− 1 

4 π2 

)
+ c 3 

(
1 

8 

− 3 

8 π2 

))] 
, 

 7 = −1 

2 

c 2 0 ( a 3 b 4 + b 3 a 4 ) + ( a 3 a 4 − b 3 b 4 ) 

[ 
1 

2 

� ( 2 c 2 + 3 c 3 ) 

− � δ2 
(

1 

4 

c 1 + c 2 

(
1 

6 

− 1 

4 π2 

)
+ c 3 

(
1 

8 

− 3 

8 π2 

))] 
, 

 7 = ( a 3 b 4 + b 3 a 4 ) + 

(
� 2 + � m 

)
×
[ 
−δ2 

(
c 1 + c 2 + 6 c 3 

(
1 

6 

− 1 

4 π2 

))
+ 6 c 3 

] 
+ ( a 3 a 4 − b 3 b 4 ) 

[ 
−1 

2 

� δ2 ( 2 c 2 + 3 c 3 ) 

+ � c 2 0 

(
1 

4 

c 1 + c 2 

(
1 

6 

− 1 

4 π2 

)
+ c 3 

(
1 

8 

− 3 

8 π2 

))] 
. 
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