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a b s t r a c t 

We show that a heavy, magnetized and electrically charged asymmetric rigid body moving about a fixed 

point while carrying a rotor and acted upon by three uniform fields can perform a regular precession 

about a nonvertical axis, of the type described for the case of a single field by Grioli in 1947. This is the 

first, and the only known by now, non-equilibrium solution of the problem of motion of a body in the 

presence of three classical fields, which are irreducible to a less number of fields. 
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1. Introduction 

Although the problem of motion of a rigid body has a long his-

tory, most of that history was devoted to the study of motion un-

der uniform or approximate Newtonian gravity field and in some

cases its generalization through attaching a gyrostatic moment. For

a detailed account of those cases, see [1 , 2 , 3] . Some recent advances

in the field concerned more complicated versions involving ax-

isymmetric combinations of non-uniform fields [4 , 5 , 6] . 

In spite of its practical importance, the problem of motion of

rigid body under three uniform classical fields has escaped atten-

tion for a long time. Known are only two integrable cases involving

two uniform fields [7 , 8 , 9] . Problems of motion in the presence of

three significant (irreducible to two) fields were very rarely consid-

ered. Only equilibrium positions were classified and some of them

were investigated for stability in [10] . 

In the present note we investigate the regular precessional mo-

tion of an asymmetric rigid body-gyrostst about a nonvertical axis

under the action of three fields. This type of motion was described

for the body in a single uniform gravity field by Grioli in 1947 [11] .

Grioli’s result was generalized by Kharlamova [12] , who added a
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otor to the body moving under the action of a single gravity field.

e show that the same motion is still possible in the presence

f three fields. Conditions are determined and explicit solution of

he equations of motion is given. This result generalizes the one

btained recently in [13] involving two coupled fields by the pres-

nce of the (independent) third field and the rotor. 

It should be noted that precessional motions the rigid body

bout a vertical axis are common for the symmetric top [14] [1] ,.

hey were considered in a more general setting in some recent

orks, e.g. [15] . The most exhaustive analysis of precessional mo-

ions about a tilted (non-vertical) axis in a combination of coaxial

elds can be found in [16] (see also [17] ). As far as we know, the

recession about a tilted axis in the presence of skew fields was

reated for the first time in [13] in the case of two fields. The case

f three skew fields was not considered before in the literature. 

.1. Equations of motiont about a vertical axis 

Let i, j, k be the unit vectors along the axes of the system Oxyz ,

xed in the body and let ω = (p, q, r) be the angular velocity of

he body, 

= ( α1 , α2 , α3 ) , β = ( β1 , β2 , β3 ) , γ = ( γ1 , γ2 , γ3 ) 

e the unit vectors along the axes of the inertial system OXYZ , all

eing referred to the body system. The relative position of the two
. This is an open access article under the CC BY-NC-ND license. 
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ystems will be described by the Eulerian angles: ψ- the angle of

recession around the Z -axis, θ -the angle of nutation between z

nd Z , and ϕ the angle of rotation of the body around the z -axis. 

The system under consideration here is a gyrostat. It consists of

 principal rigid body carrying a symmetric rotor, uniformly rotat-

ng about its axis of symmetry, which is fixed in the main body. In

irtue of symmetry of the rotor, this rotation does not affect the

istribution of mass in the system (the gyrostat). The presence of

he rotor is characterized by a constant vector σ added to the total

ngular momentum of the system. The system of principal axes of

nertia of the body is not the most suitable for describing the reg-

lar precessional motion of the Grioli type, so that we assume the

nertia matrix I in the Oxyz system in the general form: 

 = 

( 

A −F −E 
−F B −D 

−E −D C 

) 

(1) 

The position of the body can be described using Euler’s angles:

, θ , ϕ. The space vector basis and the angular velocity of the

ody have the form (e.g. the review book of Leimanis [1] ): 

α = ( cos ψ cos ϕ − cos θ sin ψ sin ϕ, − cos ψ sin ϕ 

− cos θ sin ψ cos ϕ, sin θ sin ψ) , β = ( sin ψ cos ϕ 

+ cos θ cos ψ sin ϕ, − sin ψ sin ϕ + cos θ cos ψ cos ϕ, 

− sin θ cos ψ) , 

= ( sin θ sin ϕ , sin θ cos ϕ , cos θ ) , (2) 

 = ( ˙ ψ sin θ sin ϕ + 

˙ θ cos ϕ, ˙ ψ sin θ cos ϕ 

− ˙ θ sin ϕ, ˙ ψ cos θ + ˙ ϕ ) . (3) 

Let the body be in motion about the fixed point O , while acted

pon by forces derived from a potential 

 = a · α + b · β + c · γ . (4) 

his potential can be interpreted as due to three uniform fields:

ravity, magnetic and electric fields acting on three types of centers

n the body: centre of mass, magnetic moment and centre of elec-

ric charge. For the three centers to be irreducible to a less num-

er of centers, it is necessary that the three centers do not lie in a

lane passing through the fixed point. The determinant formed of

he components of the centres in the body system of axes should

ot vanish. The same can be said about the three vectors repre-

enting the three fields in space. 

emark. We assume that during the motion of the electric charges

arried by the body, both Lorentz forces excerted by the magnetic

eld and the radiation due to accelerated charges remain negligi-

le. 

The dynamical problem can be formulated in the form of Euler-

oisson equations (see e.g [1] .) 

˙  I + ω × (ωI + σ ) = α×∂V 

∂α
+ β× ∂V 

∂β
+ γ × ∂V 

∂γ

= α × a + β × b + γ × c , 

˙ α + ω × α = 0 , ˙ β + ω × β = 0 , ˙ γ + ω × γ = 0 . (5) 

. The solution 

The regular precession is most simply described as the proper

otation of the body with a uniform angular velocity ˙ ϕ = � about

ts z−axis, which simultaneously precesses with the same angular

elocity ˙ ψ = � about the space axis Z keeping with it a fixed an-

le θ = 

π
2 . In this motion ϕ = ψ = �t, which we denote by u . The

escribed motion is periodic, with period T = 

2 π
� in t and period

 π in u. 
The solution of the Euler-Poisson Eqs. (5) corresponding to the

bove choices is 

α = ( cos 2 u, − sin u cos u, sin u ) , 

β = ( sin u cos u, − sin 

2 
u, − cos u ) , 

= ( sin u, cos u, 0) , (6) 

 = (� sin u, � cos u, �) . (7)

he last expression can be written as 

 = �( γ + k ) , 

o that ω 

2 = 2�2 . The momentary angular velocity ω is constant

n magnitude 
√ 

2 � and makes equal angles π /4 with the two axes

 and z , fixed in space and in the body, respectively. The motion

an thus be given an alternative description in the following man-

ar: 

Let C m 

and C f be two identical right circular cones with vertices

t the origin and with semi-vertical angle π /4. The first cone, with

xis along the z− axis, is fixed in the body and moving with it and

he second is fixed in space with its axis coinciding with the axis. The

recessional motion can be represented as rolling (without sliding) of

he movable cone C m 

on the fixed cone C f with the angular velocity
 

2 � . 

Now, substituting the solution (6) and (7) in (5) we note that

he three vector Poisson equations are identically satisfied, so that

e obtain from the remaining Euler equation only three scalar

quations involving powers of trigonometric functions of �t . The

onditions that each coefficient of the independent trigonometric

erms must vanish lead in a simple way to the following set of

onditions on the values of parameters: 

 = B, F = 0 , (8a) 

 1 = c 2 = σ1 = σ2 = 0 , (8b) 

 2 = b 1 = 0 , b 2 = −a 1 , (8c) 

 3 + �2 D = 0 , (8d) 

 3 − �2 E = 0 (9) 

�2 + σ3 � + a 1 − c 3 = 0 (10)

Now we note that: 

1) The first condition (8a) means that the x, y − plane is a principal

plane containing one of the two circular cross-sections of the

ellipsoid of inertia of the body. 

2) From (8b) , both the centre of mass and the gyrostatic momen-

tum lie on the z−axis, i.e. the line passing through the fixed

point and perpendicular to that cross-section. 

3) Till now, we have fixed the choice of z− axis but we still have

the freedom to choose any two orthogonal axes in the plane

of the circular cross-section as x, y axes. We shall fix this free-

dom by choosing y − axis to be the line of intersection of the

two circular cross-sections, which is a principal axis(namely,

the medium axis). This adds to (8) the condition 

D = 0 (11) 

and then from (8d) we obtain 

b 3 = 0 (12) 

Thus, the inertia matrix becomes 

I = 

( 

B 0 −E 
0 B 0 

−E 0 C 

) 

(13) 
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Fig. 1. The configuration of motion at four equal intervals. The x − axis carrying the magnetic moment is represented by thick green line segment. The y − axis carrying 

the electric moment is represented by thick red line segment. The z−axis carrying the centre of mass is represented by thick blue line segment. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 
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and the potential of the three force fields can be written as 

V = a 1 (α1 − β2 ) + a 3 α3 + c 3 γ3 (14)

where we still have only two equations to be satisfied, namely,

(9) and (10) . From now on, we descriminate between two pos-

sible cases: 

2.1. The first case - the case of a simple rigid body σ3 = 0 

When the gyrostatic momentum vanishes, (9) and (10) give 

� = ±
√ 

c 3 − a 1 
C 

(15)

a 3 = 

E(c 3 − a 1 ) 

C 
(16)

We note that: 

1. The angular velocity � is real only under the condition c 3 −
a � 0 . The generic motion is periodic of time period 2 π / �.
1 
When c 3 = a 1 we have � = 0 and also a 3 = 0 . The solution

(7) in that case becomes 

α= (1 , 0 , 0) , β= (0 , 0 , −1) , γ = (0 , 1 , 0) (17)

and describes one of the possible equilibrium positions Thus,

regular precession is possible only when c 3 > a 1 . 

2. The motion is time reversible, i.e. the change of sign of � is

equivalent to changing the sign of time. 

In virtue of (16) the potential (14) becomes 

 = a 1 (α1 − β2 ) + c 3 γ3 + 

E(c 3 − a 1 ) 

C 
α3 (18)

hysical interpretation of this potential can be performed in differ-

nt manners. An example is given in [13] for the case of two cou-

led fields. Here we have only two parameters a 1 and c 3 , which

haracterize three centres of charge. The matrix formed of the co-
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fficients in the potential is 
 

a 1 0 

E 
C 
(c 3 − a 1) 

0 −a 1 0 

0 0 c 3 

) 

t has rank 3, so that the three vectors describing the centres are

ot lying in a plane and we are dealing with three physically inde-

endent effects. 

Let us write the potential (18) in the form 

 = a 1 i · α − a 1 j · β + k · ( c 3 γ + 

E(c 3 − a 1 ) 

C 
α) (19)

The first two terms of (19) are coupled by the constant a 1 , so

hat they can vanish only simultaneously. They may be understood

s due to a system of charges with moment a 1 , whose center lies

n the x -axis and a magnetized part of the body with magnetic

oment a 1 directed along the negative y −axis subject to two uni-

orm electric and magnetic fields α and β, orthogonal to each other

nd of equal intensities. 

The third term of (19) can be interpreted as the gravity effect

n the body with centre of mass on the z−axis (normalized so that

he product of mass and its distance from the fixed point equals

nity) by a uniform gravity field g = c 3 γ + 

E(c 3 −a 1 ) 
C α. The vector

 is pointing vertically upwards. The axis of precession along the

ector γ is inclined to the vertical vector g at an angle 

= tan 

−1 E(c 3 − a 1 ) 

Cc 3 
(20) 

Note here that the axis of precession can take a vertical posi-

ion only when E = 0 , i.e. when the z−axis is an axis of dynamical

ymmetry. 

To compare with the known result of one gravity field due to

rioli (see e.g [1] .), we express this angle in terms of the principal

oments of inertia at the fixed point. The inertia matrix (13) has

ne eigenvalue B (the medium moment of inertia). Let the other

wo principal moments be A 0 and C 0 . We have the relations 

 0 + C 0 = B + C, A 0 C 0 = BC − E 2 (21)

rom which we find 

E 

C 
= 

√ 

(A 0 − B )(B − C 0 ) 

A 0 − B + C 0 

nd thus the angle (20) becomes 

= tan 

−1 [ 

√ 

(A 0 − B )(B − C 0 ) 

A 0 − B + C 0 
(1 − a 1 

c 3 
)] (22) 

n the case of single gravity field a 1 = 0 (Grioli’s case) we obtain

he same angle as obtained for that case by Guliaev (see e.g [1] .,

6] ). 

Fig. 1 illustrates the picture of the motion of the body axes rel-

tive to the space axes at times 0 , 1 4 , 
1 
2 , 

3 
4 of its time period. 

.2. The second case - the case of a gyrostat σ3 � = 0 

In this case the potential is given by (14) and � is subject

o two conditions (9) and (10) . Their compatibility (the resultant)

ondition is 

 E(a 1 − c 3 ) + Ca 3 ] 
2 = Ea 3 σ

2 
3 (23)

f we take parameters satisfying this condition then the angular

elocity is given by 

= 

1 

σ3 

(
c 3 − a 1 − C 

E 
a 3 

)
= ±

√ 

a 3 
E 

(24) 

Here we note that: 
1. The motion for a set of parameters is not time reversible. It be-

comes time reversible only after simultaneous change of signs

of � and σ 3 . 

2. From (23) the values of E and a 3 must have the same sign. 

3. The angular velocity � from (10) is real only when σ 2 
3 +

4 C(c 3 − a 1 ) > 0 . In the generic case there are two values of �

corresponding to every combination of parameters. In the case

of vanishing gyrostatic momentum ( σ3 = 0 ) the two values are

equal in magnitude and different in sign. 

4. The physical interpretation is almost the same as in the previ-

ous section, except that the angle between the axis of preces-

sion and the vertical 

δ = tan 

−1 a 3 
c 3 

, 

as well as the angular velocity, depends on the gyrostatic mo-

mentum in virtue of (23) . 

5. When a 1 = 0 our case becomes equivalent to the case of [12] ,

which adds the rotor to Grioli’s classical result. 
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