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efficient parameter estimation and true model. An equivalence theorem is stated and proved for PDKL-
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1. Introduction

The D-optimality criterion is the common criterion for achiev-
ing efficient parameter estimation. For more details about D-
optimality, see [1-3]. D-optimal designs are conventional optimiza-
tions based on a chosen optimality criterion and the model that
will be suitable.

In the literature, there are several optimality criteria for dis-
criminate between models (Ds -, T- and KL-criteria). Each of these
criteria becomes applicable under certain condition and situa-
tion. In the case of the experimenter want to discriminate be-
tween nested models, the Ds-criterion can be applied. Thus, for
two nested regression models which differ by s > 1 parameters. T-
optimality criterion introduced in [4,5] is a different method for
discriminating between models. This criterion is useful for two or
more regression models and applied on linear or nonlinear models.
However, T-criterion must be used to discrimination homoscedastic
models with Gaussian errors. Ucinski and Bogacka [6] introduced
an extension of T-criterion for non-homoscedastic errors. For dis-
criminating between more generalized models with random errors
following any distribution [7, 8] introduced the KL-criterion, which
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depends on the Kullback-Liebler distance. Moreover, the T-criterion
is a special case of the KL-criterion in the homoscedastic case and
the generalization provided by Ucifiski and Bogacka [6] (in the het-
eroscedastic case), when the error distribution is normal. Finally,
the KL-criterion can be used when the rival models are nested or
not, homoscedastic or heteroscedastic, and in the case of the dis-
tribution has normal error.

Sometimes, experimenters wish to maximize the probability of
an outcome. To this aim, McGree and Eccleston [9] have proposed
a P-optimality criterion, which provide a maximum probability of
observing outcome. Moreover, there are situation when an exper-
imenter may be interested to achieve multiple objectives. For this
aim, a PDKL-optimality criterion will be derived in this paper. This
criterion proposed a method of compound criteria to achieve de-
signs to hold an efficient parameter estimation, true model and a
high probability of favorite outcome.

The paper is organized as follows: Section 2 introduced a sim-
ple review for D-, KL-, P- optimum designs. Compound design cri-
teria DKL- and DP-optimum designs are presented Section 3. Fi-
nally, a new criterion called PDKL-optimality will be derived and
an equivalence theorem is proved in Section 4.

1110-256X/© 2017 Egyptian Mathematical Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.

(http://creativecommons.org/licenses/by-nc-nd/4.0/)


http://dx.doi.org/10.1016/j.joems.2017.01.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/joems
http://crossmark.crossref.org/dialog/?doi=10.1016/j.joems.2017.01.002&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:neveenkilany@hotmail.com
http://dx.doi.org/10.1016/j.joems.2017.01.002
http://creativecommons.org/licenses/by-nc-nd/4.0/

N.M. Kilany /Journal of the Egyptian Mathematical Society 25 (2017) 212-215 213

2. D-, KL-, P-optimum designs
2.1. KL-optimum designs

Lopez-Fidalgo et al. [8] introduced a criterion for discrimina-
tion between two models, which consider a generalization of T-
criterion for the case of non-normal models. This criterion called
KL-criterion and it is definition depend on the Kullback-Leibler
distance between two statistical models.

Let y be a random variable and let f;(y, x, 81) and f5(y, X, 6,) be
two rival probability density functions of y, X € x and on a vector
of unknown parameters, 6; € ®;,i =1, 2. Assuming that f;(y,x, 61)
is the “true” model, then the KL distance between the true model
fily, X, 81) and other model f,(y, X, 8;) is

fi(y. x;61)
z ,,x,9=/ ,X; 01)log——"——~
(fi. f2 2) ] [, x;61) % 0)
where, an experimental condition x generated by the experimenter
from a design £ is a random variable (or a random vector) belongs
to an experimental domain x c R™, m > 1.
The KL-optimality criterion is given by

L (§) =9I211i®nz/x Z(f1, fo. X, 62)&(dX) (1)

dy, xeyx

The KL-optimum design is the design maximizes I;(£) and de-
noted by & *;.

For regular design &*,;, Lopez-Fidalgo et al. [8] prove that
&*51is a KL-optimum design if f ¥51(x, £*51) < 0, X € x, where,

wzl(xa$)=1(f1,fzﬁx’ éz) _/x I(fhfLX, éz)é(dx)

is the directional derivative of I;(£). The KL-efficiency of a design
& relative to the optimum design £*,,is

Effa(§) = n (©)

2
I21 (52*1) @)

2.2. D-optimum designs

D-optimality is the vital design criterion, introduced by [10],
which interested of the quality of the parameter estimates. The
idea of D-optimality depends on maximization of logarithm the
determinant of the information matrix M(&, 0)log|M(&, 6)|, or
equivalently, minimizes logarithm determinant of the inverse of
information matrix, log|M'(€, 9)|. In the general context for D-
optimality [11] redefined the D-optimality criterion as follows:

log|M;(§. 6))]
—00 if [M;(&,6;)| is singular
(3)

where |M;((£,6;),&)| = PoxexJix, 6,)€ (x) is the information ma-
trix corresponding to the probability density function fi(y, x; 6;),
i=1, 2 and Ji(x, 6;) is the Fisher’s information matrix for a single
observation on y at x.

A design égi is a D-optimum design iff ¥p, (x, é{;i) <0,x € Y,
where
¥p, (X, &) = tr[M; 1 (£, 0))i(x. 6)] —qi, i=1,2
is the directional derivative of the D-criterion function. The D-
efficiency of any design & is given by

1/g;
_ [ MGGl )
Effp(§) = <|M(SD*i’9i)|) i=1,2. (4)

where g; is the number of parameters for each model.

if [M;(&, 6;)| is nonsingular,
%M@@h{ o

2.3. P-optimum designs

Often, experimenters request to obtain a maximum probability
of an outcome. To this aim, McGree and Eccleston [9] have pro-
posed a P-optimality criterion. P-optimality criterion is a criterion
aimed to maximize a function of the probability of observing a par-
ticular outcome.

One of the forms of P-optimality which defined as a maximiza-
tion of a weighted sum of the probabilities of success, which is
defined as follows:

®p(5) =Y i (8.5)w;.

where, 7;(6, £;) is the j-th probability of success given by &; and
w; is the experimental effort relating to the j-th support point. In
this criterion, design weights have been included and will play a
role in maximizing the probabilities.

For two rival models fi(y, x, 01) and f,(y, X, 05), we can defined
the P-optimality criterion by the following function

(Dpl(%') =ij(9i,§j)wj, i=1,2 (5)

j=1

where 77 (0, §;) is the j-th probability of success in the model f;(y,
x; 0;) and 6; are the parameters for the two possible models. A de-
sign &; is a P-optimum design for high probability of success for

the m(;del fiy, x; 0;) iff ¥ (x, é,:;) <0, x € x, where
@p (x) - Pp (&5)
@5 (67)

is the directional derivative of ®p, (€). The P- efficiency of a design
& relative to the optimum design & is

Yo i (6 &) w;
X i (0 & )W

Vi (x.85) =

Effo (&) = =1.2 (6)

3. Compound design criteria

There are situations when a practitioner may be interested in a
multiple objectives. To achieve the possible objectives, compound
criteria can be used. A compound criterion optimizes a combi-
nation of multiple objective functions molded by maximizing a
weighted product of efficiencies. In this Section, the DKL- and DP-
compound criteria will be presented. The aim of DKL-optimality
is to obtain an efficient parameter estimation and true model and
DP-optimality aimed to obtain an efficient parameter estimation
with probability based optimality.

3.1. DKL-optimum designs

Tommasi [12] introduced the DKL-optimality criterion for dual
objective; discrimination between two rival models and efficient
estimation for their parameters. For discrimination between fi(y,
x; 01) and f5(y, X; 6,) models, two possible KL-criteria have been
considered, namely I,1(£) and I15(£€), excepting the case of nested
models, where the largest model must be considered as the true
model.

The DKL-optimality defined as follows

a o a3/q
I (€) iz (€) [M: (8. €)|
[0} =
w0 - (i) (i) (v
1-o—ax—03/q2
y <|M2(0’5)||> q )

|1\/I2 (0’ gsz)
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where the coefficients Z?:] a;=1, 0<a; <1. These coefficients
illustrates the importance of the parts of the design criterion. Tak-
ing the logarithm of (7) yields,

o loglM (0.)|
1 — O

+;—2a2_a310g|M2(0,§)| (8)

log ®pir(§) = arlogly (§) + azlogli (§) +

The terms involving &3, &7, 2;'51 and ED*Z must be ignored, when
the maximization will be taken over £&. A DKL-optimum design,
&py» maximizes log @py;(§).

The equivalence theorem for DKL-optimum designs is state that
the directional derivative function, ¥pg; (X, &fy, ) < 0, where,

Y1 (X, €) Ya(x,§)
1 (§) T l2(8)
1- o1

+ ﬂwm (%, )
qz

Yoke(X. &) = ay

+ Ly (x,8)
q1

3.2. DP-optimum designs

For the aim of parameter estimation and probability based-
optimality, McGree and Eccleston [9] have proposed DP-optimality
criterion. From the definition of the compound design criterion,
DP-optimality defined a weighted geometric mean of efficiencies
design & with respect to D- and P- optimality. That is

a/q n , . A 1at
Spp(§) = < |M1 (0’$)| ) (Zil ”1(0’ 51)W;) o)

|Mi (6, &) Y (0. &) wi
Taking the logarithm of (9) yields,

log @op(£) = _-logls (0.£)| + (1 —)log ) (6. &)w (10)
i=1

The terms containing & and &} have been ignored, since they
are constants when a maximum is taken over £. A DP-optimum de-
sign, &}, maximizes log ®pp(&). The equivalence theorem for DP-
optimum design states that the derivative function, ¥pp(x,&7p) <
o, where

Yor(x. &) = - fTOOM (0. 57) f )

d:)p(X) — q>p(§bkp)
*““’”( r(Es) )

where, f(x)Tis arrow of the design matrix X={f(x)7,....f(xp)T}.
4. PDKL-optimum designs

In this section, we will introduce a new compound criterion;
called PDKL-optimality. The PDKL- optimality criterion aimed to
obtain the maximum joint efficiency for parameter estimation,
model discrimination and probability based- optimality.

The new criterion is useful for different generalized linear mod-
els GLMs with binary data. GLMs extend normal theory of regres-
sion to any distribution belonging to the one-parameter exponen-
tial family. As well as the normal, this includes the gamma, Pois-
son, and binomial distributions, all of which are important in the
analysis of data. GLMs relates the random term (the independent
response Y) to the systematic term to the linear predictor (Xg) via
a link function g(.). Consider the generalized linear model GLMs

EY)=pn=n=g"XpB)

which is defined by the distribution of the response, Y, a linear
predictor nand two functions:

« A link function g(.)that describes how the mean, E(Y;) = u; de-
pends on the linear predictor g(u;) =Y;.

« A variance function that describes how the variance, Var(Y;) de-
pends on the mean

Var(Y;) = ¢(V())
where the dispersion parameter ¢ is a constant.

In GLMs, the errors or noise €; have relaxed assumptions where
it may or may not have normal distribution. Some common link
functions are used such that the identity, logit, log and probit link
to induce the traditional linear regression, logistic regression, Pois-
son regression models.

The formula of PDKL-optimality can be derived using the
weighted geometric mean of efficiencies design for P-, D-, and KL-
optimum design. That is

e} ay
@\ (1@ ) (MmO \" ([ IM0.5)] \"
biE) ) \(n)) \|IM(8.&,)]) \|M(6.5,)|
n *s n *6
o Zj:l ﬁ]j(O],Sj)Wj Zj:] ﬂzj(Oz,Ej)Wj (]1)
i (00 &)wi )\ i mai(02, &3 )w;
where the coefficients 2?11 oj=1land O<o;<1,i=1,2,...,6.
To interpret the structure of the design criterion, take logarithm

of Eq. (11). Except for some constant terms, the criterion to be
maximized will be

Pppki(§) = arlogla (§) + aaloglia (§) + %long (6.9)|

n
+ 2 log M (0.£)| +astogY_ w1 (01w,
j=1

n
+a6log2n2j(02, éj)wj

j=1

(12)

A PDKL-optimum design, &, maximizes ®pp;(&). The direc-
tional derivative function for Eq. (12) is given by:

U (X &) Vi(x.§) o3
n® T2 TLE g m®d)

o 1/fpl (X’E)
+ o Y, (X. &) +as i1 (01 §5)w;
Yr (%, §)

6

Y 72j (02, &)W

The general equivalence theorem for PDKL-optimality may be
stated as follows,

VYrpir (X, Eppir) = X1

+o (13)

Theorem. For PDKL-optimal design, &}, the following three condi-
tions are equivalent.

(i) A necessary and sufficient condition for a design &, to be
PDKL-optimum is fulfillment of the inequality, ¥ppki (X. Ep) <
0, x e x, where the directional derivative ¥ ppy; is given in
Eq. (13).

(ii) The upper bound of Yrppk; (X, &fpy; ) is attained at the points of
the optimum design.

(iii) For any non-optimum design &, that is a design for which
Dppir(§) < Ppprr Eppir)- ilel)l(ﬂ Yepki (X, Eppgr) > 1

Proof. Let £; and &, be any two designs and 0 < A < 1 be a con-
stant. From the definition of the KL- criterion function it follows
that

Ip[A&1 + (1 = A)&s]
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= min {)»/ J(f2. %, 62), (f1. %, 01)]&1(dx)
X

010,

+(1 —)»)/XJ[(fLX, 62), (f1,x, 91)]52(517()}

> Mp(§1) + (1 = Mha(52)

where the last inequality follows immediately by replacing each
term

[ 1 . (ix. 6i(0 j=1.2
X

with its minimum I;(§;), j=1,2. Thus the KL-criterion func-
tion is concave function and hence the tow first terms in
Eq. (12) are concave functions. The third and fourth terms of
Eq. (12) is D-optimality for two rival models f;(y, x, 61) and f,(y,
X, 6,), respectively, which are concave optimality criterion. Also,
since 37y 71;(01,&)w; = 0 and Y7, 72j(05,&)w; = 0, so that
log > 1 1(61,&5)w; and log > 772j(05, §;)w; are concave func-
tions. Thus Eq. (12) is a convex combination of concave func-
tions, since the coefficients «;, i=1,2,3,4,5, 6 satisfy the condi-
tions Z?zl o; =1, 0 <q; <1. Consequently, the PDKL-design cri-
terion defined in Eq. (12) is concave function. Thus, the PDKL-
criterion satisfies the conditions of convex optimum design theory
and therefore an equivalence theorem has been proved.
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