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1. Introduction 

The D-optimality criterion is the common criterion for achiev-

ing efficient parameter estimation. For more details about D-

optimality , see [1–3] . D-optimal designs are conventional optimiza-

tions based on a chosen optimality criterion and the model that

will be suitable. 

In the literature, there are several optimality criteria for dis-

criminate between models (Ds -, T- and KL-criteria). Each of these

criteria becomes applicable under certain condition and situa-

tion. In the case of the experimenter want to discriminate be-

tween nested models, the Ds-criterion can be applied. Thus, for

two nested regression models which differ by s > 1 parameters. T-

optimality criterion introduced in [4,5] is a different method for

discriminating between models. This criterion is useful for two or

more regression models and applied on linear or nonlinear models.

However, T-criterion must be used to discrimination homoscedastic

models with Gaussian errors. Uci ́nski and Bogacka [6] introduced

an extension of T-criterion for non-homoscedastic errors. For dis-

criminating between more generalized models with random errors

following any distribution [7, 8] introduced the KL-criterion, which
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epends on the Kullback–Liebler distance. Moreover, the T-criterion

s a special case of the KL-criterion in the homoscedastic case and

he generalization provided by Uci ́nski and Bogacka [6] (in the het-

roscedastic case), when the error distribution is normal. Finally,

he KL-criterion can be used when the rival models are nested or

ot, homoscedastic or heteroscedastic, and in the case of the dis-

ribution has normal error. 

Sometimes, experimenters wish to maximize the probability of

n outcome. To this aim, McGree and Eccleston [9] have proposed

 P-optimality criterion, which provide a maximum probability of

bserving outcome. Moreover, there are situation when an exper-

menter may be interested to achieve multiple objectives. For this

im, a PDKL-optimality criterion will be derived in this paper. This

riterion proposed a method of compound criteria to achieve de-

igns to hold an efficient parameter estimation, true model and a

igh probability of favorite outcome. 

The paper is organized as follows: Section 2 introduced a sim-

le review for D -, KL-, P- optimum designs. Compound design cri-

eria DKL- and DP-optimum designs are presented Section 3 . Fi-

ally, a new criterion called PDKL-optimality will be derived and

n equivalence theorem is proved in Section 4 . 
. This is an open access article under the CC BY-NC-ND license. 
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. D-, KL-, P-optimum designs 

.1. KL-optimum designs 

López-Fidalgo et al. [8] introduced a criterion for discrimina-

ion between two models, which consider a generalization of T-

riterion for the case of non-normal models. This criterion called

L-criterion and it is definition depend on the Kullback–Leibler

istance between two statistical models. 

Let y be a random variable and let f 1 ( y , x, θ1 ) and f 2 ( y , x, θ2 ) be

wo rival probability density functions of y , x ∈ χ and on a vector

f unknown parameters, θi ∈ �i , i = 1 , 2 . Assuming that f 1 ( y , x, θ1 )

s the “true” model, then the KL distance between the true model

 1 ( y , x, θ1 ) and other model f 2 ( y , x, θ2 ) is 

 ( f 1 , f 2 , x , θ2 ) = 

∫ 
χ

f 1 ( y, x ; θ1 ) log 
f 1 ( y, x ; θ1 ) 

f 2 ( y, x ; θ2 ) 
dy, x ∈ χ

here, an experimental condition x generated by the experimenter

rom a design ξ is a random variable (or a random vector) belongs

o an experimental domain χ ⊂ R 

m , m ≥ 1 . 

The KL-optimality criterion is given by 

 21 ( ξ ) = min 

θ2 ∈ �2 

∫ 
χ

I ( f 1 , f 2 , x , θ2 ) ξ ( dx ) (1) 

The KL-optimum design is the design maximizes I 21 ( ξ ) and de-

oted by ξ ∗
KL . 

For regular design ξ ∗
21 , López-Fidalgo et al. [8] prove that

∗
21 is a KL-optimum design if f ψ 21 ( x, ξ ∗

21 ) ≤ 0, x ∈ χ , where, 

 21 ( x, ξ ) = I 
(

f 1 , f 2 , x , ˆ θ2 

)
−

∫ 
χ

I 
(

f 1 , f 2 , x , ˆ θ2 

)
ξ ( dx ) 

s the directional derivative of I 21 ( ξ ). The KL-efficiency of a design

relative to the optimum design ξ ∗
21 is 

f f 21 ( ξ ) = 

I 21 ( ξ ) 

I 21 

(
ξ ∗

21 

) (2) 

.2. D-optimum designs 

D-optimality is the vital design criterion, introduced by [10] ,

hich interested of the quality of the parameter estimates. The

dea of D-optimality depends on maximization of logarithm the

eterminant of the information matrix M ( ξ , θ ), log | M ( ξ , θ )|, or

quivalently, minimizes logarithm determinant of the inverse of

nformation matrix, log | M 

1 ( ξ , θ )|. In the general context for D-

ptimality [11] redefined the D-optimality criterion as follows: 

D i [ M i ( ξ , θi ) ] = 

{
log | M i ( ξ , θi ) | if | M i ( ξ , θi ) | is nonsingular , 

−∞ if | M i ( ξ , θi ) | is singular 

(3) 

here | M i ( ( ξ , θi ) , ξ ) | = 

∑ 

x ∈ χ J i ( x , θi ) ξ (x) is the information ma-

rix corresponding to the probability density function f i ( y , x; θ i ),

 = 1, 2 and J i (x, θ i ) is the Fisher’s information matrix for a single

bservation on y at x. 

A design ξ ∗
D i 

is a D-optimum design iff ψ D i 
( x , ξ ∗

D i 
) ≤ 0 , x ∈ χ ,

here 

 D i ( x , ξ ) = tr 
[
M 

−1 
i ( ξ , θi ) J i ( x , θi ) 

]
− q i , i = 1 , 2 

s the directional derivative of the D-criterion function. The D-

fficiency of any design ξ is given by 

f f D i ( ξ ) = 

( 

| M ( ξ , θi ) | ∣∣M 

(
ξ ∗

D i 
, θi 

)∣∣
) 1 / q i 

i = 1 , 2 . (4)

here q is the number of parameters for each model. 
i 
.3. P-optimum designs 

Often, experimenters request to obtain a maximum probability

f an outcome. To this aim, McGree and Eccleston [9] have pro-

osed a P-optimality criterion. P-optimality criterion is a criterion

imed to maximize a function of the probability of observing a par-

icular outcome. 

One of the forms of P-optimality which defined as a maximiza-

ion of a weighted sum of the probabilities of success, which is

efined as follows: 

P ( ξ ) = 

∑ n 

j=1 
π j 

(
θ, ξ j 

)
w j , for j = 1 , 2 , . . . . . . ., n 

here, π j ( θ, ξ j ) is the j-th probability of success given by ξ j and

 j is the experimental effort relating to the j-th support point. In

his criterion, design weights have been included and will play a

ole in maximizing the probabilities. 

For two rival models f 1 ( y, x, θ1 ) and f 2 ( y, x, θ2 ), we can defined

he P-optimality criterion by the following function 

P i ( ξ ) = 

n ∑ 

j=1 

πi j 

(
θi , ξ j 

)
w j , i = 1 , 2 (5)

here π ij ( θ i , ξ j ) is the j-th probability of success in the model f i ( y,

 ; θ i ) and θ i are the parameters for the two possible models. A de-

ign ξ ∗
P i 

is a P-optimum design for high probability of success for

he model f i ( y, x ; θ i ) iff ψ P i 
( x, ξ ∗

P i 
) ≤ 0 , x ∈ χ , where 

ψ P i 

(
x, ξ ∗

P i 

)
= 

�P i ( x ) − �P i 

(
ξ ∗

P i 

)
�P i 

(
ξ ∗

P i 

)
s the directional derivative of �P i 

(ξ ) . The P - efficiency of a design

relative to the optimum design ξ ∗
P is 

f f P i ( ξ ) = 

∑ n 
j=1 πi j 

(
θi , ξ j 

)
w j ∑ n 

j=1 πi j 

(
θi , ξ

∗
P i 

)
w j 

, i = 1 , 2 (6)

. Compound design criteria 

There are situations when a practitioner may be interested in a

ultiple objectives. To achieve the possible objectives, compound

riteria can be used. A compound criterion optimizes a combi-

ation of multiple objective functions molded by maximizing a

eighted product of efficiencies. In this Section, the DKL- and DP-

ompound criteria will be presented. The aim of DKL-optimality

s to obtain an efficient parameter estimation and true model and

P-optimality aimed to obtain an efficient parameter estimation

ith probability based optimality. 

.1. DKL-optimum designs 

Tommasi [12] introduced the DKL-optimality criterion for dual

bjective; discrimination between two rival models and efficient

stimation for their parameters. For discrimination between f 1 ( y ,

; θ1 ) and f 2 ( y , x; θ2 ) models, two possible KL-criteria have been

onsidered, namely I 21 ( ξ ) and I 12 ( ξ ), excepting the case of nested

odels, where the largest model must be considered as the true

odel. 

The DKL-optimality defined as follows 

DKL ( ξ ) = 

( 

I 21 ( ξ ) 

I 21 

(
ξ ∗

21 

)
) α1 

( 

I 12 ( ξ ) 

I 12 

(
ξ ∗

12 

)
) α2 

( ∣∣M 1 

(
θ, ξ

)∣∣∣∣M 1 

(
θ, ξ ∗

D 1 

)∣∣
) α3 / q 1 

×
( ∣∣M 2 

(
θ, ξ

)∣∣∣∣M 2 

(
θ, ξ ∗

D 2 

)∣∣
) 1 −α1 −α2 −α3 / q 2 

(7) 
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where the coefficients 
∑ 3 

i =1 αi = 1 , 0 ≤ αi ≤ 1 . These coefficients

illustrates the importance of the parts of the design criterion. Tak-

ing the logarithm of (7) yields, 

log �DKL ( ξ ) = α1 l og I 21 ( ξ ) + α2 l og I 12 ( ξ ) + 

α3 

q 1 
l og 

∣∣M 1 

(
θ, ξ

)∣∣
+ 

1 − α1 − α2 − α3 

q 2 
log 

∣∣M 2 

(
θ, ξ

)∣∣ (8)

The terms involving ξ ∗
21 

, ξ ∗
12 

, ξ ∗
D 1 

and ξ ∗
D 2 

must be ignored, when

the maximization will be taken over ξ . A DKL-optimum design,

ξ ∗
DKL , maximizes log �DKL ( ξ ) . 

The equivalence theorem for DKL-optimum designs is state that

the directional derivative function, ψ DKL ( x , ξ
∗
DKL 

) ≤ 0 , where, 

ψ DKL ( x , ξ ) = α1 
ψ 21 ( x , ξ ) 

I 21 ( ξ ) 
+ α2 

ψ 12 ( x , ξ ) 

I 12 ( ξ ) 
+ 

α3 

q 1 
ψ D 1 ( x , ξ ) 

+ 

1 − α1 − α2 − α3 

q 2 
ψ D 2 ( x , ξ ) 

3.2. DP-optimum designs 

For the aim of parameter estimation and probability based-

optimality, McGree and Eccleston [9] have proposed DP-optimality

criterion. From the definition of the compound design criterion,

DP-optimality defined a weighted geometric mean of efficiencies

design ξ with respect to D - and P - optimality. That is 

�DP ( ξ ) = 

( ∣∣M 1 

(
θ, ξ

)∣∣∣∣M 1 

(
θ, ξ ∗

D 

)∣∣
) α/ q 1 ( ∑ n 

i =1 πi 

(
θ, ξi 

)
w i ∑ n 

i =1 πi 

(
θ, ξ ∗

P 

)
w i 

) 1 −α

(9)

Taking the logarithm of (9) yields, 

log �DP ( ξ ) = 

α

q 1 
l og 

∣∣M 1 

(
θ, ξ

)∣∣ + ( 1 − α) l og 

n ∑ 

i =1 

πi 

(
θ, ξi 

)
w i (10))

The terms containing ξ ∗
D 

and ξ ∗
P 

have been ignored, since they

are constants when a maximum is taken over ξ . A DP -optimum de-

sign, ξ ∗
DP , maximizes log �DP ( ξ ) . The equivalence theorem for DP -

optimum design states that the derivative function, ψ DP ( x, ξ ∗
DP ) ≤

α, where 

ψ DP ( x , ξ
∗
DP ) = 

α

q 1 
f T ( x ) M 

−1 
(
θ, ξ ∗

DP 

)
f ( x ) 

+ ( 1 − α) 

( 

�P ( x ) − �P 

(
ξ ∗

DP 

)
�P 

(
ξ ∗

DP 

)
) 

where, f (x) T is arrow of the design matrix X = { f ( x 1 ) 
T , . . . . f ( x n ) T } . 

4. PDKL-optimum designs 

In this section, we will introduce a new compound criterion;

called PDKL-optimality. The PDKL- optimality criterion aimed to

obtain the maximum joint efficiency for parameter estimation,

model discrimination and probability based- optimality. 

The new criterion is useful for different generalized linear mod-

els GLMs with binary data. GLMs extend normal theory of regres-

sion to any distribution belonging to the one-parameter exponen-

tial family. As well as the normal, this includes the gamma, Pois-

son, and binomial distributions, all of which are important in the

analysis of data. GLMs relates the random term (the independent

response Y) to the systematic term to the linear predictor ( X β) via

a link function g (.). Consider the generalized linear model GLMs 

E(Y ) = μ = η = g −1 (X β) 

which is defined by the distribution of the response, Y, a linear

predictor η and two functions: 
• A link function g (.) that describes how the mean, E( Y i ) = μi de-

pends on the linear predictor g( μi ) = Y i . 

• A variance function that describes how the variance, Var ( Y i ) de-

pends on the mean 

V ar ( Y i ) = φ( V ( μ) ) 

where the dispersion parameter φ is a constant. 

In GLMs, the errors or noise εi have relaxed assumptions where

t may or may not have normal distribution. Some common link

unctions are used such that the identity, logit, log and probit link

o induce the traditional linear regression, logistic regression, Pois-

on regression models. 

The formula of PDKL-optimality can be derived using the

eighted geometric mean of efficiencies design for P-, D-, and KL-

ptimum design. That is 

 

I 21 ( ξ ) 

I 21 

(
ξ ∗

21 

)
) α1 

( 

I 12 ( ξ ) 

I 12 

(
ξ ∗

12 

)
) α2 

( ∣∣M 1 

(
θ, ξ

)∣∣∣∣M 1 

(
θ, ξ ∗

D 1 

)∣∣
) 

α3 
q 1 

( ∣∣M 2 

(
θ, ξ

)∣∣∣∣M 2 

(
θ, ξ ∗

D 2 

)∣∣
) 

α4
q 2

×
( ∑ n 

j=1 π1 j 

(
θ1 , ξ j 

)
w j ∑ n 

j=1 π1 j 

(
θ1 , ξ ∗

P 1 

)
w j 

) α5 
( ∑ n 

j=1 π2 j 

(
θ2 , ξ j 

)
w j ∑ n 

j=1 π2 j 

(
θ2 , ξ ∗

P 2 

)
w j 

) α6 

(11

here the coefficients 
∑ 6 

i =1 αi = 1 and 0 ≤ αi ≤ 1 , i = 1 , 2 , . . . , 6 . 

To interpret the structure of the design criterion, take logarithm

f Eq. (11) . Except for some constant terms, the criterion to be

aximized will be 

PDKL ( ξ ) = α1 l og I 21 ( ξ ) + α2 l og I 12 ( ξ ) + 

α3 

q 1 
l og 

∣∣M 1 

(
θ, ξ

)∣∣
+ 

α4 

q 2 
log 

∣∣M 2 

(
θ, ξ

)∣∣ + α5 log 

n ∑ 

j=1 

π1 j 

(
θ1 , ξ j 

)
w j 

+ α6 log 

n ∑ 

j=1 

π2 j 

(
θ2 , ξ j 

)
w j (12)

A PDKL-optimum design, ξ ∗
PDKL 

, maximizes �PDKL ( ξ ). The direc-

ional derivative function for Eq. (12) is given by: 

 PDKL ( x , ξPDKL ) = α1 

ψ 21 

(
x , ξ21 

)
I 21 ( ξ ) 

+ α2 
ψ 12 ( x , ξ ) 

I 12 ( ξ ) 
+ 

α3 

q 1 
ψ D 1 ( x , ξ ) 

+ 

α4 

q 2 
ψ D 2 ( x , ξ ) + α5 

ψ P 1 ( x , ξ ) ∑ n 
j=1 π1 j 

(
θ1 , ξ j 

)
w j 

+ α6 

ψ P 2 ( x , ξ ) ∑ n 
j=1 π2 j 

(
θ2 , ξ j 

)
w j 

(13)

The general equivalence theorem for PDKL -optimality may be

tated as follows, 

heorem. For PDKL-optimal design, ξ ∗
PDKL , the following three condi-

ions are equivalent. 

(i) A necessary and sufficient condition for a design ξ ∗
PDKL 

to be

PDKL -optimum is fulfillment of the inequality, ψ PDKL ( x , ξ
∗
PDKL ) ≤

0 , x ∈ χ , where the directional derivative ψ PDKL is given in

Eq. (13) . 

ii) The upper bound of ψ PDKL ( x , ξ
∗
PDKL ) is attained at the points of

the optimum design. 

ii) For any non-optimum design ξ , that is a design for which

�PDKL (ξ ) < �PDKL ( ξ
∗
PDKL 

) , sup 
x ∈ χ

ψ PDKL ( x , ξ
∗
PDKL 

) > 1 

roof. Let ξ 1 and ξ 2 be any two designs and 0 < λ < 1 be a con-

tant. From the definition of the KL- criterion function it follows

hat 

 12 [ λξ1 + ( 1 − λ) ξ2 ] 
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[  

[  
= min 

θ1 ∈ �1 

{
λ

∫ 
χ
J [ ( f 2 , x , θ2 ) , ( f 1 , x , θ1 ) ] ξ1 ( dx ) 

+ ( 1 − λ) 

∫ 
χ
J [ ( f 2 , x , θ2 ) , ( f 1 , x , θ1 ) ] ξ2 ( dx ) 

}
≥ λI 12 ( ξ1 ) + ( 1 − λ) I 12 ( ξ2 ) 

here the last inequality follows immediately by replacing each

erm 

 

χ
J [ ( f 2 , x , θ2 ) , ( f 1 , x , θ1 ) ] ξ j ( dx ) , j = 1 , 2 

ith its minimum I 12 ( ξ j ) , j = 1 , 2 . Thus the KL-criterion func-

ion is concave function and hence the tow first terms in

q. (12) are concave functions. The third and fourth terms of

q. (12) is D-optimality for two rival models f 1 ( y , x, θ1 ) and f 2 ( y ,

, θ2 ), respectively, which are concave optimality criterion. Also,

ince 
∑ n 

j=1 π1 j ( θ1 , ξ j ) w j ≥ 0 and 

∑ n 
j=1 π2 j ( θ2 , ξ j ) w j ≥ 0 , so that

og 
∑ n 

j=1 π1 j ( θ1 , ξ j ) w j and log 
∑ n 

j=1 π2 j ( θ2 , ξ j ) w j are concave func-

ions. Thus Eq. (12) is a convex combination of concave func-

ions, since the coefficients αi , i = 1 , 2 , 3 , 4 , 5 , 6 satisfy the condi-

ions 
∑ 6 

i =1 αi = 1 , 0 ≤ αi ≤ 1 . Consequently, the PDKL-design cri-

erion defined in Eq. (12) is concave function. Thus, the PDKL-

riterion satisfies the conditions of convex optimum design theory

nd therefore an equivalence theorem has been proved. 
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