

Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

Short Communication

Note on " $\mathcal{I}P$ -separation axioms in ideal bitopological ordered spaces Π "

A. Kandil ^a, Amr Zakaria ^{b,*}

Received 15 March 2016; revised 10 April 2016; accepted 10 April 2016 Available online 17 October 2016

Keywords

Ideal;

Ideal bitopological ordered space; $\mathcal{I}P$ -regular ordered space;

 $\mathcal{L}P$ -regular ordered space, $\mathcal{L}P$ -completely normal ordered space

Abstract In this note, we show that Examples 3.1, 3.3, 3.4, 3.5, 3.8, 3.9, 3.10 and 3.11 in [1] are incorrect, by giving remarks and comments on these examples. Finally, reasonable reasons to improve some of the incorrect examples have been mentioned.

2010 Mathematics Subject Classification: 54F05

© 2016 Egyptian Mathematical Society. Production and hosting by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license.

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Preliminaries

In this section, we recall some basic notions in ideal and ideal bitopological ordered spaces.

Definition 1.1 [2]. A nonempty collection \mathcal{I} of subsets of a set X is called an ideal on X, if it satisfies the following assertions:

- 1. $A \in \mathcal{I}$ and $B \in \mathcal{I} \Rightarrow A \cup B \in \mathcal{I}$, (finite additivity),
- 2. $A \in \mathcal{I}$ and $B \subseteq A \Rightarrow B \in \mathcal{I}$, (heredity).

E-mail addresses: amr_zakaria2008@yahoo.com, amr.zakaria@edu.asu.edu.eg (A. Zakaria).

Peer review under responsibility of Egyptian Mathematical Society.

Production and hosting by Elsevier

Definition 1.2 [3]. Let (X, R) be a poset and \mathcal{I} be an ideal on X. A set $A \subseteq X$ is said to be:

- 1. \mathcal{I} -decreasing if $Ra \cap A^c \in \mathcal{I} \ \forall a \in A$, where $Ra = \{b : bRa\}$ and A^c is the complement of A,
- 2. \mathcal{I} -increasing if $aR \cap A^c \in \mathcal{I} \ \forall a \in A$, where $aR = \{b : aRb\}$.

Definition 1.3 [4]. A space $(X, \tau_1, \tau_2, R, \mathcal{I})$ is called an ideal bitopological ordered space if (X, τ_1, τ_2, R) is a bitopological ordered space and \mathcal{I} is an ideal on X.

Definition 1.4 [4]. An ideal bitopological ordered space $(X, \tau_1, \tau_2, R, \mathcal{I})$ is said to be:

- 1. \mathcal{I} -lower PT_1 ($\mathcal{I}LPT_1$, for short) ordered space if for every a, $b \in X$ such that $a\overline{R}b$, there exists an \mathcal{I} -increasing τ_i -open set U such that $a \in U$ and $b \notin U$, i = 1 or 2.
- 2. \mathcal{I} -upper PT_1 ($\mathcal{I}UPT_1$, for short) ordered space if for every $a, b \in X$ such that $a\overline{R}b$, there exists an \mathcal{I} -decreasing τ_i -open set V such that $b \in V$ and $a \notin V$, i = 1 or 2.
- 3. $\mathcal{I}PT_1$ -ordered space if it is $\mathcal{I}LPT_1$ and $\mathcal{I}UPT_1$ ordered space.

^a Department of Mathematics, Faculty of Science, Helwan University, Egypt

^b Department of Mathematics, Faculty of Education, Ain Shams University, Roxy Cairo 11341 Egypt

^{*} Corresponding author:

A. Kandil, A. Zakaria

Definition 1.5 [1]. An ideal bitopological ordered space $(X, \tau_1, \tau_2, R, \mathcal{I})$ is said to be:

- 1. \mathcal{I} -lower pairwise regular ($\mathcal{I}LPR_2$, for short) ordered space if for every \mathcal{I} -decreasing τ_i -closed set F and for every $a \notin F$, there exist an \mathcal{I} -increasing τ_i -open set U and an \mathcal{I} -decreasing τ_i -open set V such that $a \in U$, $F V \in \mathcal{I}$ and $U \cap V \in \mathcal{I}$.
- 2. \mathcal{I} -upper pairwise regular ($\mathcal{I}UPR_2$, for short) ordered space if for every \mathcal{I} -increasing τ_i -closed set F and for every $a \notin F$, there exist an \mathcal{I} -decreasing τ_i -open set U and an \mathcal{I} -increasing τ_i -open set V such that $a \in U$, $F V \in \mathcal{I}$ and $U \cap V \in \mathcal{I}$.
- 3. \mathcal{I} -pairwise regular ($\mathcal{I}PR_2$, for short) ordered space if it is $\mathcal{I}LPR_2$ and $\mathcal{I}UPR_2$.

Definition 1.6 [1]. An ideal bitopological ordered space $(X, \tau_1, \tau_2, R, \mathcal{I})$ is called $\mathcal{I}PT_3$ -ordered space if it is $\mathcal{I}PR_2$ and $\mathcal{I}PT_1$ -ordered space.

Definition 1.7 [1]. Let $(X, \tau_1, \tau_2, R, \mathcal{I})$ be an ideal bitopological ordered space and $A, B \subseteq X$. Then A and B are said to be $\mathcal{I}P$ -separated sets if $A \cap \tau_i - cl(B) \in \mathcal{I}$ and $\tau_i - cl(A) \cap B \in \mathcal{I}$.

Definition 1.8 [1]. An ideal bitopological ordered space $(X, \tau_1, \tau_2, R, \mathcal{I})$ is said to be $\mathcal{I}P$ -completely normal ordered space $(\mathcal{I}PR_4$ -ordered space, for short) if for any two $\mathcal{I}P$ -separated subsets A and B of X such that A is \mathcal{I} -increasing set and B is \mathcal{I} -decreasing set there exist an \mathcal{I} -increasing τ_i -open set U and \mathcal{I} -decreasing τ_j -open set V such that $A \subseteq U$, $B \subseteq V$ and $U \cap V \in \mathcal{I}$.

2. Main results

Kandil et al. [Example 3.1, 1] claimed that $(X, \tau_1, \tau_2, R, \mathcal{I})$ is $\mathcal{I}LPR_2$ -ordered space, but this is erroneous by the following remark.

Remark 2.1. The family of all \mathcal{I} -decreasing τ_1 -closed sets is $\{X, \{2\}, \{2, 3, 4\}\}$, the collection of all \mathcal{I} -increasing τ_1 -open sets is $\{X, \{4\}, \{1, 4\}, \{1, 3, 4\}\}$ and X is the only \mathcal{I} -decreasing τ_2 -open set. Hence $F = \{2, 3, 4\}$ is \mathcal{I} -decreasing τ_1 -closed set not containing 1, U = X or $\{1, 4\}$ or $\{1, 3, 4\}$ is the only \mathcal{I} -increasing τ_1 -open set containing 1 and V = X is the only \mathcal{I} -decreasing τ_2 -open set such that $F - V = \emptyset \in \mathcal{I}$ but $U \cap V \notin \mathcal{I}$.

Kandil et al. [Example 3.3, 1] claimed that $(X, \tau_1, \tau_2, R, \mathcal{I})$ is $\mathcal{I}PR_2$ -ordered space, but this is incorrect by the following remark

Remark 2.2. The family of all \mathcal{I} -decreasing τ_1 -closed sets is $\{X, \{3\}, \{4\}, \{3, 4\}\}\}$, the collection of all \mathcal{I} -increasing τ_1 -open sets is $\{X, \{1, 2, 3\}\}$ and $\{X, \{2, 3\}\}$ is the family of all \mathcal{I} -decreasing τ_2 -open sets. Hence $F = \{3, 4\}$ is \mathcal{I} -decreasing τ_1 -closed set not containing 1, U = X or $\{1, 2, 3\}$ is the only \mathcal{I} -increasing τ_1 -open set containing 1 and V = X or $\{2, 3\}$ is the only \mathcal{I} -decreasing τ_2 -open set such that $F - V \in \mathcal{I}$ but $U \cap V \notin \mathcal{I}$. Hence $(X, \tau_1, \tau_2, R, \mathcal{I})$ is not $\mathcal{I} LPR_2$ -ordered space. As a result, $(X, \tau_1, \tau_2, R, \mathcal{I})$ is not $\mathcal{I} PR_2$ -ordered space.

Kandil et al. [Example 3.4, 1] asserted that $(X, \tau_1, \tau_2, R, \mathcal{I})$ is $\mathcal{I}PT_3$ -ordered space, but this is incorrect by the following remark.

Remark 2.3. The family of all \mathcal{I} -decreasing τ_1 -closed sets is $\{X, \{2\}, \{3\}, \{4\}, \{1, 2\}, \{2, 3\}, \{2, 4\}, \{3, 4\}, \{1, 2, 4\}, \{2, 3, 4\}\}$, the collection of all \mathcal{I} -increasing τ_1 -open sets is $\{X, \{3\}, \{1, 3$

 $\{3, 4\}, \{1, 2, 3\}, \{1, 3, 4\}\}$ and $\{X, \{2, 3\}\}$ is the family of all \mathcal{I} -decreasing τ_2 -open sets. Hence $F = \{2, 3, 4\}$ is \mathcal{I} -decreasing τ_1 -closed set not containing 1, U = X or $\{1, 3\}$ or $\{1, 2, 3\}$ or $\{1, 3, 4\}$ is the only \mathcal{I} -increasing τ_1 -open set containing 1 and V = X or $\{2, 3\}$ is the only \mathcal{I} -decreasing τ_2 -open set such that $F - V \in \mathcal{I}$, but $U \cap V \not\in \mathcal{I}$. Hence $(X, \tau_1, \tau_2, R, \mathcal{I})$ is not $\mathcal{I}LPR_2$ -ordered space. As a result, $(X, \tau_1, \tau_2, R, \mathcal{I})$ is not $\mathcal{I}PR_2$ -ordered space. It follows that it is not $\mathcal{I}PT_3$ -ordered space.

Kandil et al. [Example 3.5, 1] asserted that $(X, \tau_1, \tau_2, R, \mathcal{I})$ is $\mathcal{I}PR_2$ -ordered space, but this is incorrect by the following remark.

Remark 2.4. The family of all \mathcal{I} -decreasing τ_1 -closed sets is $\{X, \{3\}, \{4\}, \{1, 4\}, \{3, 4\}, \{1, 3, 4\}\}$, the collection of all \mathcal{I} -increasing τ_1 -open sets is $\{X, \{2, 3\}, \{1, 2, 3\}\}$ and $\{X, \{2, 3\}\}$ is the family of all \mathcal{I} -decreasing τ_2 -open sets. Hence $F = \{1, 3, 4\}$ is \mathcal{I} -decreasing τ_1 -closed set not containing 2, U = X or $\{2, 3\}$ or $\{1, 2, 3\}$ is the only \mathcal{I} -increasing τ_1 -open set containing 2 and V = X or $\{2, 3\}$ are the only \mathcal{I} -decreasing τ_2 -open set such that $F - V \in \mathcal{I}$, but $U \cap V \notin \mathcal{I}$. Hence $(X, \tau_1, \tau_2, R, \mathcal{I})$ is not $\mathcal{I}PR_2$ -ordered space. Thus $(X, \tau_1, \tau_2, R, \mathcal{I})$ is not $\mathcal{I}PR_2$ -ordered space.

Note 2.5. It may be noted that [Example 3.5, 1] is not PR_2 .

The following remark introduces suggestion to find possible real examples.

Remark 2.6. It may be noted that we can find correct examples if [Definition 3.1, 1] satisfied for $i \neq j$, i, j = 1 or 2.

Kandil et al. [Example 3.8, 1] asserted that the collection $\mathcal{I} = \{\emptyset, (1, \infty), (a, \infty), [a, \infty), (a, b), [a, b), (a, b], [a, b], \{c\}\}$, where 1 < a < b, $1 < c < \infty$ is ideal and build their example on this assertion, but this is wrong by the following remark.

Remark 2.7. If 1 < a < b < c or 1 < c < a < b, then $(a,b), [a,b), (a,b], [a,b], \{c\} \in \mathcal{I}$ but $(a,b) \cup \{c\}, [a,b) \cup \{c\}, (a,b] \cup \{c\}, [a,b] \cup \{c\} \notin \mathcal{I}$. As a consequence, $(\mathbb{R}, \tau_l, \tau_{\mathbb{U}}, R, \mathcal{I})$ is not ideal bitopological ordered space and the example is invalid.

The following remark shows that the collection $\mathcal{I} = \{\emptyset, (0, \infty), (a, \infty), [a, \infty), (a, b), [a, b), (a, b], [a, b], \{c\}\}$, where $0 \le a < b$, $0 \le c < \infty$ presented in [Examples 3.9 and 3.10, 1] is not ideal.

Remark 2.8. If $0 \le a < b < c$ or $0 \le c < a < b$, then $(a,b), [a,b), (a,b], [a,b], \{c\} \in \mathcal{I}$ but $(a,b) \cup \{c\}, [a,b) \cup \{c\}, [a,b] \cup \{c\} \notin \mathcal{I}$. As a consequence, $(\mathbb{R}, \tau_{\mathbb{U}}, \tau_{l}, R, \mathcal{I})$ and $(\mathbb{R}, \tau_{\mathbb{U}}, \tau_{u}, R, \mathcal{I})$ are not ideal bitopological ordered spaces and the examples are invalid. Moreover, the authors asserted in [Example 3.10, 1] that $A = (1, \infty)$ and $B = (-\infty, 0)$ are two P-separated sets but this is totally wrong as $\tau_{u} - cl(A) = \mathbb{R}$ and hence $\tau_{u} - cl(A) \cap B = (-\infty, 0) \neq \emptyset$.

Kandil et al. [Example 3.11, 1] claimed that the subsets $A = \{2, 3\}$ and $B = \{1\}$ are $\mathcal{I}P$ -separated and construct their example on this assertion, but this is incorrect by the following remark.

Remark 2.9. $\tau_2 - cl(A) = X$ and hence $\tau_2 - cl(A) \cap B = \{1\} \notin \mathcal{I}$. That is A and B are not $\mathcal{I}P$ -separated sets. As a result, the example is invalid.

Remark 2.10. It may be noted that Example 3.11 in [1] is correct if the authors stated that [Definition 3.5, 1] satisfied for $i \neq j$, i, j = 1 or 2.

Acknowledgement

The authors are grateful to the anonymous referee for a careful checking of the details and for helpful comments that improved this note.

References

- [1] A. Kandil, O. Tantawy, S.A. El-Sheikh, M. Hosny, \mathcal{I}_P -separation axioms in ideal bitopological ordered spaces π , J. Egypt. Math. Soc. 24 (2016) 279–285.
- [2] D. Jankovic, T.R. Hamlet, New topologies from old via ideals, Amer. Math. Mon. 97 (1990) 295–310.
- [3] S.A. El-Sheikh, M. Hosny, *T*-increasing (decreasing) sets and *Tp**-separation axioms in bitopological ordered spaces, Pensee J. 76 (2014) 429–443.
- [4] A. Kandil, O. Tantawy, S.A. El-Sheikh, M. Hosny, *Ip*-separation axioms in bitopological ordered spaces i, Sohag J. Math. 2 (2015) 11–15.