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Abstract: This article presents a comprehensive examination of linear and non-linear systems of integral inequalities
involving two real-valued unknown functions in n independent variables. The primary objective of this investigation is to
establish upper bounds for these unknown functions and to analyze their practical implications within broader mathematical
frameworks. The results obtained not only extend the classical Grönwall-Bellman integral inequalities but also introduce novel
and explicit bounds within the contexts of Young and Pachpatte integral inequalities. These contributions significantly enhance
the theoretical understanding of integral inequalities and their utility in addressing complex analytical problems. Moreover, the
results yield important insights into the qualitative analysis of nonlinear hyperbolic partial integro-differential equations,
particularly with regard to the existence, uniqueness, and boundedness of solutions. To derive the main theoretical results,
Young’s method based on the Riemann approach is employed. Additionally, the analysis highlights the essential role of
symmetry in the selection of appropriate methods for treating dynamic inequalities.
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1 Introduction

The exploration of integral inequalities has always been an important field of study. Recent studies have focused
on the refinement and extension of classical inequalities within multidimensional and dynamic frameworks [1–3]
particularly by incorporating general kernels, weight functions, and fractional operators. These efforts emphasize
the growing demand for adaptable inequality structures capable of handling complex systems and integral
operators. Integral inequalities not only serve as fundamental tools in the study of mathematical systems but also
find applications in a wide array of practical scenarios see for instance [4, 5].
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The integral form of Grönwall-Bellman’s inequality [6] asserts the following: Assuming continuous and non-
negative functions u and f defined on the interval [a,b], with u0 being a non-negative constant, the inequality

u(t)≤ u0 +
∫ t

a
f (s)u(s)ds, for all t ∈ [a,b], (1)

implies that

u(t)≤ u0 exp
(∫ t

a
f (s)ds

)
, for all t ∈ [a,b].

For interested readers, it is useful to mention here that some efforts have been made to generalize Grönwall-
Bellman’s inequality to weakly singular situations to cope with some problems of fractional differential equations,
see for instance [7–9]. Baburao G. Pachpatte [10] established the discrete counterpart of inequality (1). Specifically,
he demonstrated that for nonnegative sequences u(n), a(n), and γ(n) defined for n in the set of non-negative integers
N0, with a(n) being non-decreasing for n in N0, if the condition

u(n)≤ a(n)+
n−1

∑
s=0

γ(n)u(n),n ∈ N0,

holds, then

u(n)≤ a(n)
n−1

∏
s=0

[1+ γ(n)],n ∈ N0.

In [11], the following nonlinear integral inequality was discussed:

Φ(u(t))≤ c(t)+
∫

θ(t)

0
[ f (t,s)ζ (u(s))ω (u(s))+g(t,s)ζ (u(s))]ds,

for u ∈ ([0,∞), [0,∞)), f (t,s) and g(t,s) ∈ C ([0,∞)× [0,∞), [0,∞)) are non-decreasing in t for every s fixed,
Φ ∈ C ([0,∞), [0,∞)) is a strictly increasing function such that lim

χ→∞
Φ(χ) = ∞, c ∈ C ([0,∞),(0,∞)) and

ζ ,ω ∈C ([0,∞), [0,∞)) are non-decreasing functions.
Motivated by the results obtained in [11], the authors in [12] investigated the following inequality:

Ψ (u(ℓ, t)) ≤ a(ℓ, t)+
∫

θ(ℓ)

0

∫
ϑ(t)

0
ℑ1(ς ,η) [ f (ς ,η)ζ (u(ς ,η))ϖ (u(ς ,η))

+
∫

ς

0
ℑ2(χ,η)ζ (u(χ,η))ϖ (u(χ,η))dχ

]
dηdς ,

where u, f , a, ℑ ∈C(I1 × I2, [0,∞)) are non-decreasing functions, I1, I2 ⊂ [0,∞), θ ∈C1(I1, I1), and ϑ ∈C1(I2, I2)

are non-decreasing with θ(ℓ)≤ ℓ on I1, ϑ(t)≤ t on I2, ℑ1, ℑ2 ∈C(I1 × I2, [0,∞)), and Ψ , ζ , ϖ ∈C([0,∞), [0,∞))

with {Ψ ,ζ ,ϖ}(u)> 0 for u > 0, and lim
u→+∞

Ψ(u) = +∞.

Moreover, Anderson [13] established some new nonlinear dynamic inequalities in two independent variables
of Pachpatte type, that is useful tools in the study of qualitative properties of solutions of certain classes of dynamic
equations on time scales. For instance in [13] we find the following inequality:

ω(u(t,s))≤ a(t,s)+ c(t,s)
∫ t

t0

∫
∞

s
ω

′(u(τ,η))[d(τ,η)w(u(τ,η))+b(τ,η)]∇η∆τ,
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here u, a, c, and d are non-negative continuous functions defined for (t,s) ∈ T×T, b is a non-negative continuous
function for (t,s) ∈ [t0,∞)T× [t0,∞)T and ω ∈C1(R+,R+), with ω ′ > 0 for u > 0.

While numerous mathematicians have devoted their efforts to the refinement and generalization of integral
inequalities of the Grönwall type, a parallel strand of research has emerged with a distinct focus on systems of
integral inequalities. This dual trajectory underscores the multifaceted nature of mathematical inquiry, where the
pursuit of enhancing individual inequalities coexists with a dedicated exploration of the intricate relationships
within systems. As researchers delve into both aspects, their endeavors collectively contribute to a more
comprehensive understanding of mathematical models and systems. In [16] a linear and nonlinear
two-dimensional integral inequalities system was established. For instance in [16], for ui and fi

∈C(I,R+), i = 1,2 with fi be non-decreasing; φi j ∈C(I,R+) are non-decreasing in the variable t for every s fixed
(i = 1,2). If

ui(t)≤ fi(t)+
∫ t

0
[φi1(t,s)u1(s)+φi2u2(s)]ds, (2)

then for t ∈ I we have

ui(t)≤ [ fi(t)+ fi+1(t)
∫ t

0
φii+1(t,s)Φi+1(s)ds]

exp
∫ t

0
φii(t,s)ds+

∫ t

0
φii+1(t,s)Φi+1(s)

(∫ s

0
φi+1i(s,τ)Φi(τ)

)
ds,

where Φi(t) := exp
∫ t

0 φii(t,s)ds, i = 1,2, and if i = 2 then fi+1 = f1,Φi+1 = Φ1,φi+1i = φ12,φii+1 = φ21.

The authors in [17] provided explicit bounds for certain classes of systems of integral inequalities such as
the following system: For ui(x),bi(x),qi(x),ei(x), fi(x),gi(x), and hi(x) are non-negative, real valued continuous
functions on Ω and ai(x) be positive, non-decreasing, and continuous functions on Ω ; i = 1,2. If

ui(x)≤ ai(x)+
∫ x

xo
bi(s)u1(s)ds+

∫ x

xo
qi(s)u2(s)ds+

∫ x

xo
ei(s)

(∫ s

xo
fi(t)u1(t)dt

)
ds

+
∫ x

xo
gi(s)

(∫ s

xo
hi(t)u2(t)dt

)
ds, (3)

is satisfied for all x ∈ Ω with x ≥ xo, then,

ui(x)≤ ai(x)
(

1+
∫ x

xo

(
φi(s)η(s)ds+ρi(s)

∫ s

xo
ψi(t)η(t)dt

)
ds
)
, (4)

where,
φ1(x) = b1(x)+

a2(x)
a1(x)

q1(x), φ2(x) = q2(x)+
a1(x)
a2(x)

b2(x), φ(x) = ∑
2
i=1 φi(x),

ψ1(x) = f1(x)+
a2(x)
a1(x)

h1(x), ψ2(x) = h2(x)+
a1(x)
a2(x)

f2(x), ψ(x) = ∑
2
i=1 ψi(x),

ρi(x) = ei(x)+gi(x), and η(x) = 2+2
∫ x

xo φ(s)exp(
∫ s

xo (φ(t)+ψ(t))dt)ds.
This paper aims to explore into the advancements achieved in generalizing Grönwall-type integral inequalities,

alongside a comprehensive examination of the evolving landscape surrounding systems of integral inequalities,
highlighting the connections and implications arising from these parallel research streams. In the current paper we
provide upper bounds for some systems of linear and non-linear integral inequalities. On the other hand, we extend
existing Grönwall-Bellman integral inequalities and introduce new explicit boundaries.

The remainder of this paper is organized as follows. In Section 2, we establish essential notations and present
two preliminary lemmas that form the foundation for the subsequent analysis. Section 3 contains the main
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theoretical results, where we derive explicit upper bounds for various systems of linear and nonlinear integral
inequalities. Section 4 demonstrates the applicability of these results through illustrative examples and practical
applications.

2 Preliminaries

In this section, we introduce two essential lemmas that play a pivotal role in substantiating the central results
presented in this paper. However, before presenting these lemmas, we will establish some key notations. We
represent x as x = (x1, ...,xn), y = (y1, ...,yn) to denote elements within the n-dimensional Euclidean space Rn.
Furthermore, we define the relation x ≤ y if and only if xi ≤ yi for each i = 1, ...,n. Additionally, we use xo and x
to refer to any two points in an open bounded set Ω ⊂ Rn with xo < x. In the subsequent discussion, the notation∫ y

x ds signifies an integral, computed as:
∫ y1

x1
...

∫ yn
xn

dsn...ds1, where the operator D is defined as D = D1...Dn with
Di denoting the partial derivative with respect to xi, for i = 1, ...,n i.e., Di = ∂/∂xi, for i = 1, ...,n.

In order to establish the forthcoming lemma, we will employ the methodology of Young, as exemplified in [14].

Lemma 1. Let K(x), B(x), and σ(x) be real valued non-negative differentiable functions on Ω . Moreover, suppose
that K(x) and all its derivatives with respect to x1, ...,xn up to order n− 1 vanish at xi = xo

i for i = 1, ...,n. Let
v(s;x) be the solution of the following characteristic initial value problem

(−1)n ∂ nv(s;x)
∂ s1...∂ sn

−σ(s)v(s;x) = 0, in Ω ,

v(s;x) = 1 on si = xi, i = 1, ...,n. (5)

If the inequality
D1...DnK(x)≤ B(x)+σ(x)K(x), (6)

holds, then

K(x)≤
∫ x

xo
B(s)v(s;x)ds. (7)

Proof . Inequality (6) implies that

L [K(x)]≤ B(x), where L ≡ D1...Dn −σ(x). (8)

If z(x) is a function that is n times continuously differentiable within the region defined as xo < t < x (referred to
as D) then

zL [K]−KL1[z] =
n

∑
j=1

(−1) j−1D j[(D0...D j−1z)(D j+1...DnDn+1K)], (9)

here, we define L1 ≡ (−1)nD1...Dn−σ(x), and D0 =Dn+1 = I where I represents the identity operator. Integrating
both sides of relation (9) over D while considering that K(x) and all its derivatives with respect to x1, ...,xn up to
the (n−1)th order, vanish at si = xo

i for i = 1, ...,n, results in∫
D
(zL [K]−KL1[z])ds =

n

∑
j=1

(−1) j−1
∫

s j=x j

(D1...D j−1z)(D j+1...DnK)ds
′
, (10)
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where ds
′
= ds1...ds j−1ds j+1...dsn. Now, let’s select z(x) to be the function v(s;x), which satisfies the initial value

problem (5). Given that v(s;x) equals 1 when s j = x j for j = 1, ...,n, we can conclude that

D1...D j−1v(s;x) = 0, on s j = x j, j = 2, ...,n.

Therefore, relation (10) becomes ∫
D

vL [K]ds =
∫

s1=x1

D2...DnK ds
′

= K(x). (11)

The continuity of v, along with the condition v = 1 when s = x ensures the existence of a domain denoted as Ω+

which includes x for which v ≥ 0. By multiplying both sides of (8) by v and utilizing (11), we can derive (7),
thereby concluding the proof of the lemma.

To confirm the credibility of the subsequent lemma, we will employ Bellman’s method, as exemplified in [15].

Lemma 2. Let f (x), w(x) be real valued, positive, and continuous functions. In addition, let all derivatives of f (x)
be positive on Ω with f (x) = 1 on xi = xo

i . If the inequality

D1...Dn f (x)≤ w(x) f (x), (12)

holds, then

f (x)≤ exp
(∫ x

xo
w(t)dt

)
. (13)

Proof . Inequality (12) leads to
f (x)D1...Dn f (x)

f 2(x)
≤ w(x).

Hence, considering the given assumptions on f (x) and its derivatives, we obtain

f (x)D1...Dn f (x)
f 2(x)

≤ w(x)+
(Dn f (x))(D1...Dn−1 f (x))

f 2(x)
,

which implies that

Dn

(
D1...Dn−1 f (x)

f (x)

)
≤ w(x). (14)

Integrate both sides of inequality (14) with respect to the component xn over the interval from xo
n to xn to yield

D1...Dn−1 f (x)
f (x)

≤
∫ xn

xo
n

w(x1, ...,xn−1, tn)dtn.

Thus, based on the provided assumptions regarding f (x) and its derivatives, we can formulate the subsequent
inequality

f (x)D1...Dn−1 f (x)
f 2(x)

≤
∫ xn

xo
n

w(x1, ...,xn−1, tn)dtn +
(Dn−1 f (x))(D1...Dn−2 f (x))

f 2(x)
,

this inequality yields

Dn−1

(
D1...Dn−2 f (x)

f (x)

)
≤

∫ xn

xo
n

w(x1, ...,xn−1, tn)dtn. (15)
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Now, perform the integration of both sides of equation (15) with respect to the component xn−1 over the interval
from xo

n−1 to xn−1 to obtain

D1...Dn−2 f (x)
f (x)

≤
∫ xn−1

xo
n−1

∫ xn

xo
n

w(x1, ...xn−2, tn−1, tn)dtndtn−1.

Proceed in this manner until arriving at

D1 f (x)
f (x)

≤
∫ x2

xo
2

...
∫ xn

xo
n

w(x1, t2, ..., tn)dtn...dt2. (16)

By integrating both sides of (16) with respect to the component x1 from xo
1 to x1 we obtain

log
(

f (x)
f (xo

1,x2, ...,xn)

)
≤

∫ x

xo
w(t)dt.

This implies the validity of (13), thus establishing the lemma.

We are now ready to introduce and provide support for our primary findings.

3 Main results

In this section, we present and rigorously validate our central results through a series of theorems. This achievement
is made possible by drawing upon the Lemmas 1 and 2, which have been previously established.

Theorem 1. Suppose that ui(x),ai(x),Dbi(x), and Dci(x); i = 1,2, are real valued, positive, continuous and non-
decreasing functions defined on Ω . Let v(s;x) be the solution of the following characteristic initial value problem

(−1)n ∂ nv(s;x)
∂ s1...∂ sn

− [1+Dψ(x)+Q(x)]v(s;x) = 0, in Ω ,

v(s;x) = 1 on si = xi, i = 1, ...,n,

where ψ(x) = ∑
2
i=1 ψi(x), ψi(x) = bi(x)+ci(x), Q(x) = ∑

4
j=1 Q j(x). Let Ωo be a connected subdomain of Ω which

contains x such that v(s;x)≥ 0, for all s ∈ Ωo. If the system

ui(x)≤ ai(x)+
∫ x

xo
bi(x,s)u1(s)ds+

∫ x

xo
ci(x,s)u2(s)ds, i = 1,2, (17)

holds, then

ui(x)≤ ai(x)+
∫ x

xo
[φi(s)+Dψi(s)τ1(s)+Qi+4(x)τ2(s)]ds, i = 1,2, (18)

where τ1(s) =
∫ s

xo
(∫ t

xo [φ(r)+(Dψ(r)+Q(r))
∫ r

xo φ1(θ)v(r,θ)dθ ]dr
)

dt,
τ2(s) =

∫ s
xo
(
φ(t)+(Dψ(t)+Q(t))

∫ t
xo φ(r)v(t,r)dr

)
dt,

φi(x) =
∫ x

xo [a1(s)Dbi(x,s)+a2(s)Dci(x,s)]ds+a1(x)Qi(x)+a2(x)Qi+2(x),
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φ(x) = ∑
2
i=1 φi(x), Qi+4(x) = Qi(x)+Qi+2(x); i = 1,2. and the functions Q j(x), j = 1,2,3,4, are as follows

Q j(x) =
n

∑
i=1

∫ x

xo
1

...
∫ xi−1

xo
i−1

∫ xi+1

xo
i+1

...
∫ xn

xo
n

∂ n−1

∂x1...∂xi−1∂xi+1...∂xn
κ j(x,s1, ...,si−1,si+1, ...,sn)

dsn...dsi+1dsi−1...ds1

+
n

∑
i=1

∫ x

xo
1

...
∫ xi−2

xo
i−2

∫ xi+2

xo
i+2

...
∫ xn

xo
n

∂ n−2

∂x1...∂xi−2∂xi+2...∂xn
κ j(x,s1, ...,si−2,si+2, ...,sn)

dsn...dsi+2dsi−2...ds1

+ ...+κ j(x),

; κ1(.) = b1(.),κ2(.) = b2(.),κ3(.) = c1(.),κ4(.) = c2(.).

Proof . Let’s define the functions Ai(x), Bi(x) and ξi(x) as follows:

Ai(x) =
∫ x

xo
u1(s)bi(x,s)ds, Bi(x) =

∫ x

xo
u2(s)ci(x,s)ds, ξi(x) = Ai(x)+Bi(x),

for i = 1,2, ξ (x) = ξ1(x)+ξ2(x). (19)

As a result, the inequalities, or equivalently, the system described in (17), can be expressed in the following
manner

ui(x)≤ ai(x)+ξi(x), i = 1,2. (20)

Given that the functions ui(x), i = 1,2, are non-decreasing functions, we can establish the following inequalities
through the application of Leibniz’s integral rule and (19)

D1...DnAi(x)≤
∫ x

xo
u1(s)D1...Dnbi(x,s)ds+u1(x)Qi(x),

D1...DnBi(x)≤
∫ x

xo
u2(s)D1...Dnci(x,s)ds+u2(x)Qi+2(x). (21)

Use (20) in (21) to obtain

D1...DnAi(x)≤
∫ x

xo
(a1(s)+ξ1(s)) D1...Dnbi(x,s)ds+(a1(x)+ξ1(x))Qi(x), (22)

and

D1...DnBi(x)≤
∫ x

xo
(a2(s)+ξ2(s)) D1...Dnci(x,s)ds+(a2(x)+ξ2(x))Qi+2(x). (23)

Adding (22) and (23) for the case i = 1 gives

Dξ1(x)≤
∫ x

xo
[a1(s)Db1(x,s)+a2(s)Dc1(x,s)+ξ1(s)Db1(x,s)+ξ2(s)Dc1(x,s)]ds

+(a1(x)+ξ1(x))Q1(x)+(a2(x)+ξ2(x))Q3(x)

≤ φ1(x)+
∫ x

xo
(ξ (s)Db1(x,s)+ξ (x)Dc1(x,s))ds+Q5(x)ξ (x)

≤ φ1(x)+Dψ1(x)
∫ x

xo
ξ (s)ds+Q5(x)ξ (x). (24)
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Likewise, inequalities (22) and (23) when i = 2 result in

Dξ2(x)≤ φ2(x)+Dψ2(x)
∫ x

xo
ξ (s)ds+Q6(x)ξ (x). (25)

When we combine (24) with (25), we obtain

Dξ (x)≤φ(x)+ξ1(x)(Q1(x)+Q2(x))+ξ2(x)(Q3(x)+Q4(x))

+
∫ x

xo
[ξ1(s)D(b1(x,s)+b2(x,s))+ξ2(s)D(c1(x,s)+ c2(x,s))]ds, (26)

where the function φ(x) is

φ(x) =a1(x)(Q1(x)+Q2(x))+a2(x)(Q3(x)+Q4(x))

+
∫ x

xo
[a1(s)D(b1(x,s)+b2(x,s))+a2(s)D(c1(x,s)+ c2(x,s))]ds.

Given that all these functions are positive and non-decreasing, we can express inequality (26) in the following way:

Dξ (x)≤ φ(x)+ξ (x)Q(x)+
∫ x

xo
ξ (s)Dψ(x,s)ds, (27)

where ψ(x,s) = ∑
2
i=1 (bi(x,s)+ ci(x,s)) , and Q(x) = ∑

4
j=1 Q j(x). As both bi(x,s) and ci(x,s) with i = 1,2, along

with their derivatives, are positive and non-decreasing functions, it follows that both ψ(x,s) and Dψ(x,s) are also
positive and non-decreasing. Consequently, inequality (27) can be expressed as follows:

Dξ (x)≤ φ(x)+ξ (x)Q(x)+Dψ(x)
∫ x

xo
ξ (s)ds. (28)

Include ξ (x)Dψ(x) on the right-hand side of (28) to have

Dξ (x)≤ φ(x)+ξ (x)Q(x)+Dψ(x)
∫ x

xo
ξ (s)ds+ξ (x)Dψ(x). (29)

Take K(x) = ξ (x)+
∫ x

xo ξ (s)ds which implies that

K(x)≥ ξ (x), K(x)≥
∫ x

xo
ξ (s)ds, K(xo) = 0,

DK(x) = Dξ (x)+ξ (x), DK(x)−K(x)≤ DK(x)−ξ (x) = Dξ (x). (30)

The first part of (30) is obtained by differentiating K(x) with respect to xi; i = 1,2, ... respectively, while the second
part is straightforward since K(x)≥ ξ (x). Therefore, inequality (29) becomes

Dξ (x)≤ φ(x)+Dψ(x)K(x)+K(x)Q(x). (31)

Relations (31) and (30) imply that

Dξ (x)−Dψ(x)K(x)−K(x)Q(x)≤ φ(x),

DK(x)− [1+Dψ(x)+Q(x)]K(x)≤ φ(x). (32)
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Applying Lemma 1 on (32) gives K(x)≤
∫ x

xo φ(s)v(x,s)ds. Therefore, inequality (31) becomes

Dξ (x)≤ φ(x)+ [Dψ(x)+Q(x)]
∫ x

xo
φ(s)v(x,s)ds. (33)

Integrating both sides of inequality (33) yields

ξ (x)≤
∫ x

xo
[φ(s)+ [Dψ(s)+Q(s)]

∫ s

xo
φ(t)v(s, t)dt]ds. (34)

Now from (24) and (34) we get

Dξ1(x)≤ φ1(x)+Dψ1(x)
∫ x

xo

(∫ s

xo

[
φ(t)+(Dψ(t)+Q(t))

∫ t

xo
φ(r)v(t,r)dr

]
dt
)

ds

+Q5(x)
∫ x

xo

(
φ(s)+(Dψ(s)+Q(s))

∫ s

xo
φ(t)v(s, t)dt

)
ds. (35)

By integrating both sides of inequality (35) with respect to the variable x over the interval from xo to x, we obtain

ξ1(x)≤
∫ x

xo
(φ1(s)+Dψ1(s)

∫ s

xo

(∫ t

xo

[
φ(r)+(Dψ(r)+Q(r))

∫ r

xo
φ(θ)v(r,θ)dθ

]
dr
)

dt

+Q5(s)
∫ s

xo

(
φ(t)+(Dψ(t)+Q(t))

∫ t

xo
φ(r)v(t,r)dr

)
dt)ds,

(36)

where

φ1(x) =
∫ x

xo
[a1(s)Db1(x,s)+a2(s)Dc1(x,s)]ds+a1(x)Q1(x)+a2(x)Q3(x),

ψ1(x) = b1(x,s)+ c1(x,s), and Q5(x) = Q1(x)+Q3(x).

Similarly, by (25) and (34) we obtain

ξ2(x)≤
∫ x

xo
(φ2(s)+Dψ2(s)

∫ s

xo

(∫ t

xo

[
φ(r)+(Dψ(r)+Q(r))

∫ r

xo
φ(θ)v(r,θ)dθ

]
dr
)

dt

+Q6(s)
∫ s

xo

(
φ(t)+(Dψ(t)+Q(t))

∫ t

xo
φ(r)v(t,r)dr

)
dt)ds,

(37)

where

φ2(x) =
∫ x

xo
[a1(s)Db2(x,s)+a2(s)Dc2(x,s)]ds+a1(x)Q2(x)+a2(x)Q4(x),

ψ2(x) = b2(x,s)+ c2(x,s), and Q6(x) = Q2(x)+Q4(x).

By substituting the expressions from (36) and (37) into (20) , we arrive at the result stated in (18) . This concludes
the proof.

Remark. In the case where n equals 2, meaning we are working with functions in the two-dimensional space R2,
we can derive from Theorem 1 that
If, for i = 1,2,

ui(x1,x2)≤ ai(x1,x2)+
∫ x1

xo
1

∫ x2

xo
2

bi(x1,x2,s1,s2)u1(s1,s2)ds2ds1

+
∫ x1

xo
1

∫ x2

xo
2

ci(x1,x2,s1,s2)u2(s1,s2)ds1ds2, (38)
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then

ui(x1,x2)≤ ai(x1,x2)+
∫ x1

xo
1

∫ x2

xo
2

{
φi(s1,s2)+

∂ 2

∂ s1∂ s2
ψi(s1,s2)∫ s1

xo
1

∫ s2

xo
2

(∫ t1

xo
1

∫ t2

xo
2

[
φ(r1,r2)+

(
∂ 2

∂ r1∂ r2
ψ(r1,r2)+Q∗(r1,r2)

)
×
∫ r1

xo
1

∫ r2

xo
2

φi(θ1,θ2)v(r1,r2,θ1,θ2)dθ2dθ1

]
dr2dr1

)
dt2dt1

+Q∗
5(x1,x2)

∫ s1

xo
1

∫ s2

xo
2

(
φ(t1, t2)+

(
∂ 2

∂ t1∂ t2
ψ(t1, t2)+Q∗(t1, t2)

)
×
∫ t1

xo
1

∫ t2

xo
2

φ(r)v(t1, t2,r1,r2)dr2dr1

)
dt2dt1

}
ds2ds1,

(39)

where

φi(x1,x2) =
∫ x1

xo
1

∫ x2

xo
2

[
a1(s1,s2)

∂ 2

∂x1∂x2
bi(x1,x2,s1,s2)+a2(s1,s2)

∂ 2

∂x1∂x2
ci(x1,x2,s1,s2)

]
ds2ds1

+a1(x1,x2)Qi(x1,x2)+a2(x1,x2)Qi+2(x1,x2);

φ(x1,x2) =
2

∑
i=1

φi(x1,x2), Q∗
5(x1,x2) = ∑

i=1,3
Q∗

i (x1,x2),Q∗
6(x1,x2) = ∑

i=2,4
Q∗

i (x1,x2)

and

Q∗
i (x1,x2) =

∫ x1

xo
1

∂

∂x1
κi(x1,x2,s1,x2)ds1 +

∫ x2

xo
2

∂

∂x1
κi(x1,x2,x1,s2)ds2 +κi(x1,x2);

κ1(.) = b1(.),κ2(.) = b2(.),κ3(.) = c1(.),κ4(.) = c2(.).

Compared to classical results such as those in [16] and [17], which provide bounds for two-dimensional
systems, the current formulation refines the estimates by incorporating the effects of mixed partial derivatives and
interaction terms via the function v(.), derived from a characteristic initial value problem. This yields more
precise bounds and greater flexibility in applications where explicit kernel structure and regularity properties are
known. Thus, remark 3 enhances previous work by delivering a higher-order correction to integral estimates in
two variables.

Theorem 2. Let ui(x),bi(x),qi(x) be real valued, non-negative, and continuous functions on Ω and ai(x) be
positive, non-decreasing, and continuous function on Ω ; i = 1,2. If the system

ui(x)≤ ai(x)+
∫ x

xo
bi(s)u1(s)ds+

∫ x

xo
qi(s)u2(s)ds, (40)

holds for all x ∈ Ω with x ≥ xo, then

ui(x)≤ ai(x)
(

1+2
∫ x

xo
[φi(s)exp(η(s))]ds

)
, (41)

where, φ1(s) = b1(s)+
q1(s)a2(s)

a1(s)
, φ2(s) = q2(s)+

b2(s)a1(s)
a2(s)

, and
η(s) =

∫ s
xo φ(t)dt; φ(t) = φ1(t)+φ2(t).
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Proof . As the functions ai(x), i = 1,2, are both positive and non-decreasing, the inequalities presented in (40) can
be expressed as follows:

ui(x)
ai(x)

≤ 1+
∫ x

xo
bi(s)

u1(s)
ai(s)

ds+
∫ x

xo
qi(s)

u2(s)
ai(s)

ds. (42)

Let Ti(x) be defined by the right-hand side of inequality (42); then we obtain

ui(x)
ai(x)

≤ Ti(x), where Ti(x) = 1 when x j = xo
j ; j = 1, ...,n. (43)

Additionally, based on the definition of Ti(x), we can observe that

D1...DnTi(x) = bi(x)
u1(x)
ai(x)

+qi(x)
u2(x)
ai(x)

, (44)

using (43) in (44) gives for T1 that

D1...DnT1(x)≤ b1(x)T1(x)+q1(x)
a2(x)
a1(x)

T2(x). (45)

As all the functions involved are positive, inequality (45) can be expressed as follows:

D1...DnT1(x)≤ φ1(x)T (x). (46)

By following a similar procedure, we can derive an analogous inequality for T2, ultimately leading to

D1...DnTi(x)≤ φi(x)T (x); i = 1,2, (47)

where φ1(x) = b1(x)+q1(x)
a2(x)
a1(x)

, φ2(x) = b2(x)
a1(x)
a2(x)

+q2(x), T (x) = T1(x)+T2(x).
Adding the two inequalities in (47) yields

D1...DnT (x)≤ φ(x)T (x), (48)

where φ(x) = φ1(x)+φ2(x). Apply Lemma 2 on inequality (48) to obtain

T (x)≤ 2exp
(∫ x

xo
φ(s)ds

)
. (49)

Employ the upper limit (49) for T (x) in inequality (47), and subsequently, integrate both sides of the resulting
inequality with respect to x over the interval from xo to x to yield

Ti(x)≤ 1+2
∫ x

xo

(
φi(s)exp

(∫ s

xo
φ(t)dt

))
ds. (50)

By applying inequality (50) within the context of inequality (43), we derive inequality (41). This marks the
conclusion of the proof.

Remark. When n = 2, which implies that x ∈ R2 and xo = 0, Theorem 2 provides the assertion that, for i = 1,2, if

ui(x1,x2)≤ ai(x1,x2)+
∫ x1

0

∫ x2

0
bi(s1,s2)u1(s1,s2)ds2ds1 +

∫ x1

0

∫ x2

0
qi(s1,s2)u2(s1,s2)ds2ds1, (51)
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hold, then

ui(x1,x2)≤ ai(x1,x2)

(
1+2

∫ x1

0

∫ x2

0
[φi(s1,s2)exp(η(s1,s2))]ds

)
, (52)

where φ1(x1,x2) = b1(x1,x2)+
a2(x1,x2)
a1(x1,x2)

q1(x1,x2), φ2(x1,x2) = b2(x1,x2)
a1(x1,x2)
a2(x1,x2)

+q2(x1,x2),

η(s1,s2) =
∫ s1

0
∫ s2

0

(
b1(t1, t2)+q2(t1, t2)+

b2(t1,t2)a1(t1,t2)
a2(t1,t2)

+ q1(t1,t2)a2(t1,t2)
a1(t1,t2)

)
dt2dt1, and φ(x1,x2) = ∑

2
i=1 φi(x1,x2).

Remark 3 addresses the case n = 2 for Theorem 2 and derives explicit exponential-type bounds for systems of
integral inequalities with separable kernels. It generalizes classical Grönwall-Bellman approaches [15] by
incorporating coefficient-dependent growth and offering improved structure for coupled systems. In contrast to
recent results by Frioui et al. [5], which focus on single-variable multiplicative inequalities, this formulation
provides a more comprehensive framework for multivariate systems.

Theorem 3. Let ui(x), pi(x), and qi(x) be real valued positive continuous functions on Ω , and let ai(x) be positive
continuous non-decreasing functions on Ω ; i = 1,2. In addition let H(α) be positive, continuous and
non-decreasing function satisfies t−1H(α)≤ H(t−1α); α ≥ 0. If the system

ui(x)≤ ai(x)+
∫ x

xo
pi(s)H(u1(s))ds+

∫ x

xo
qi(s)H(u2(s))ds, (53)

holds for all x ∈ Ω with x ≥ xo, then for xo ≤ x ≤ x∗, we have

ui(x)≤ ai(x)
[

1+2
∫ x

xo
φi(s)H(G−1(G(2)+2

∫ x

xo
φ(s)ds)ds

]
, (54)

where G(r)=
∫ r

ro
ds

H(s) , r ≥ ro > 0, x∗ is chosen so that G(2)+2
∫ x

xo φ(s)ds∈Dom(G−1), φ1(x)= p1(x)+q1(x)
a2(x)
a1(x)

,

φ2(x) = p2(x)
a1(x)
a2(x)

+q2(x), and φ(x) = φ1(x)+φ2(x).

Proof . As both ai(x) for i = 1,2, are positive and non-decreasing functions, and the function H(α) is positive,
continuous, and non-decreasing (for α ≥ 0) and satisfies the condition that t−1H(α)≤ H(t−1α), , we can rephrase
inequalities (53) as follows:

u1(x)
a1(x)

≤ 1+
∫ x

xo
p1(s)H

(
u1(s)
a1(s)

)
ds+

∫ x

xo
q1(s)

a2(s)
a1(s)

H
(

u2(s)
a2(s)

)
ds, (55)

and

u2(x)
a2(x)

≤ 1+
∫ x

xo
p2(s)

a1(s)
a2(s)

H
(

u1(s)
a1(s)

)
ds+

∫ x

xo
q2(s)H

(
u2(s)
a2(s)

)
ds. (56)

Let T1(x) be defined as the expression on the right-hand side of (55), that is,

T1(x) = 1+
∫ x

xo
p1(s)H

(
u1(s)
a1(s)

)
ds+

∫ x

xo
q1(s)

a2(s)
a1(s)

H
(

u2(s)
a2(s)

)
ds, (57)

which implies
u1(x)
a1(x)

≤ T1(x), where T1(x) = 1,on xi = xo
i , i = 1,2, ...,n. (58)
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Next, we can define T2(s) as the expression on the right-hand side of (56), and consequently, we obtain

u2(x)
a2(x)

≤ T2(x), where T1(x) = 1,on xi = xo
i , i = 1,2, ...,n. (59)

Now from (57) we have

D1...DnT1(x) = p1(x)H
(

u1(x)
a1(x)

)
+q1(x)

a2(x)
a1(x)

H
(

u2(x)
a2(x)

)
. (60)

Utilizing the inequalities presented in (58) and (59) within the framework of (60) yields

D1...DnT1(x)≤ p1(x)H (T1(x))+q1(x)
a2(x)
a1(x)

H (T2(x)) . (61)

As all the functions involved are positive and H is a non-decreasing function, we can express inequality (61) in the
following manner:

D1...DnT1(x)≤ 2φ1(x)H (T (x)) , (62)

where φ1(x) = p1(x)+q1(x)
a2(x)
a1(x)

, and T (x) = T1(x)+T2(x). Similarly, by (59) we obtain

D1...DnT2(x)≤ 2φ2(x)H (T (x)) , (63)

where φ2(x) = p2(x)
a1(x)
a2(x)

+q2(x), and T (x) = T1(x)+T2(x). Now inequalities (62) and (63) yield

D1...DnT (x)≤ 2φ(x)H (T (x)) , (64)

where φ(x) = φ1(x)+ φ2(x), and T (x) = T1(x)+ T2(x). By employing the same approach as the one utilized to
establish Lemma 2, we deduce from (64) that

D1G(T (x)) =
D1T (x)
H(T (x))

≤ 2
∫ x2

xo
2

...
∫ xn

xo
n

φ(x1, t2, ..., tn)dtn...dt2,

by performing integration with respect to the component x1 over the interval from xo
1 to x1, we obtain

G(T (x))−G(2)≤ 2
∫ x

xo
φ(s)ds,

which implies that

T (x)≤ G−1
(

G(2)+2
∫ x

xo
φ(s)ds

)
,

where G(r) =
∫ r

ro
ds

H(s) , r ≥ ro > 0. Taking

ψ(x) = G−1
(

G(2)+2
∫ x

xo
φ(s)ds

)
,

gives
T (x)≤ ψ(x). (65)

Upon substituting (65) into (62), we arrive at

D1...DnT1(x)≤ 2φ1(x)H (ψ(x)) . (66)
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Integrating both sides of (66) from xo to x produces

T1(x)≤ 1+2
∫ x

xo
φ1(s)H (ψ(s))ds. (67)

Similarly, we can obtain from (63) and (65) that

T2(x)≤ 1+2
∫ x

xo
φ2(s)H (ψ(s))ds. (68)

Employing (67) in (58), followed by the utilization of (68) in (59), results in the derivation of (54). This concludes
the proof.

4 Some applications

In this section, our focus shifts towards illustrating the practical implications of our research findings. The integral
inequalities presented in this paper span a wide range, encompassing both established mathematical inequalities
and innovative ones, thereby enriching the toolkit of mathematical analysis.

To substantiate our claims, we will provide a series of applications, guided by the insights presented in
Remarks 3 and 3. These applications are a testament to the versatility and utility of our findings, highlighting their
potential to contribute to solutions in mathematical and practical contexts.

1.Consider the system

u1(x1,x2)≤
∫ x1

0

∫ x2

0
u1(s1,s2)ds2ds1 +

∫ x1

0

∫ x2

0
x1u2(s1,s2)ds2ds1, (69)

and

u2(x1,x2)≤ x2 −
∫ x1

0

∫ x2

0
x1u1(s1,s2)ds2ds1 −2

∫ x1

0

∫ x2

0
u2(s1,s2)ds2ds1 (70)

comparing to the system in Remark 3 we have

a1(x1,x2) = 0, b1(x1,x2,s1,s2) = 1, c1(x1,x2,s1,s2) = x1,

a2(x1,x2) = x2, b2(x1,x2,s1,s2) =−x1, c2(x1,x2,s1,s2) =−2.

Therefore, this system can be solved by applying inequality (39) that gives

u1(x1,x2)≤
∫ x1

0

∫ x2

0

[
2s1s2 +(1+2s1)

∫ s1

0

∫ s2

0
(2t1t2 −2t2 −

∫ t1

0

∫ t2

0
(2r1r2 −2r2)dr2dr1)dt2dt1

]
ds2ds1,

(71)

which implies that

u1(x1,x2)≤
x2

1x2
2

6

[
3− x2 + x1x2

(
x2 −12

12

)
+ x2

1x2

(
5x2 +24

48

)
−

x3
1x2

2
30

]
. (72)

Similarly we can obtain

u2(x1,x2)≤ x2 − x1x2
2 +

x2
1x3

2
3

−
x3

1x4
2

36
+

x3
1x3

2
9

−
x4

1x3
2

12
− x4

1x4
2

72
+

x5
1x4

2
180

. (73)
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2.Consider the system

u1(x1,x2)≤x2 cosx1 +
∫ x1

0

∫ x2

0
(1+ sins2)u1(s1,s2)ds2ds1

−2
∫ x1

0

∫ x2

0
coss1u2(s1,s2)ds2ds1,

and

u1(x1,x2)≤x2 +
∫ x1

0

∫ x2

0
secs1u1(s1,s2)ds2ds1

−
∫ x1

0

∫ x2

0
sins2u2(s1,s2)ds2ds1.

Now an application of Remark 3 gives

φ1(x1,x2) = 1+ sinx2 −2
x2 cosx1

x2 cosx1
= sinx2 −1,

φ2(x1,x2) = secx1
x2 cosx1

x2
− sinx2 = 1− sinx2, hence φ(x1,x2) = 0.

Therefore, the given system has the following solution

u1(x1,x2)≤ x2 cosx1

(
1+2

∫ x1

0

∫ x2

0
(sins2 −1)ds2ds1

)
,

which gives

u1(x1,x2)≤ x2 cosx1 (1−2x1(cosx2 + x2 −1)) .

Similarly we can easily obtain

u2(x1,x2)≤ x2 (1+2x1(cosx2 + x2 −1)) .

5 Conclusion and Future work

The results obtained in this paper are not only consistent with classical findings such as the Grönwall-Bellman
and Pachpatte-type inequalities but also extend them significantly. In particular, we provided explicit upper
bounds for systems of integral inequalities involving two real-valued unknown functions in multiple independent
variables, a setting that is more general than most existing works which typically address scalar inequalities or
single-variable cases. Compared to earlier studies such as those in [16] and [17], our framework incorporates
higher-order derivatives, interaction terms, and multi-level integral structures derived from characteristic
solutions, resulting in sharper and more adaptable bounds. Furthermore, in contrast to recent contributions like
Samraiz et al. [4] and Frioui et al. [5], which focus on either graphical representations or parametrized
single-variable forms, our results address coupled systems with additive structures in multidimensional domains.
This generalization not only broadens the scope of applicability (particularly in the analysis of nonlinear
integro-differential equations) but also provides a unified and more refined analytical foundation for further
theoretical developments.

© 2025 NIDOC
National Information and Documentation Center



80 Waleed Abuelela: Bounding Unknown Functions in Nonlinear Integral Inequalities: A Comprehensive Study

Unlike earlier contributions which emphasize inequalities in quotient form or rely on weight structures and
conformable fractional calculus [18–20], the present work derives explicit bounds for systems of nonlinear
integral inequalities using additive structures and characteristic solutions in multiple dimensions. This provides a
complementary and practically applicable extension to the field.

The present study lays a solid foundation for further investigation into systems of integral inequalities involving
multiple variables and coupled unknown functions. Future research may focus on extending the current results to
more general classes of nonlinear kernels, time-delay systems, or inequalities defined on non-Euclidean domains
such as manifolds or time scales.
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HolderâC™s inequality. J Inequal Appl 2023, 76 (2023).

[4] Samraiz, M., Atta, T., Naheed, S., Abdeljawad, T., Ghaffar, M. T. (2024). A novel class of integral inequalities with graphical
approach and diverse applications. Mathematical and Computer Modelling of Dynamical Systems, 30(1), 156-178.

[5] Frioui, A., Meftah, B., Shokri, A. et al. Parametrized multiplicative integral inequalities. Adv Cont Discr Mod 2024, 12
(2024).

[6] Bellman, R. The stability of solutions of linear differential equations. Duke Math. J. 1943, 10, 643–647.
[7] H.-P. Ye, J.-M. Gao, Y.-S. Ding A generalized Grönwall inequality and its application to a fractional differential equation J.

Math. Anal. Appl., 328 (2007), pp. 1075-1081
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