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Abstract: The primary motivation of this research is to develop a realistic, non-linear mathematical model that accurately
represents the transmission dynamics of tuberculosis (TB). Unlike existing models, this study incorporates a comprehensive
analysis of key preventive measures, such as early detection, immunity, and personal hygiene, in mitigating the spread of
TB bacteria. By explicitly modeling the impact of these factors, the research bridges a critical gap in understanding how public
health measures, such as early detection, personal hygiene practices, and strong immunity, can substantially influence the course
of infectious disease outbreaks. In addition, we aim with this study to develop a strategy to stop the spread of TB. The Shifted
Chebyshev Spectral Collocation Technique (SCSC) has been used to obtain numerical results. The results obtained using the
previously mentioned method show that as the immunity of community members improves, the number of recovered cases
increases and the number of infected cases decreases. The results also made clear the importance of detecting the disease at the
beginning of infection in order to prevent it and prevent the spread of infection, because the timing of diagnosis TB affects the
speed of recovery and limits the spread of infection. The planned model consists of six epidemiological compartments. For the
model, two steady-state points have been determined, one with and one without the pandemic. An endemic point EE is one that
is present both locally and globally stable if R0 > 1. The stability shows that the bacteria-free equilibrium (FE) is asymptotically
stable both locally and globally for R0 < 1. The model’s sensitivity is assessed. We can apply such a mathematical model to
many other infectious diseases.

Keywords: Non-linear mathematical model; Basic reproductive number; Stability analysis; Sensitivity analysis; SCSC
Technique.

2020 AMS Subject Classifications: 54A05, 54C10, 54D10, 54D35, 91A05.

1 Introduction and Preliminaries

Numerous mathematical models [1–5] are employed to describe biological phenomena to comprehend the spread
of the epidemic, its impacts, and how it was stopped and contained. One of the major problems of the modern period
that has been seriously endangering human health in recent decades is TB [6] and [7]. Other articles that deal with
the modelling can be found in [8, 9]. Frequent, long-term contact between healthy and infected individuals is the
primary factor in the transmission of TB [10]. Tuberculosis (simply “TB”) is an infectious disease that originally
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results from the bacterium TB. TB mainly affects the lungs (“pulmonary TB”) but is capable of attacking any body
part (“extra pulmonary TB”).

TB was chosen as the focus of this study due to its significant global public health impact. TB remains one of
the leading infectious diseases worldwide, causing millions of cases and deaths annually. Despite advances in
treatment, TB continues to spread, especially in resource-limited settings, due to factors such as late diagnosis,
limited access to healthcare, and the emergence of drug-resistant strains. By developing and analyzing a
mathematical model for TB transmission. The spread of TB can be effectively prevented through early detection,
immunity, and personal hygiene. Early detection, immunity, and personal hygiene are key factors in preventing
the transmission of TB bacteria. Early detection allows for the identification and isolation of active cases,
ensuring timely treatment that reduces infectiousness and breaks the chain of transmission. Strong immunity,
supported by vaccination (e.g., BCG vaccine) and a healthy lifestyle, helps the body resist infection and prevent
latent TB from becoming active. Personal hygiene, such as covering the mouth when coughing, maintaining good
ventilation, and regular hand washing, minimizes the spread of TB bacteria in communities. Together, these
measures effectively control TB and protect public health.

These models [11–13] are referred to as active epidemiological models and describe the long-term transmission
and development of TB. They explain that before a person becomes infectious, the susceptible person goes through
a latent phase after infection. In several published papers on TB transmission [14–16], it is shown that whether
acquired immunity is permanent or not, it is of the ”SEIR” or ”SEIRS” type. Waaler and Anderson proposed the
first TB model in 1962 [17]. ”SEIR” models that take density dependency in the death rate into account were
examined by Greenhalgh [18]. SEIRS models with two delays were introduced and researched by Cooke and van
den Driessche [19]. In recent years, Hopf bifurcations in SEIRS models with mortality rates have been examined
by Greenhalgh [20]. The global dynamics of an SEIR model were examined by Zhang et al. [21]. The global
dynamics of a bilinear incidence and vertical transmission SEIR model were reviewed by Li et al. [22]. Hai-Feng
Huo and Ming-Xuan Zou Use a model to explain the importance of hospital treatment [23]. A system was designed
to examine the effect of heterogeneity on how TB spreads by Okuonghae [24]. In 2022, a fractional mathematical
model was used to study and investigate the dynamic behaviour of tuberculosis; the AB caputo and the fractional
caputo have been contrasted [25]. In 2021, Dhiraj Kumar Das et al. studied the effectiveness of contact tracing in
mitigating the COVID-19 outbreak [26]. Treatment optimization in a two-strain TB [27, 28].

Motivated by the preceding, we provide a (SWIRIDCR) mathematical framework. The two most crucial
elements in preventing the disease from spreading are as follows: First, early diagnosis and antibiotic treatment
are essential for a successful recovery. The second issue is the significance of maintaining good personal
cleanliness and strong immunity for both sick and non-infected individuals by eating a nutritious diet, consuming
herbs, and quitting smoking. To illustrate graphically, we employed the SCSC approach. The SCSC Technique is
highly accurate and efficient, achieving spectral convergence with fewer computational resources. It provides
global approximation using shifted Chebyshev polynomials, making it well-suited for boundary-value problems
and non-linear systems. The method ensures numerical stability, handles boundary conditions effectively, and is
adaptable to various mathematical models. The SCSC Technique has been widely utilized in various fields to
model and analyze complex systems.

The present article is organized into the following sections: Section 1 covered a thorough overview of TB. The
unique, exist, non-negative, and bounded of solutions, the stability of the model, and the reproduction number are
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described in Section 2. We offer the sensitivity analysis in Section 3. section 4: The SCSC Technique is used to
solve the desired model. Finally, we conclude the paper and have a discussion in Section 5.

2 Creation and analysis of the model

The model includes six nonlinear ordinary differential equations of first order and first degree. This model contains
six epidemiological compartments: susceptible (S), infected under medical care (C), latent TB patients (IR), active
TB patients (ID), infected without diagnosis (W ), and recovered (R). The compartment S increases due to new
births θ and decreases when individuals come into contact with infectious persons from the infected group W at a
rate β transition into the undiagnosed infected category W. Individuals with strong immunity and good hygiene in
the S category transition to the recovered group at rate (κ), as TB spreads quickly especially in those with weaker
immunity and poor hygiene. Individuals from the W category transition into three infected compartments: IR, ID,
C, at rates α , r and σ , respectively. These transitions represent the progression of undiagnosed infections into
diagnosed categories, such as latent TB, active TB, and individuals under treatment. Individuals from the three
infected categories IR, ID, C, at rates δ1κ , δ2κ and δ3κ respectively, transition into the R category after recovering
from the disease. As κ increases, the rate of recovery δi becomes significantly faster. After starting treatment,
individuals transition from the infected category ID and W to the C category at rates π and r. Categories transition
to death at a rate represented by the natural mortality rate τ . Initial conditions S0, W0, IR0, ID0, C0 and R0 define
the population distribution at the start of the analysis. Every member of society has an identical natural death rate.
The desired model includes two equilibrium cases, including an endemic equilibrium (EE) and a bacteria-free
equilibrium (FE). These states are obtained by setting the system’s right side equal to zero.

Fig. 1: Diagram showing the propagation of TB.
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dS
dt = θ −βWS− (τ +κ)S

dW
dt = βWS− (α +σ + τ + r)W

dIR
dt = αW − τ +δ1κ)IR

dID
dt = σW − (π + τ +δ2κ)ID

dC
dt = πID + rW − (τ +δ3κ)C

dR
dt = δ1κIR +δ2κID +δ3κC+κS− τR

(1)

Table 1: The Biological interpretation of the symbols.

Symbols Meaning
β mixing rate
τ death by natural causes
θ human recruitment rate

δi, i = 1,2,3 rate of recuperation
π the rate of transmission to treatment
α transfer rate from W to IR
σ transfer rate from W to ID
r early detection
κ rate of personal hygiene and immune bolstering

Proposition 1. Ω = {(S,W, IR, ID,C,R) ∈ R6 : 0 ≤ N ≤ θ

τ
} is a bounded region and the solutions set

{S(t),W (t), IR(t), ID(t),C(t),R(t)} of the model is positive and unique for all t ≥ 0.

Proof . Positivity of [S(t),W (t), IR(t), ID(t),C(t),R(t)]: The model equations can be represented as

dS
dt = θ −βWS− τ +κ)S ⩾−BWS− τ +κ)S,
dW
dt ⩾−(α +σ + τ + r)W,

dIR
dt ⩾−(τ +δ1κ)IR,

dID
dt ⩾−(π + τ +δ2κ)ID,

dC
dt ⩾−(τ +δ3κ)C,
dR
dt ⩾−τR.

(2)

Integrating the two sides of Eq. (2) across the range [0, t] yields the following result.

S(t)⩾ S(0)e−(β
∫ t

0 W (x)dx+τ t),

W (t)⩾W (0)e−(α+σ+τ+r)t ,

IR(t)⩾ IR(0)e−(τ+δ1κ)t ,

ID(t)⩾ ID(0)e−(π+τ+δ2κ)t ,

C(t)⩾C(0)e−(τ+δ3κ)t ,

R(t)⩾ R(0)e−τt ,

(3)
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exponential functions are always non-negative, regardless of the exponent’s sign.
Simply [S(t),W (t), IR(t), ID(t),C(t),R(t)] are positive for all t ⩾ 0.
Now, adding all the equations in model (1) yields

dN
dt

= θ − τN, (4)

by performing the integration of the given Eq., upon integration and using the initial condition, the resulting
expression is

N(t) = (N(0)− θ

τ
)e(−τt)+

θ

τ
. (5)

Therefore, it may be concluded that:

lim
t→∞

N(t) =
θ

τ
. (6)

This demonstrates that N(t) is bounded within the range 0 ≤ N(t) ≤ θ

d , indicating that θ

τ
serves as the upper

limit for N(t).
Now, we show that the system (1) has a unique solution.
Let the right-hand sides of the system (1) be represented below:

G1 = θ −βWS− (τ +κ)S
G2 = BWS− (α +σ + τ + r)W
G3 = αW − (τ +δ1κ)IR

G4 = σW − (π + τ +δ2κ)ID

G5 = πID + rW − (τ +δ3κ)C
G6 = δ1κIR +δ2κID +δ3κC+κS− τR

(7)

Then the system (1) have a unique solution if ∂Gn
∂Vm

, n,m = 1,2,3,4,5,6 are continuous and bounded in Ω .
For G1:

| ∂G1
∂S |= |− (βW + τ +κ)|< ∞; | ∂G1

∂W |= |− (βS)|< ∞; | ∂G1
∂ IR

|= 0 < ∞;
| ∂G1

∂ ID
|= 0 < ∞; | ∂G1

∂C |= 0 < ∞; | ∂G1
∂R |= 0 < ∞.

(8)

For G2:

| ∂G2
∂S |= |βW |< ∞; | ∂G2

∂W |= |βS− (α +σ + τ + r)|< ∞; | ∂G2
∂ IR

|= 0 < ∞;
| ∂G2

∂ ID
|= 0 < ∞; | ∂G2

∂C |= 0 < ∞; | ∂G2
∂R |= 0 < ∞.

(9)

For G3:
| ∂G3

∂S |= 0 < ∞; | ∂G3
∂W |= |α|< ∞; | ∂G3

∂ IR
|=−(τ +δ1κ)< ∞;

| ∂G3
∂ ID

|= 0 < ∞; | ∂G3
∂C |= 0 < ∞; | ∂G3

∂R |= 0 < ∞.
(10)

For G4:
| ∂G4

∂S |= 0 < ∞; | ∂G4
∂W |= |σ |< ∞; | ∂G4

∂ IR
|= 0 < ∞;

| ∂G4
∂ ID

|= |− (π + τ +δ2κ)|< ∞; | ∂G4
∂C |= 0 < ∞; | ∂G4

∂R |= 0 < ∞.
(11)

For G5:
| ∂G5

∂S |= 0 < ∞; | ∂G5
∂W |= r < ∞; | ∂G5

∂ IR
|= 0 < ∞;

| ∂G5
∂ ID

|= |π|< ∞; | ∂G5
∂C |= |− (τ +δ3κ)|< ∞; | ∂G5

∂R |= 0 < ∞.
(12)
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For G6:
| ∂G6

∂S |= |κ|< ∞; | ∂G6
∂W |= 0 < ∞; | ∂G6

∂ IR
|= |δ1κ|< ∞;

| ∂G6
∂ ID

|= |δ2κ|< ∞; | ∂G6
∂C |= |δ3κ|< ∞; | ∂G6

∂R |= |− τ|< ∞.
(13)

This illustrates that all partial derivatives ∂Gn
∂Vm

, n,m = 1,2,3,4,5,6 exist, are continuous, and bounded in Ω . As
a result, the Lipschitz criterion implies that system (1) admits a unique solution.

Now, the proof is complete.

To determine the system’s equilibrium points, by taking

dS
dt

=
dW
dt

=
dIR

dt
=

dID

dt
=

dC
dt

=
dR
dt

= 0. (14)

There are two equilibrium points FEand EE

FE = (S0,W 0, I0
R, I

0
D,C

0,R0) = (
θ

τ +κ
,0,0,0,0,0), (15)

and
EE = (S1,W 1, I1

R, I
1
D,C

1,R1), (16)

where
S1 = α+σ+τ+r

β
, W 1 = θ−(τ+κ)S1

βS1 , I1
R = αW 1

τ+δ1κ
,

I1
D = σW 1

π+d+δ2κ
, C1 =

πI1
D+rW 1

δ3κ+τ
, R1 =

δ3κC1+δ1κI1
R+δ2κI1

D+κS1

τ
.

(17)

Definition 1. The average total number of secondary cases caused by a single primary infection during an
infectious outbreak is known as the basic reproduction number R0, which is the largest absolute value of a
next-generation matrix FH−1 [29]. this calculation is created using the classes W, IR, ID,C.

Let

f =


βSW

0
0
0

 ,h =


(α +σ + τ + r)W
−αW +(τ +δ1κ)IR

−σW +(π + τ +δ2κ)ID

−πID − rW +(τ +δ3κ)C

 , (18)

similar to reference [29], the Jacobian matrices of f and h at EF are represented as

F =


βS0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

 , (19)

H =


α +σ + τ + r 0 0 0

−α τ +δ1κ 0 0
−σ 0 π + τ +δ2κ 0
−r 0 −π τ +δ3κ

 , (20)
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FH−1 =


βθ

(τ+κ)(α+σ+τ+r) 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

 . (21)

Furthermore, this basic reproduction number (R0) is defined as follows:

R0 =
βθ

(τ +κ)(α +σ + τ + r)
. (22)

Lemma 1. The model (1) has an endemic point, which exists if R0 > 1.

Proof . By using the value of R0 with the value of EE point, we obtain

S1 = α+σ+τ+r
β

, W 1 = (τ+κ)(R0−1)
β

,

I1
R = α(τ+κ)(R0−1)

β (τ+δ1κ) , I1
D = σ(τ+κ)(R0−1)

B(π+τ+δ2κ) ,

C1 = (d+κ)(R0−1)
β (τ+δ3κ) ( πσ

π+τ+δ2κ
+ r), R1 = κ(R0−1)

βτ
[(τ +κ)( δ1α

τ+δ1κ
+ δ2σ

π+τ+δ2κ
+

δ3(
πσ

π+τ+δ2κ
)+r

τ+δ3κ
+ α+σ+τ+r

R0−1 )].

(23)
It is clear that EE point is exit when R0 > 1.

2.1 Study of stability

The Jacobian matrix as in [30–33] at any point of the SWIRIDCR system is

J =



−βW − (τ +κ) −βS 0 0 0 0
βW βS− (α +σ + τ + r) 0 0 0 0

0 α −(τ +δ1κ) 0 0 0
0 σ 0 −(π + τ +δ2κ) 0 0
0 r 0 π −(τ +δ3κ) 0
κ 0 δ1κ δ2κ δ3κ −τ


. (24)

Theorem 1. When R0 < 1 the FE point is local stable.

Proof . The Jacobian matrix evaluated at equilibrium FE = ( θ

τ+κ
,0,0,0,0,0) becomes

J0 =



−(τ +κ) −βS0 0 0 0 0
0 βS0 − (τ +σ + r+α) 0 0 0 0
0 α −(τ +δ1κ) 0 0 0
0 σ 0 −(π + τ +δ2κ) 0 0
0 r 0 π −(τ +δ3κ) 0
κ 0 δ1κ δ2κ δ3κ −τ


, (25)
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in this matrix, the eigenvalues are −(τ +κ),−(τ +δ1κ),−(π + τ +δ2κ),−(τ +δ3κ),−τ and βS0 − (τ +σ + r+
α). Since βS0 − (τ +σ + r+α) = (τ +σ + r+α)(R0 −1), When R0 < 1, the eigenvalue is negative, joining the
preceding five negative eigenvalues. Evidently, FE point is locally asymptotically stable when R0 < 1 and unstable
otherwise.

Theorem 2. The FE point of SWIRIDC model is global asymptotically stable whenever R0 < 1 and unstable
otherwise.

Proof . A Lyapunov function defined as L =W ,

dL
dt

=
dW
dt

= BWS− (α +σ +d + r)W ≤W [BS0 − (α +σ +d + r)], (26)

it follows that
dL
dt

≤W [α +σ + τ + r](R0 −1). (27)

It is obvious that dL
dt < 0 in case R0 < 1 and dL

dt > 0 in case R0 > 1. In addition, dL
dt = 0 if and only if W = 0, It is

shown that it is equal to zero at FE. Therefore, By LaSalle”s extension to Lyapunov’s principle [44– 47], E0 is
globally asymptotically stable when R0 < 1 and unstable when R0 > 1.

Theorem 3. The EE point of SWIR IDCR model is local asymptotically stable when R0 > 1.

Proof . The Jacobian matrix evaluated at equilibrium EE = (S1,W 1, I1
R, I

1
D,C

1,R1) becomes

JEE =



−βW 1 − (τ +κ) −βS1 0 0 0 0
βW 1 βS1 − (α +σ + τ + r) 0 0 0 0

0 α −(τ +δ1κ) 0 0 0
0 σ 0 −(π + τ +δ2κ) 0 0
0 r 0 π −(τ +δ3κ) 0
κ 0 δ1κ δ2κ δ3κ −τ


, (28)

now, the eigenvalues of JEE are requisite to be created. The characteristic equation det|JEE −λ I|= 0
Clearly, there are four negative eigenvalues λ1 = −(τ + δ1κ), λ2 = −(π + τ + δ2κ), λ3 = −(τ + δ3κ),

λ4 =−τ , and other eigenvalues satisfy the quadratic equation

bλ
2 + cλ +d = 0,

where
b = 1,

c =−βS1 +α +σ + τ + r+ τW 1 + τ +κ,

d = βW 1(α +σ + τ + r)− (τ +κ)βS1 +(τ +κ)(α +σ + τ + r).

The Routh-Hurwitz criterion [32], [33] is used to find the signs of the solutions, or eigenvalues, of the
characteristic equation. The Routh-Hurwitz criteria indicate that EE is locally asymptotically stable when three
conditions are satisfied.
(1) b > 0 (2) c > 0 (3) d < 0.

Evidently, b > 0, c > 0 and d < 0. Hence EE point is LAS.
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Theorem 4. The EE point of SWIR IDCR model is global asymptotically stable when R0 > 1.

Proof . utilizing the lyapunov function, the endemic equilibrium point’s global stability is investigated.
The lyapunov function can be choosing as:

L =
1
2
((S−S1)+(W −W 1)+(IR − I1

R)+(ID − I1
D)+(C−C1)+(R−R1))2, (29)

thus, it indicates that

dL
dt

= ((S−S1)+(W −W 1)+(IR − I1
R)+(ID − I1

D)+(C−C1)+(R−R1))(
dS
dt

+
dW
dt

+
dIR

dt
+

dID

dt
+

dC
dt

+
dR
dt

)

= (N − θ

τ
)(θ − τN) =− (θ − τN)2

τ
< 0.

(30)

As a result, dL
dt < 0 suggests that the function is lyapunov. It is obvious that dL

dt = 0 when S = S1, ID = I1
D,W =

W 1,C =C1, IR = I1
R and R = R1, indicating that EE point is global asymptotic stability.

3 Analysis of parameter sensitivity

In epidemiology, the sensitivity analysis is crucial and especially in mathematical modeling of infectious disease.
we performed a multivariate sensitivity analysis of the model in order to identify the most important parameters
for the control of the epidemic. It displays the impact of the model’s parameters on the fundamental reproduction
number [34]. the positive values of the sensitivity parameters means that there is direct relationship and the negative
sign is an inverse relationship. R0’s sensitivity to α is described as

SR0
α =

α

R0
× ∂R0

∂α
, (31)

similarly, we estimate the other parameters’ sensitivity B,θ ,d,r and κ are as follows:

SR0
B = 1 > 0, (32)

SR0
θ

= 1 > 0, (33)

SR0
d =

−d(α +σ +2d +κ + r)
(d +κ)(α +σ +d + r)

< 0, (34)

SR0
σ =

−σ

(α +σ +d + r)
< 0, (35)

SR0
α =

−α

(α +σ +d + r)
< 0, (36)

SR0
κ =

−κ

d +κ
< 0, (37)

SR0
r =

−r
(α +σ +d + r)

< 0. (38)

The computations above and Figure (2) indicate that R0 rises with an increase in B and θ and while it decreases
as τ , r, κ , σ and α grow. This highlights the sensitivity of R0 to these parameters, emphasizing their role in
controlling the spread of infection.

© 2025 NIDOC
National Information and Documentation Center



38 Hoda A. Kamel et al.: An Effective Mathematical Representation and Numerical Simulation for TB Prevention

Fig. 2: Parameter sensitivity indices.
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4 Solving the model with SCSC technique

To clarify the SCSC technique, first, we offer the recurrence formula that can be used to determine the Chebyshev
polynomials as in [35], which determined on the range [−1,1] as

Tm+1(y) = 2yTm(y)−Tm−1(y), T0(y) = 1, T1(y) = y, m = 1,2, ... (39)

It is understood that Tm(−1) = (−1)m, Tm(1) = 1.The Chebyshev polynomials Tm(y) of degree m have analytic
form:

Tm(y) =
[m/2]

∑
s=0

(−1)s2m−2s−1 m(m− s−1)!
(s)!(m−2s)!

ym−2s, (40)

where [m/2] represents the integer component of m/2. When orthogonality exists,

∫ 1

−1

Ts(y)Tj(y)√
1− y2

dy =


π, f or s = j = 0;
π

2 , f or s = j ̸= 0;
0, f or s ̸= j.

(41)

By changing the variable y = 2x
L −1, we define shifted Chebyshev polynomials, which can be used on the interval

[0,L]. Because of this, there is a description of the shifted Chebyshev polynomials as
T ∗

m(x) = Tm(
2x
L −1) = T2m(

√ x
L ). T ∗

m(x) of degree m has the following analytic form

T ∗
m(x) = m

m

∑
k=0

(−1)m−k (m+ k−1)!22k

(m− k)!(2k)!Lk xk, m = 2,3, ... (42)

where, T ∗
m(L) = 1, T ∗

m(0) = (−1)m These polynomials’ orthogonality condition is∫ L

0
T ∗

k (x)w(x)T
∗
j (x)dx = δ jkbk, (43)

the weight function as w(x) = 1√
Lx−x2

, bk =
hk
2 π , with h0 = 2, hk = 1, k ⩾ 1.The square integrabel function defined

in [0, L], Z(x) can be represented as shifted Chebyshev polynomials.

Z(x) =
∞

∑
m=0

cmT ∗
m(x), (44)

where the coefficients cm are defined as follows

cm =
1

bm

∫ L

0
w(x)Z(x)T ∗

m(x)dx, m = 0,1, ... (45)

to find the model’s numerical solution. We first provide a convergence analysis of the suggested formula.

Theorem 5. The error in approximating X(t) by the sum of its first z terms is bounded by the sum of the absolute
values of all the neglected coefficients [35]. If
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Xz(t) =
z

∑
k=0

ckTk(t), (46)

ET (z) = |X(t)−Xz(t)| ≤
∞

∑
k=z+1

|ck|, t ∈ [−1,1]. (47)

To solve the model using the SCSC method. The main steps of the procedure solution can be summarized as
follows
Step 1 : we first approximation S(t),W (t), IR(t), ID(t),C(t) and R(t) as.

Sh(t) =
h

∑
m=0

amT ∗
m(t), (48)

Wh(t) =
h

∑
m=0

bmT ∗
m(t), (49)

IRh(t) =
h

∑
m=0

cmT ∗
m(t), (50)

IDh(t) =
h

∑
m=0

dmT ∗
m(t), (51)

Ch(t) =
h

∑
m=0

emT ∗
m(t), (52)

Rh(t) =
h

∑
m=0

fmT ∗
m(t), (53)

where am,bm,cm,dm,em and fm are constants to be determined. By applying this approximation to the SWIRIDCR
model we obtain

∑
h
m=0 amT

′∗
m (t) = θ −B∑

h
m=0 bmT ∗

m(t)∑
h
m=0 amT ∗

m(t)− [d +κ]∑h
m=0 amT ∗

m(t),

∑
h
m=0 bmT

′∗
m (t) = B∑

h
m=0 bmT ∗

m(t)∑
h
m=0 amT ∗

m(t)− [α +σ +d + r]∑h
m=0 bmT ∗

m(t),

∑
h
m=0 cmT

′∗
m (t) = α ∑

h
m=0 bmT ∗

m(t)− [d +δ1κ]∑h
m=0 cmT ∗

m(t),

∑
h
m=0 dmT

′∗
m (t) = σ ∑

h
m=0 bmT ∗

m(t)− (π +d +δ2κ)∑
h
m=0 dmT ∗

m(t),

∑
h
m=0 emT

′∗
m (t) = π ∑

h
m=0 dmT ∗

m(t)+ r ∑
h
m=0 bmT ∗

m(t)− (d +δ3κ)∑
h
m=0 emT ∗

m(t),

∑
h
m=0 fmT

′∗
m (t) = κδ1 ∑

h
m=0 cmT ∗

m(t)+κδ2 ∑
h
m=0 dmT ∗

m(t)+κδ3 ∑
h
m=0 emT ∗

m(t)+κ ∑
h
m=0 amT ∗

m(t)
−d ∑

h
m=0 fmT ∗

m(t),

(54)

for m=0, 1, ..., h, the initial conditions give the following equations

∑
h
m=0(−1)mam = S0, ∑

h
m=0(−1)mbm =W0, ∑

h
m=0(−1)mcm = IR0,

∑
h
m=0(−1)mdm = ID0, ∑

h
m=0(−1)mem =C0, ∑

h
m=0(−1)m fm = R0.

(55)
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Step 2 : Collocate Eq.(54) at the 6h points. For an appropriate collocation points, apply SCSC roots T ∗
h .

Step 3 : An algebraic system is represented by the equations derived in step 2 and the initial conditions with 6(h+1)
of unknowns.

The numerical solutions obtained by the SCSC method show the spread of the virus among the general public.
Mathematica 11 was used to create all of the codes. The trajectory of the approximate solution with h = 8 is
illustrated.

Table 2: The model’s parameters expressed numerically

Symbols Estimator Citation
B 0.4 approximations
d 0.015 approximations
A 0.014 [36]

δi, i=1,2,3 0.4038 [37]
θ 0.014 approximations
α 0.14 [37], [38]
σ 0.08 approximations
r 0.001 approximations
κ 0.2 approximations

Firstly, Figure 3 presents six sub figures that model the dynamics of a community segmented into
compartments: S,W, IR, ID,C,R. This visualization examines the effects of robust immunity and improved
personal hygiene on both the individuals in these compartments and the overall disease spread within the
community. To investigate these effects, the model evaluates four distinct values for the parameter κ. The value of
κ is varied while all other parameters remain constant. Strong immunity and good personal hygiene have a
positive impact on society members, as figure 3 illustrates. As we investigate the line graphs with various κ

values, as noted in Figures 3(a), 3(b), 3(c), 3(d), and 3(e), the number of susceptible, latent TB patients, infected
without diagnosis, infected under medical care and people with active TB declines as κ increases. Initially, when
κ = 0.005 gives R0 = 1.19 and when κ = 0.1 gives R0 = 0.2. The spread of TB has no influence on the human
population when the reproduction number is significantly smaller than one because there aren’t many susceptible.
We observe that by increasing the value of κ , the number of recoveries increases, as immunity plays a crucial role
in speeding up recovery, as shown in Figure 3(f).

Secondly, Figure 4 illustrates the influence of the parameter r, which represents the early detecting rate, while
keeping all other parameters constant. As is apparent in Figure 4(a) there impact is minimal of early detection on
susceptible people. The early detection becomes evident in Figures 4(b), 4(c), and 4(d), which detail the dynamics
of infected populations and disease progression. Specifically, Figure 4(b) shows a notable reduction in the
population of undiagnosed infected individuals, whereas Figure 4(c) illustrates a decline in the number of
individuals with latent TB. Figure 4(d) further demonstrates a substantial decrease in the population of those with
active TB, with these numbers approaching zero over time. Thus, early detection has an important impact due to a
decrease in the number of infected and moreover, a rise in the number of recovered.

The findings emphasize that early detection plays a critical role in curbing TB spread. By identifying infections
in their latent or early stages, effective interventions, such as timely treatment and isolation, can be implemented
to prevent progression to active TB and subsequent transmission.
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.

Fig. 3: S,W, IR, ID,C and R trajectories for multiple values of κ .
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Fig. 4: S,W, IR, ID,C and R trajectories for multiple values of r.
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Fig. 5: S,W, IR, ID,C and R trajectories for multiple values of B.

Figure 5 shows how important the contact rate (β ), in shaping the disease’s dissemination among different
demographic subsets with increasing time. Figure (a) specifically shows how the contact rate affects susceptible
individuals. We observe that as the value of β increases, the number of susceptible individuals decreases, as these
individuals transition into the infected categories. Consequently, the number of recovered individuals also reduces,
as fewer individuals remain in the susceptible group or recover directly. A significant and noticeable increase in
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the three categories, numbered W, IR and ID as represented in Figures 5(b), 5(c) and 5(d). In contrast to the C class,
its value increases only slightly with the increase in parameters, as shown in Figure 5(e).

5 Conclusions and remarks

We have developed and studied a numerical representation of TB. A class of SIR modeling with vital behavior and a
bounded community is shown. We developed the SWIRIDCR model to concentrate on the importance of immunity,
personal hygiene, and early detection after first reviewing a few recently published articles and articles that worked
on TB. The biological significance of the model is illustrated through the existence of a unique, non negative,
and bounded solution within a specific domain. Two steady-state points for the model were calculated with and
without the TB. An endemic point exists if R0 > 1 and is global and local stable. According to stability, for R0 <

1, the bacteria-free equilibrium (FE) was both locally and globally asymptotically stable. Graphic illustrations
and numerical and sensitivity analyzes verify that early detection, good personal hygiene, and strong immunity
will all contribute to reducing TB transmission. Furthermore, the simulation result clarifies that while a decrease
in effective contact rates and an increase in treatments would minimize the globalization of TB, an increase in
contact rate made the disease worse. For finding the numerical solutions, the Chebyshev spectral collocation SCSC
technique was applied. Finally, the versatility of the proposed model allows it to be adapted to other infectious
diseases, broadening its applicability beyond TB and contributing to a generalized framework for studying disease
transmission dynamics.
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