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Abstract: Circular distributions play a crucial role in modeling data characterized by angular 

properties, offering indispensable tools for analyzing angles, phases, or periodic events. The versatility 

of these distributions is evident in their application across various domains. There are various 

strategies available for constructing circular distributions. Exponential distribution is one of the most 

important models for analyzing lifetime data. In this work, we discuss the wrapped exponential 

distribution and its properties. Furthermore, we propose three extensions to the wrapped exponential 

distribution based on the Marshall-Olkin, type I half logistic, and exponentiated generalized 

generators. We present several mathematical characteristics of these extensions and a unique linear 

representation of their densities. We investigate the maximum likelihood, least squares, and weighted 

least squares estimators of the unknown parameters and conduct a simulation study to evaluate their 

performance. Finally, we compare our novel models against the wrapped exponential and transmuted 

wrapped exponential distribution using real data in four applications. 

 

Keywords: circular distributions, wrapped exponential, trigonometric moments, Marshal-Olkin 

family, exponentiated generalized family. 
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1. Introduction 

Direction measurements play a critical role in various scientific fields. Geologists, for 

instance, rely on directional measurements to determine the position of the Earth's magnetic 

pole [1]. Similarly, biologists are interested in the orientation of animals or the flight paths of 

birds [2, 3]. Image analysis has made it possible to collect multiple direction measurements 

per sample quickly using computers. However, when dealing with large sample sizes, it is 

crucial to use circular statistical tests that are appropriate for this scenario [4]. Circular 

statistical analysis is commonly used in the analysis of phase features from radar imagery [5] 

and time series analysis of wind speeds and directions [6]. In modern times, extensive 
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databases of DNA and protein sequences are readily available, and structural bioinformatics 

aims to predict their associated three-dimensional structures. Dihedral angles, assuming ideal 

bond lengths and angles, are often used mathematically to describe these structures. However, 

it has been recognized that developing probabilistic models of these angles in proteins can be 

highly advantageous [7]. Circular data is not limited to compass measurements but can also 

be obtained from clocks. Whether using a 24 -hour clock or a 12-month period, representing 

time data on a circle is convenient when the endpoints are naturally linked, such as 0.00a.m. 

and 12.00p.m. or January 1 and December 31. Recently, political scientists [8] have 

acknowledged the benefits of this approach in gaining information from circular data. To 

expand the range of applications in this context, researchers have developed circular 

distributions with various features. 

Using established probability distributions on the real line or plane, several techniques can 

produce a wide range of useful and novel circular models. Below are some of the common 

techniques: 

1. Offset distributions: This technique involves reducing a bivariate linear 

random variable to only its directional component. These distributions are 

referred to as offset distributions. 

2. Maximal entropy distributions: This method involves describing characteristics 

like maximal entropy to construct circular models. The von Mises distribution 

is an example of a maximal entropy distribution. 

3. Wrapped distributions: This technique involves wrapping a linear distribution 

around the unit circle to create a circular distribution. Examples of wrapped 

distributions include the wrapped normal distribution and the wrapped Cauchy 

distribution. 

For many years, fitting densities to data has been an essential aspect of statistical analysis. 

Statistical distributions are highly valuable for describing and predicting real-world 

phenomena, and over the past few decades, numerous 

extended distributions have been developed by introducing one or more parameters to a 

baseline distribution. These distributions have been used to model data across various 

disciplines, including reliability engineering [9], survival analysis [10], demography [11], and 

actuarial science [12]. 
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One way to create new, more flexible families of distributions is by adding parameters to an 

existing distribution. This technique has been widely used in statistical literature to establish 

various types of distributions. For instance, the Marshal-Olkin-G generator was developed to 

add a new parameter to baseline distribution [13]. Other examples include the Beta-G [14], 

the Gamma-G [15], the Kumaraswamy-G [16], the Exponentiated-G [17], and the type-I-half-

logistic [18] generators. These generators have been used to create families of distributions 

that are widely applicable in different fields of study. 

The circular Cardioid distribution has been extended in four different ways by Paula et al. 

[19]. These extensions include beta cardioid, Kumaraswamy cardioid, gamma cardioid, and 

Marshal-Olkin cardioid distributions. 

The exponential distribution is one of the most significant distributions for modeling time-

related events and has numerous practical applications. Therefore, the wrapped exponential 

distribution (WE), which has a probability density function (pdf) and a cumulative 

distribution function (cdf), has gained considerable attention [20]. The pdf and cdf of WE are 

given by Equations (1) and (2), respectively: 

𝑔(𝜃 ∣ 𝜆) =
𝜆𝑒−𝜃𝜆

1−𝑒−2𝜋𝜆
, 𝜃, 𝜆 > 0,      (1)

𝐺(𝜃 ∣ 𝜆) =
1−𝑒−𝜃𝜆

1−𝑒−2𝜋𝜆
𝜃, 𝜆 > 0.      (2)

In their study, Yilmaz and Biçer [21] presented an expansion of the WE distribution using the 

transmutation method and examined its mathematical properties. In this work, we introduce 

three new expansions of the WE distribution using three well-known generators: Marshal-

Olkin-G, type-I-half-logistic-G, and exponentiated generalized-G. These expansions result in 

pdfs that have a unique linear form obtained by weighting the core term of the WE 

distribution's pdf. As circular distributions find use in many scientific and applied fields, we 

also investigate the mathematical properties of the proposed distributions, such as the 

trigonometric moments. To demonstrate the versatility of our approach, we provide four 

examples from real-world events. 

In this paper, we introduce the Marshal-Olkin wrapped exponential (MOWE), type I half 

logistic wrapped exponential (HLWE), and exponentiated generalized wrapped exponential 

(EGWE) distributions, along with their general formulas, in Section 2. The trigonometric 

moments of the general model are discussed in Section 3. The invariance properties of the three 

proposed models are studied in Section 4. The maximum likelihood (ML), least squares (LS), 

and weighted least squares (WLS) estimators of unknown parameters are described in Section 5 
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and a simulation study is conducted in Section 6. Finally, in Section 7, we provide four real data 

applications, and the paper concludes with a summary of our findings in Section 8. 

2. Wrapped Exponential Distribution Generalizations 

Let f(θ) and F(θ) represent the pdf and cdf of a base distribution with k parameters, 

respectively. We introduce three generators that can be used to create new distributions with 

additional parameters. 

1. The Marshal-Olkin generator [13] is defined by the following pdf and cdf: 

𝑔𝑀𝑂(𝑥) =
𝛼𝑓(𝑥)

(𝛼+(1−𝛼)𝐹(𝑥))2
, #(3)

and 

𝐺𝑀𝑂(𝑥) =
𝐹(𝑥)

𝛼+(1−𝛼)𝐹(𝑥)
. #(4)

respectively, where α>0 is the additional parameter. Using this generator results in a new 

(k+1)-parameter distribution. 

2. The type-I-half-logistic generator [18] is defined by the following pdf and cdf: 

𝑔𝐻𝐿(𝑥) =
2𝛼𝑓(𝑥)(1−𝐹(𝑥))𝛼−1

(1+*1−𝐹(𝑥)+𝛼)2
, #(5)

and 

𝐺𝐻𝐿(𝑥) =
1−*1−𝐹(𝑥)+𝛼

1+*1−𝐹(𝑥)+𝛼
, #(6)

respectively, where α>0 is the additional parameter. This generator also results in a new 

(k+1)-parameter distribution. 

3. The exponentiated generalized generator [17] is defined by the following pdf 

and cdf: 

𝑔𝐸𝐺(𝑥) = 𝛼𝛽𝑓(𝑥)*1 − 𝐹(𝑥)+
𝛼−1(1 − *1 − 𝐹(𝑥)+𝛼)𝛽−1, #(7)

and 

𝐺𝐸𝐺(𝑥) = (1 − *1 − 𝐹(𝑥)+
𝛼)𝛽 , #(8)

respectively, where α,β>0 are the two additional parameters. Using this generator results in a 

new (k+2) parameter distribution. 

It is important to note that the first two generators provide a new (k+1)-parameter distribution, 

while the last generator provides a new (k+2)-parameter distribution. 
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2.1 Marshal-Olkin Wrapped Exponential (MOWE) 

The pdf and cdf of the MOWE distribution can be obtained by substituting Equations (1) and 

(2) into Equations (3) and (4), respectively. The resulting expressions are given by 

𝑔1(𝜃 ∣ 𝜆, 𝛼)  =
𝛼𝜆𝑒−𝜃𝜆

(1−𝑒−2𝜋𝜆)(
(1−𝛼).1−𝑒−𝜃𝜆/

1−𝑒−2𝜋𝜆
+𝛼)

2 #(9)

                           = 𝑤1(𝜃 ∣ 𝜆, 𝛼)𝑒
−𝜃𝜆,  𝜆, 𝛼 > 0, #(9)

and 

𝐺1( 𝜃 ∣ 𝜆, 𝛼 ) =
1−𝑒−𝜃𝜆

(1−𝛼)(1−𝑒−𝜃𝜆)+𝛼(1−𝑒−2𝜋𝜆)
, #(10)

respectively, where 𝑤1(𝜃 ∣ 𝜆, 𝛼) =
𝛼𝜆

(1−𝑒−2𝜋𝜆)(
(1−𝛼).1−𝑒−𝜃𝜆/

1−𝑒−2𝜋𝜆
+𝛼)

2. 

Figure 1 displays the density function of the MOWE distribution for various values of the 

parameters. 

 

Figure 1: Linear and circular representation of MOWE pdf for various values of λ and α. 

2.2 Type I Half Logistic Wrapped Exponential (HLWE) 

The pdf and cdf of the HLWE distribution can be obtained by applying Equations (1) and (2) 

to Equations (5) and (6), respectively. The resulting expressions are given by 
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𝑔2(𝜃 ∣ 𝜆, 𝛼)  =
2𝛼𝜆𝑒−𝜃𝜆(1−

1−𝑒−𝜃𝜆

1−𝑒−2𝜋𝜆
)

𝛼−1

(1−𝑒−2𝜋𝜆){(1−
1−𝑒−𝜃𝜆

1−𝑒−2𝜋𝜆
)
𝛼

+1}

2 #

                                = 𝑤2(𝜃 ∣ 𝜆, 𝛼, 𝛽)𝑒
−𝜃𝜆,  𝜆, 𝛼 > 0, #(11)

and 

𝐺2( 𝜃 ∣ 𝜆, 𝛼 ) = 1 −
2

1+(
𝑒2𝜋𝜆.𝑒−𝜃𝜆−1/

𝑒2𝜋𝜆−1
+1)

−𝛼 , #(12)

respectively, where 𝑤2(𝜃 ∣ 𝜆, 𝛼) =
2𝛼𝜆(1−

1−𝑒−𝜃𝜆

1−𝑒−2𝜋𝜆
)

𝛼−1

(1−𝑒−2𝜋𝜆)((1−
1−𝑒−𝜃𝜆

1−𝑒−2𝜋𝜆
)
𝛼

+1)

2. 

Figure 2 displays the density function of the HLWE distribution for various values of the 

parameters. 

  

Figure 2: Linear and circular representation of HLWE pdf for various values of λ and α. 

2.3 Exponentiated Generalized Wrapped Exponential (EGWE) 

By substituting Equations (1) and (2) into Equations (7) and (8), respectively, we obtain the 

pdf and cdf of the EGWE distribution, which are given by 

𝑔3( 𝜃 ∣∣ 𝜆, 𝛼, 𝛽 ) =

𝛼𝛽𝜆𝑒−𝜃𝜆 (1 −
1 − 𝑒−𝜃𝜆

1 − 𝑒−2𝜋𝜆
)
𝛼−1

(1 − (1 −
1 − 𝑒−𝜃𝜆

1 − 𝑒−2𝜋𝜆
)
𝛼

)

𝛽−1

1 − 𝑒−2𝜋𝜆
, #

 = 𝑤3(𝜃 ∣ 𝜆, 𝛼, 𝛽)𝑒
−𝜃𝜆,  𝜆, 𝛼, 𝛽 > 0#(13)
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and 

𝐺3( 𝜃 ∣∣ 𝜆, 𝛼, 𝛽 ) = (1 − (1 −
1 − 𝑒−𝜃𝜆

1 − 𝑒−2𝜋𝜆
)

𝛼

)

𝛽

, #(14)  

respectively, where 𝑤3(𝜃 ∣ 𝜆, 𝛼, 𝛽) =
𝛼𝛽𝜆(1−

1−𝑒−𝜃𝜆

1−𝑒−𝜃𝜋𝜆
)

𝛼−1

(1−(1−
1−𝑒−𝜃𝜆

1−𝑒−2𝜋𝜆
)

𝛼

)

𝛽−1

1−𝑒−2𝜋𝜆
. 

Figure 3 displays the density function of the EGWE distribution for various values of the 

parameters. 

 

Figure 3: Linear and circular representation of EGWE pdf for various values of 𝜆, 𝛼, and 𝛽. 

2.4 The General Formula for pdfs 

The densities of the three extensions, all with the same support, can be expressed in the form 

𝑔𝑟(𝜃) = 𝑤𝑟(𝜃)𝑒
−𝜃𝜆,  𝑟 = 1, 2, 3, #(15)  

where 𝑤𝑟(𝜃) are the weighted multipliers for the basic pdf kernel 𝑒−𝜃𝜆. Thus, the behavior of 

𝑤𝑟(𝜃) in (15) is crucial for investigating the properties of the new models. 

Figures 4, 5, and 6 depict the three weighted functions 𝑤𝑟(𝜃) for various values of 𝜆 and 

𝛼 = 𝛽 ∈ (0,100), with 𝜃 ∈ ,0,2𝜋). 



64                                               E. Zinhom, et al.: Wrapped Exponential Distribution Generalizations for Circular Data Analysis 

 

© 2024 NIDOC 

National Information and Documentation Center 

 

Figure 4: 𝑤1(𝜃 ∣ 𝜆, 𝛼) for 𝜆 = 0.5,2 and 𝛼 ∈ (0,100) and 𝜃 ∈ ,0,2𝜋). 

 

Figure 5: 𝑤2(𝜃 ∣ 𝜆, 𝛼) for 𝜆 = 0.5,2 and 𝛼 ∈ (0,100) and 𝜃 ∈ ,0,2𝜋). 

 

Figure 6: 𝑤3(𝜃 ∣ 𝜆, 𝛼, 𝛽) for 𝜆 = 0.5,2 and 𝛼 = 𝛽 ∈ (0,100) and 𝜃 ∈ ,0,2𝜋). 

3. Trigonometric Moments 

In the same way as for distributions over the real line, the characteristic function (CF) can be 

employed to describe circular distributions. To introduce this concept, we briefly review some 

fundamental ideas related to circular distributions [22]. 
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Because the circular random variables Θ are periodic, the cf can be given by 

𝜗𝑝(𝜃) = 𝜗𝑝 = 𝔼(𝑒
𝑖𝑝𝜃) = 𝔼(𝑒𝑖𝑝(𝜃+2𝜋)) = 𝑒2𝜋𝑖𝑝𝔼(𝑒𝑖𝑝𝜃), 

where 𝑖 = √−1, which suggest that 𝜗𝑝 = 0 or 𝑒2𝜋𝑖𝑝 = 1; i.e 𝑝 has only integer values. 

The 𝑝 th trigonometric moment of Θ is the cf evaluated at an integer 𝑝, and according to 

Euler's equation, it is determined by 

𝜗𝑝 = 𝔼(𝑒
𝑖𝑝𝜃) = 𝔼(cos (𝑝𝜃) + 𝑖sin (𝑝𝜃)) = 𝔼(cos (𝑝𝜃)) + 𝑖𝔼(sin (𝑝𝜃)) = 𝛼𝑝 + 𝑖𝛽𝑝, #(16)  

where 𝛼𝑝 = 𝔼(cos (𝑝𝜃)) and 𝛽𝑝 = 𝔼(sin (𝑝𝜃)). 

𝜗𝑝 is the mean resultant vector in complex plane with length 𝜌𝑝 = ∥∥𝜗𝑝∥∥ = √𝛼𝑝
2 + 𝛽𝑝

2 ∈ ,0,1- 

and direction 

𝜇𝑝 =

{
 
 
 
 
 

 
 
 
 
 tan−1 (

𝛽𝑝
𝛼𝑝
) ,  if 𝛼𝑝 > 0, 𝛽𝑝 ≥ 0,

𝜋

2
,  if 𝛼𝑝 = 0, 𝛽𝑝 > 0,

tan−1 (
𝛽𝑝
𝛼𝑝
) + 𝜋,  if 𝛼𝑝 < 0,

tan−1 (
𝛽𝑝
𝛼𝑝
) + 2𝜋,  if 𝛼𝑝 ≥ 0, 𝛽𝑝 < 0,

 undefined,  if 𝛼𝑝 = 0, 𝛽𝑝 = 0.

 

Fundamental measurements of concentration and location are 𝜌1 and 𝜇1, respectively. The 

polar equivalent of 𝜗𝑝 is 

𝜗𝑝 = 𝜌𝑝𝑒
𝑖𝜇𝑝 = 𝜌𝑝 cos(𝜇𝑝) + 𝑖𝜌𝑝 sin(𝜇𝑝) = 𝛼𝑝 + 𝛽𝑝, #(17)  

then 𝛼𝑝 = 𝜌𝑝cos (𝜇𝑝) and 𝛽𝑝 = 𝜌𝑝sin (𝜇𝑝). 

Our objective is to derive expansions for 𝑔𝑖(𝜃), 𝑖 = 1,2,3. Starting with our base distribution, 

we recall that 𝑔(𝜃) and 𝐺(𝜃) are the pdf and cdf of the wrapped exponential distribution, 

respectively, given by Equations (1) and (2). The exp-G family with parameter 𝑘 has a pdf 

defined as 

𝑕𝑘(𝜃) = 𝑘𝑔(𝜃)𝐺(𝜃)
𝑘−1

 =
𝑘𝜆𝑒−𝜃𝜆

1 − 𝑒−2𝜋𝜆
(
1 − 𝑒−𝜃𝜆

1 − 𝑒−2𝜋𝜆
)

𝑘−1

 =
𝑘𝜆

(1 − 𝑒−2𝜋𝜆)𝑘
∑ 

𝑘−1

𝑗=0

  (
𝑘 − 1

𝑗
) (−1)𝑗𝑒−𝜃𝜆(𝑘−𝑗).
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According to [23], the expansion of MOWE pdf (9) is given by 

𝑔1(𝜃) = ∑  

∞

𝑘=0

𝑡𝑘
(1)
𝑕𝑘+1(𝜃), 

where 

𝑡𝑘
(1)
= {

𝛼(−1)𝑘

𝑘 + 1
∑  

∞

𝑖=𝑘

  (
𝑖

𝑘
) (𝑖 + 1)(1 − 𝛼)𝑖 ,  if  𝛼 ∈ (0,1),

𝛼−1(1 − 𝛼−1)𝑘  if 𝛼 > 1.

 

Similarly, as per [17], the expansion of HLWE pdf (11) can be defined as follows: 

𝑔2(𝜃) = ∑  

∞

𝑘=0

𝑡𝑘
(2)
𝑕𝑘+1(𝜃), 

where 

𝑡𝑘
(2)
=

1

2(2𝑘 + 1)
∑  

𝑘−1

𝑖=0

(2𝑖 + 1)(2𝑘 − 2𝑖 − 1)𝑡𝑖
(3)
𝑡𝑘−𝑖
(2)

(𝑖 + 1)(2𝑖 + 1)
. 

Furthermore, from [17], we can express the expansion of EGWE pdf (13) as follows: 

𝑔3(𝜃) = ∑  

∞

𝑘=0

𝑡𝑘
(3)
𝑕𝑘+1(𝜃), 

where 

𝑡𝑘
(3)
=
(−1)𝑘𝛼𝛽Γ(𝛽)

𝑘!
∑  

∞

𝑖=0

(−1)𝑖Γ,(𝑖 + 1)𝛼-

(𝑖 + 1)Γ(𝛽 − 𝑖)Γ,(𝑖 + 1)𝛼 − 𝑘-𝑖!
. 

Thus, the general expansion of our distributions is expressed as 

𝑔𝑟(𝜃) = ∑  

∞

𝑘=0

𝑡𝑘
(𝑟)
𝑕𝑘+1(𝜃),  𝑟 = 1,2,3. 

Then, the trigonometric moment of the distribution 𝑔𝑟 can be expressed as follows: 

𝜗𝑝 = ∑  

∞

𝑘=0

  𝑡𝑘
(𝑟) (𝑘 + 1)𝜆

(1 − 𝑒−2𝜋𝜆)𝑘+1
∑ 

𝑘

𝑗=0

  (
𝑘

𝑗
) (−1)𝑗𝑎ℎ𝑘+1

 +𝑖∑  

∞

𝑘=0

  𝑡𝑘
(𝑟) (𝑘 + 1)𝜆

(1 − 𝑒−2𝜋𝜆)𝑘+1
∑ 

𝑘

𝑗=0

  (
𝑘

𝑗
) (−1)𝑗𝑏ℎ𝑘+1 ,  𝑟 = 1,2,3,
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where 

𝑎ℎ𝑘+1 =
𝜆(𝑗 − 𝑘 − 1)(cos (2𝜋𝑝)𝑒2𝜋𝜆(𝑗−𝑘−1) − 1)

𝜆2(−𝑗 + 𝑘 + 1)2 + 𝑝2
, 

and 

𝑏ℎ𝑘+1 =
𝑝 − 𝑒2𝜋𝜆(𝑗−𝑘−1)(𝜆(−𝑗 + 𝑘 + 1)sin (2𝜋𝑝) + 𝑝 cos (2𝜋𝑝))

𝜆2(−𝑗 + 𝑘 + 1)2 + 𝑝2
. 

 

4. Invariance Properties 

Circular data has unique characteristics that must be considered in every study, despite having 

a general structure with the unit circle as support and a closed-form density. There is no stated 

zero or end for circular data, and natural orientation is arbitrary. The use of well-known 

circular distributions can lead to incorrect inferences if the difficulties of initial direction and 

orientation are disregarded, as different experiments can have different starting directions and 

positive sense of rotation. To avoid making contradictory or incorrect statistical inferences, 

the distribution used to analyze circular variables must be invariant concerning changes in 

starting direction (ICID) and orientation changes (ICO). To be ICID and ICO, the 

characteristic functions of the circular distributions with Θ ∈ 𝔻 and Θ∗ = 𝛿(Θ + 𝜏), where 

𝛿 ∈ *−1,1+ and 𝜏 ∈ 𝔻, must belong to the same functional family with 𝔻 = ,𝑎, 𝑏) where 

𝑏 − 𝑎 = 2𝜋 and 𝜓 is a vector of parameters in the pdf 𝑔Θ(. ; 𝜓) of the circular variable. 

𝜗𝜃∗(𝑝) = 𝑒
𝑖𝑝𝛿𝜖𝜗𝜃(𝑝𝛿). 

Equations (18) and (3) show that the real and imaginary parts in equations are the same only if 

𝛿 = 1 and 𝜖 = 0, meaning that MOWE, HLWE, and EGWE distributions are not ICID and 

ICO. 

If 𝑔Θ(. ; 𝜓) is not ICO and ICID, the pdf 𝑔Θ∗(. ; 𝜓
∗), with Θ∗ = 𝛿(Θ + 𝜏), 𝛿 ∈ *−1,1+, 𝜏 ∈ 𝔻, 

and 𝜓∗ = (𝜓, 𝛿, 𝜏) ∈ Ψ∗, is ICO and ICID. Hence, the invariant versions of MOWE, HLWE, 

and EGWE distributions are given by 
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𝑔1(𝜃
∗ ∣ 𝜆, 𝛼, 𝛿, 𝜖) =

𝛼𝜆𝑒−(𝛿𝜃−𝜖)𝜆

(1 − 𝑒−2𝜋𝜆) (
(1 − 𝛼)(1 − 𝑒−(𝛿𝜃−𝜖)𝜆)

1 − 𝑒−2𝜋𝜆
+ 𝛼)

2 , #(19)

𝑔2(𝜃
∗ ∣ 𝜆, 𝛼, 𝛿, 𝜖) =

2𝛼𝜆𝑒−(𝛿𝜃−𝜖)𝜆 (1 −
1 − 𝑒−(𝛿𝜃−𝜖)𝜆

1 − 𝑒−2𝜋𝜆
)
𝛼−1

(1 − 𝑒−2𝜋𝜆) ((1 −
1 − 𝑒−(𝛿𝜃−𝜖𝜖𝜆

1 − 𝑒−2𝜋𝜆
)
𝛼

+ 1)

2 , #(20)

 

and 

𝑔3(𝜃
∗ ∣ 𝜆, 𝛼, 𝛽, 𝛿, 𝜖) =

𝛼𝛽𝜆𝑒−(𝛿𝜃−𝜖)𝜆 (1 −
1 − 𝑒−(𝛿𝜃−𝜖𝜖𝜆

1 − 𝑒−2𝜋𝜆
)
𝛼−1

(1 − (1 −
1 − 𝑒−(𝛿𝜃−𝜖)𝜆

1 − 𝑒−2𝜋𝜆
)
𝛼

)

𝛽−1

1 − 𝑒−2𝜋𝜆
, #(21)

 

respectively. These distributions have different formulas and parameters than the original 

ones and ensure that the characteristic functions of the circular distributions are invariant to 

changes in starting direction and orientation. 

5. Estimation 

5.1 Maximum likelihood method 

The maximum likelihood technique is the most often used of the several methods for 

estimating the parameters that have been put out in the literature. So, a brief overview of the 

ML estimate of the pdf family's parameters is included in this section. 

Let an observed sample 𝜃1, 𝜃2, … , 𝜃𝑛 from a random sample has pdf (15). The associated 

likelihood function can be denoted by 

𝐿(𝜆, 𝛼, 𝛽) =∏  

𝑛

𝑗=1

 𝑔𝑟(𝜃𝑗)

 =∏  

𝑛

𝑗=1

 𝑤𝑟(𝜃𝑗)𝑒
−𝜆𝜃𝑗 ,  𝑟 = 1,2,3.

 

The log-likelihood function is 

𝑙(𝜆, 𝛼, 𝛽) =∑  

𝑛

𝑗=1

  (log 𝑤𝑟(𝜃𝑗) − 𝜆𝜃𝑗)

 =∑  

𝑛

𝑗=1

 log 𝑤𝑟(𝜃𝑗) − 𝜆∑  

𝑛

𝑗=1

 𝜃𝑗 ,  𝑟 = 1,2,3.
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Then 

𝜏𝜆,𝑟 =
∂𝑙(𝜆, 𝛼, 𝛽)

∂𝜆
=∑  

𝑛

𝑗=1

 
1

𝑤𝑟(𝜃𝑗)

∂𝑤𝑟(𝜃𝑗)

∂𝜆
−∑  

𝑛

𝑗=1

 𝜃𝑗

𝜏𝛼,𝑟 =
∂𝑙(𝜆, 𝛼, 𝛽)

∂𝛼
=∑  

𝑛

𝑗=1

 
1

𝑤𝑟(𝜃𝑗)

∂𝑤𝑟(𝜃𝑗)

∂𝛼
.

 

and 

𝜏𝛽,𝑟 =
∂𝑙(𝜆, 𝛼, 𝛽)

∂𝛽
=∑  

𝑛

𝑗=1

1

𝑤𝑟(𝜃𝑗)

∂𝑤𝑟(𝜃𝑗)

∂𝛽
, 

where 𝑟 = 1,2,3. The ML estimator of the parameters 𝜆, 𝛼, and 𝛽 is obtained by solving the 

set of nonlinear equations 𝜏𝜆,𝑟 = 𝜏𝛼,𝑟 = 𝜏𝛽,𝑟 = 0 

Solving the set of nonlinear equations can be challenging, and various numerical methods can 

be used to obtain the ML estimator. These methods include the Newton-Raphson method, the 

Fisher-scoring method, and the Broyde Fletcher-Goldfarb-Shanno (BFGS) method. 

Ultimately, the ML estimator provides the values of the parameters that maximize the 

likelihood of observing the given data, given the proposed model. 

For the model 𝑔𝑟(𝜃), the partitioned observed information matrix has the following structure 

(for 𝑟 = 1,2 ) 

𝕀𝑟(𝜆, 𝛼, 𝛽) = −(

𝜏𝜆𝜆,𝑟 𝜏𝜆𝛼,𝑟 𝜏𝜆𝛽,𝑟
𝜏𝛼𝜆,𝑟 𝜏𝛼𝛼,𝑟 𝜏𝛼𝛽,𝑟
𝜏𝛽𝜆,𝑟 𝜏𝛽𝛼,𝑟 𝜏𝛽𝛽,𝑟

)

= −{𝜏𝑎𝑏,𝑟 =
∂2𝑙(𝜆, 𝛼, 𝛽)

∂𝑎 ∂𝑏
 for 𝑎, 𝑏 = 𝜆, 𝛼, 𝛽} ,

 

where 

𝜏𝑎𝑏,𝑟 =

{
 
 

 
 ∑  

𝑛

𝑗=1

 (
−1

𝑤𝑟(𝜃𝑗)
2 (
∂𝑤𝑟(𝜃𝑗)

∂𝑎
)

2

+
1

𝑤𝑟(𝜃𝑗)

∂2𝑤𝑟(𝜃𝑗)

∂2𝑎
)  if 𝑎 = 𝑏

∑  

𝑛

𝑗=1

 (
−1

𝑤𝑟(𝜃𝑗)
2

∂𝑤𝑟(𝜃𝑗)

∂𝑎

∂𝑤𝑟(𝜃𝑗)

∂𝑏
+

1

𝑤𝑟(𝜃𝑗)

∂2𝑤𝑟(𝜃𝑗)

∂𝑎 ∂𝑏
)  if 𝑎 ≠ 𝑏.

 

Under the usual regularity criteria, we obtain the Fisher information matrix 𝔽𝑟(𝑉) =

𝐸(𝕀𝑟(𝑉)) for interval estimation of the parameters in 𝑔𝑟(𝜃), where 𝑉 = (𝜆, 𝛼, 𝛽)𝑇. According 

to [24] √𝑛(𝑉̂ − 𝑉) →
𝐷
𝑁3(0, 𝔽̅𝑟(𝑉)), where 𝔽̅𝑟 = 𝔽𝑟/𝑛 is the unit Fisher information matrix, " 
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𝑁𝑘(𝜇, Σ) " is K-dimensional multivariate normal distribution with mean vector 𝜇 and variance 

covariance matrix Σ, and " →
𝐷

 " means convergence in distribution. 

The computation of the Fisher information matrix can be a challenging task, and its 

complexity often makes it intractable. As a solution, we can use the observed information 

matrix 𝕀𝑟 as a substitute for the Fisher information matrix 𝔽𝑟. 

Although the observed information matrix is an approximation of the Fisher information 

matrix, it provides a practical and efficient alternative that can be used to estimate the 

standard errors and confidence intervals of the estimated parameters. This is particularly 

useful in cases where the computation of the Fisher information matrix is not feasible. The 

numerical outcomes obtained using the observed information matrix can be reliable and 

accurate, allowing for valid statistical inference. Therefore, we will use this final method to 

estimate the standard errors and confidence intervals of the estimated parameters. 

5.2 Least squares method 

The LS method for unknown parameter estimation is a well popular technique, but biased LS 

estimates are a common problem in statistical inference, particularly when heteroscedasticity 

is present. Heteroscedasticity refers to a situation where the variance of the error term is not 

constant across the range of the predictor variable. In such cases, the LS estimates tend to be 

biased toward the observations with smaller variances, leading to unreliable results. 

To address this issue, the weighted least squares (WLS) method is a well-known variation of 

the LS method. The WLS approach assigns weights to each observation proportional to the 

inverse of its variance. Thus, observations with smaller variances are given more weight, and 

those with larger variances are given less weight, resulting in estimates that are less biased 

than the traditional OLS method when heteroscedasticity is present. 

To obtain the LS and WLS estimators of the proposed models, we consider a random sample 

𝜃(1), 𝜃(2), … , 𝜃(𝑛) with pdf (15), where the 𝜃(𝑖) are ordered. Let 𝑟 = 1,2,3. Define 

𝐿𝑆1,𝑟(𝜆, 𝛼, 𝛽) =∑  

𝑛

𝑖=1

  [𝐺𝑟(𝜃(𝑖)) −
𝑖

𝑛 + 1
]
2

, #(22)  

and 

𝐿𝑆2,𝑟 =∑  

𝑛

𝑖=1

 
(𝑛 + 1)2(𝑛 + 2)

𝑖(𝑛 − 𝑖 + 1)
[𝐺𝑟(𝜃(𝑖)) −

𝑖

𝑛 + 1
]
2

, #(23)  
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where 𝐺𝑟(⋅) is one of the proposed cdfs. The LS and WLS estimators of the parameters 𝜆, 𝛼, 

and 𝛽 can be obtained by minimizing Equations (22) and (23) with respect to the 

corresponding parameter. This is achieved by finding the values of 𝜆, 𝛼, and 𝛽 that minimize 

the objective function defined by these equations. 

In the case of LS estimation, the objective function is the sum of the squared differences 

between the observed and predicted values of the response variable. In contrast, WLS 

estimation assigns weights to each observation based on the inverse of its variance, and the 

objective function is the weighted sum of the squared differences [25]. 

The process of minimizing the objective function can be carried out using optimization 

techniques, such as gradient descent or Newton's method. Ultimately, the LS and WLS 

estimators provide estimates of the parameters that best fit the data according to the chosen 

objective function. 

6. Simulation Study 

A simulation study was conducted using samples drawn from MOWE, HLWE, and EGWE 

distributions, with sample sizes of 25, 80, 100, 200, and 500. The simulation was repeated 

1000 times to obtain the ML, LS, and WLS estimates for the parameters 𝜆, 𝛼, and 𝛽. The 

average of these estimates was computed. The standard deviation (SD) and the mean square 

error (MSE) were also computed for each estimate. 

The simulation results for the MOWE, HLWE, and EGWE distributions are presented in 

Tables 1, 2, and 3, respectively. All the computations in this section were performed using 

MATLAB R2019a modules. 

Tables 1, 2, and 3 show that both the SD and MSE decrease as the sample size increases for 

all parameters settings. This indicates that the estimators are accurate, precise, consistent, and 

unbiased. It is expected that the ML estimators, being asymptotically unbiased, would exhibit 

this behavior. Furthermore, the simulation results suggest that the LS and WLS estimators 

also possess these desirable characteristics. However, the simulation results indicate that the 

ML estimator perform better than the LS and WLS estimators, as they have lower MSE 

values. 
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Table 1: The simulation results for MOWE distribution for various values of 𝜆 and 𝛼. 

 

 

 

Method 

 

 

n 

λ =0.5  α = 0.75 λ = 0.5  α = 1 

λ̂ SD MSE α̂ SD MSE λ̂ SD MSE α̂ SD MSE 

ML 25 0.779 0.716 0.590 0.892 0.559 0.333 0.786 0.691 0.560 1.226 0.689 0.526 

 80 0.495 0.261 0.068 0.845 0.480 0.239 0.497 0.243 0.059 1.132 0.635 0.421 

 100 0.494 0.231 0.053 0.832 0.446 0.205 0.496 0.211 0.044 1.103 0.547 0.310 

 200 0.492 0.164 0.026 0.778 0.283 0.081 0.498 0.159 0.025 1.064 0.396 0.161 

 500 0.500 0.103 0.010 0.769 0.183 0.034 0.498 0.093 0.008 1.018 0.237 0.056 

WLS 25 0.670 0.900 0.838 0.731 0.665 0.443 0.668 0.837 0.728 0.998 0.834 0.695 

 80 0.466 0.277 0.078 0.807 0.498 0.251 0.473 0.252 0.064 1.082 0.646 0.424 

 100 0.469 0.245 0.061 0.799 0.452 0.207 0.472 0.224 0.051 1.057 0.555 0.311 

 200 0.484 0.177 0.031 0.770 0.303 0.092 0.486 0.168 0.028 1.040 0.403 0.164 

 500 0.496 0.108 0.011 0.764 0.190 0.036 0.493 0.097 0.009 1.008 0.244 0.059 

LS 25 0.659 1.018 1.061 0.695 0.694 0.484 0.660 0.853 0.752 0.966 0.895 0.802 

 80 0.448 0.297 0.091 0.790 0.531 0.284 0.460 0.264 0.071 1.062 0.671 0.454 

 100 0.448 0.267 0.07 0.776 0.480 0.231 0.454 0.243 0.061 1.030 0.579 0.336 

 200 0.473 0.197 0.039 0.758 0.325 0.106 0.473 0.184 0.034 1.020 0.426 0.182 

 500 0.491 0.121 0.014 0.758 0.205 0.042 0.488 0.107 0.011 1.000 0.259 0.067 

 

Method 

 

n 

 λ =1   α=0.5   λ = 1   α =1  

λ̂ SD MSE α̂ SD MSE λ̂ SD MSE α̂ SD MSE 

ML 25 1.589 1.609 2.935 0.539 0.383 0.148 1.153 0.527 0.301 1.538 1.364 2.151 

 80 1.067 0.341 0.120 0.577 0.264 0.075 1.051 0.262 0.071 1.149 0.495 0.268 

 100 1.050 0.304 0.095 0.558 0.224 0.053 1.024 0.238 0.057 1.088 0.425 0.188 

 200 1.025 0.202 0.041 0.526 0.147 0.022 1.014 0.159 0.025 1.044 0.269 0.074 

 500 1.007 0.126 0.016 0.509 0.093 0.008 1.007 0.098 0.009 1.022 0.169 0.029 

WLS 25 1.298 1.382 1.997 0.442 0.381 0.148 1.007 0.0648 0.420 1.403 1.972 4.048 

 80 1.008 0.410 0.168 0.547 0.305 0.095 1.019 0.299 0.090 1.113 0.537 0.301 

 100 1.021 0.363 0.132 0.545 0.257 0.068 0.993 0.265 0.070 1.053 0.463 0.217 

 200 1.012 0.240 0.058 0.521 0.174 0.030 1.002 0.176 0.031 1.029 0.293 0.086 

 500 1.003 0.140 0.019 0.507 0.100 0.010 1.004 0.107 0.011 1.018 0.182 0.033 

LS 25 1.263 1.407 2.047 0.424 0.392 0.159 0.971 0.689 0.475 1.394 2.124 4.666 

 80 0.967 0.480 0.231 0.531 0.334 0.112 0.995 0.343 0.118 1.093 0.586 0.352 

 100 0.990 0.436 0.190 0.535 0.294 0.087 0.968 0.301 0.092 1.028 0.499 0.250 

 200 0.996 0.290 0.084 0.515 0.199 0.039 0.988 0.200 0.040 1.013 0.319 0.102 

 500 0.998 0.168 0.028 0.505 0.115 0.013 0.999 0.125 0.015 1.013 0.202 0.041 



E. Zinhom, et al.:Wrapped Exponential Distribution Generalizations for Circular Data Analysis                                                73 

                                                               © 2024 NIDOC 

National Information and Documentation Center 

Table 2: The simulation results for HLWE distribution for various values of 𝜆 and 𝛼. 
 

 

Method 

 

 

n 

λ = 0.5 
 

α = 0.75 λ = 0.5 
 

α = 1 

λ̂ SD MSE α̂ SD MSE λ̂ SD MSE α̂ SD MSE 

ML 25 0.528 0.054 0.004 0.781 0.071 0.006 0.533 0.060 0.005 1.034 0.091 0.009 

 80 0.488 0.222 0.049 0.814 0.243 0.063 0.494 0.247 0.061 1.104 0.363 0.142 
 

100 0.486 0.205 0.042 0.811 0.220 0.052 0.494 0.247 0.061 1.104 0.363 0.142 
 

200 0.497 0.138 0.019 0.772 0.136 0.019 0.489 0.166 0.028 1.061 0.246 0.064 
 

500 0.498 0.090 0.008 0.761 0.088 0.008 0.500 0.104 0.011 1.020 0.148 0.022 

WLS 25 0.547 0.357 0.130 1.112 1.065 1.264 0.601 0.587 0.355 1.990 1.851 4.402 

 80 0.553 0.304 0.095 0.783 0.321 0.104 0.591 0.393 0.162 1.063 0.530 0.284 
 

100 0.538 0.276 0.078 0.786 0.277 0.078 0.591 0.393 0.162 1.063 0.530 0.284 
 

200 0.514 0.174 0.030 0.765 0.168 0.028 0.530 0.245 0.061 1.048 0.362 0.133 
 

500 0.503 0.110 0.012 0.760 0.108 0.012 0.517 0.143 0.021 1.011 0.201 0.040 

LS 25 0.562 0.437 0.195 1.247 1.265 1.847 0.663 0.743 0.579 2.145 1.956 5.132 

 80 0.614 0.408 0.180 0.769 0.373 0.139 0.710 0.607 0.413 1.046 0.634 0.404 
 

100 0.590 0.361 0.138 0.770 0.323 0.105 0.710 0.607 0.413 1.046 0.634 0.404 
 

200 0.538 0.228 0.053 0.759 0.208 0.043 0.590 0.361 0.138 1.038 0.461 0.214 
 

500 0.513 0.139 0.019 0.757 0.135 0.018 0.546 0.206 0.044 0.999 0.266 0.071 
 

 

Method 

 

 

n 

 
λ = 1 

  
α = 0.5 

  
λ = 1 

  
α = 1 

 

λ̂ SD MSE α̂ SD MSE λ̂ SD MSE α̂ SD MSE 

ML 25 1.058 0.113 0.016 0.520 0.051 0.003 1.073 0.125 0.021 1.019 0.073 0.006 

 80 0.963 0.425 0.182 0.585 0.229 0.060 0.917 0.458 0.216 1.284 0.469 0.301 
 

100 0.997 0.387 0.150 0.556 0.196 0.041 0.926 0.468 0.224 1.279 0.471 0.299 
 

200 1.002 0.284 0.081 0.527 0.125 0.016 0.994 0.474 0.225 1.191 0.449 0.237 
 

500 0.990 0.165 0.027 0.515 0.076 0.006 1.006 0.402 0.161 1.121 0.373 0.154 

WLS 25 0.949 0.716 0.515 1.435 1.798 4.104 1.575 1.717 3.274 2.707 2.369 8.524 

 80 1.188 0.771 0.630 0.575 0.359 0.135 1.310 0.748 0.654 1.084 0.616 0.386 
 

100 1.163 0.658 0.459 0.552 0.315 0.102 1.268 0.730 0.605 1.110 0.613 0.387 
 

200 1.069 0.434 0.193 0.528 0.189 0.036 1.274 0.681 0.538 1.063 0.568 0.326 
 

500 1.007 0.231 0.053 0.516 0.107 0.012 1.209 0.622 0.431 1.070 0.520 0.275 

LS 25 1.000 0.898 0.806 1.586 1.850 4.596 1.843 2.139 5.281 2.322 1.992 5.712 

 80 1.384 1.082 1.318 0.589 0.443 0.204 1.318 0.765 0.685 1.088 0.618 0.390 
 

100 1.325 0.928 0.965 0.564 0.391 0.157 1.315 0.746 0.656 1.083 0.616 0.386 
 

200 1.164 0.643 0.440 0.537 0.255 0.067 1.313 0.715 0.608 1.065 0.599 0.363 
 

500 1.050 0.347 0.123 0.519 0.155 0.024 1.273 0.682 0.539 1.071 0.574 0.334 
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Table 3: The simulation results for EGWE distribution for various values of 𝜆, 𝛼, and 𝛽. 
 

Method 

 

n 

λ = 0.5  α = 0.5  β = 0.5 

λ̂ SD MSE α̂ SD MSE β̂ SD MSE 

ML 25 0.595 0.168 0.037 0.602 0.131 0.027 0.570 0.140 0.025 

 80 0.507 0.324 0.105 0.565 0.217 0.051 0.509 0.077 0.006 

 100 0.513 0.306 0.094 0.549 0.196 0.041 0.508 0.074 0.006 

 200 0.506 0.216 0.047 0.526 0.126 0.017 0.504 0.049 0.002 

 500 0.492 0.131 0.017 0.516 0.078 0.006 0.501 0.031 0.001 

WLS 25 0.530 0.103 0.012 0.592 0.124 0.024 0.629 0.207 0.059 

 80 0.613 0.520 0.283 0.563 0.480 0.234 0.498 0.081 0.007 

 100 0.590 0.448 0.209 0.531 0.299 0.090 0.500 0.079 0.006 

 200 0.544 0.273 0.076 0.513 0.170 0.029 0.502 0.052 0.003 

 500 0.505 0.156 0.024 0.510 0.097 0.010 0.500 0.032 0.001 

LS 25 0.533 0.111 0.013 0.596 0.130 0.026 0.632 0.214 0.063 

 80 0.684 0.729 0.564 0.618 0.794 0.644 0.491 0.088 0.008 

 100 0.634 0.604 0.382 0.570 0.458 0.215 0.494 0.085 0.007 

 200 0.590 0.398 0.166 0.518 0.241 0.058 0.500 0.058 0.003 

 500 0.518 0.215 0.046 0.514 0.139 0.020 0.499 0.035 0.001 

 

Method 

 

n 

 λ = 1   α = 0.5   β = 2  

λ̂ SD MSE α̂ SD MSE β̂ SD MSE 

ML 25 1.917 1.040 1.922 0.584 0.128 0.024 1.535 0.712 0.723 

 80 0.991 0.481 0.232 0.584 0.244 0.067 2.032 0.411 0.170 

 100 1.000 0.440 0.193 0.558 0.200 0.043 2.028 0.372 0.139 

 200 0.986 0.298 0.089 0.536 0.132 0.019 2.011 0.255 0.065 

 500 0.991 0.183 0.034 0.514 0.076 0.006 1.998 0.152 0.023 

WLS 25 1.367 0.951 1.039 0.526 0.098 0.010 2.090 0.991 0.990 

 80 1.198 0.797 0.673 0.558 0.363 0.135 1.977 0.460 0.212 

 100 1.134 0.645 0.434 0.539 0.293 0.088 1.967 0.390 0.153 

 200 1.043 0.397 0.160 0.526 0.177 0.032 1.986 0.275 0.076 

 500 1.009 0.227 0.052 0.510 0.094 0.009 1.990 0.164 0.027 

LS 25 1.333 0.855 0.842 0.525 0.098 0.010 2.057 0.933 0.873 

 80 1.293 1.030 1.146 0.596 0.484 0.243 1.935 0.510 0.264 

 100 1.228 0.878 0.822 0.565 0.401 0.164 1.919 0.424 0.186 

 200 1.099 0.564 0.327 0.536 0.239 0.059 1.962 0.308 0.096 

 500 1.033 0.330 0.110 0.515 0.135 0.018 1.979 0.194 0.038 
 

7. Applications 

In this section, we demonstrate the flexibility of our proposed models by presenting four 

applications. We obtain ML estimates of unknown parameters and calculate the values of 

several statistical indices, including the Akaike information criterion (AIC), Bayesian 

information criterion (BIC), Kuiper statistic, and Watson statistic. These statistical measures 
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provide insight into the goodness-of-fit of our models and allow us to compare their 

performance across different applications. 

We present the results of our first, second, third, and fourth applications in Tables 4, 5, 6, and 

7, respectively. These tables are accompanied by Figures 7,8,9, and 10, which display 

histograms of the data and fitted density plots. The figures provide visual support for the 

statistical measures presented in the tables and allow for a more intuitive understanding of the 

goodness-of-fit of our models. The data utilized in this section can be sourced from [26]. 

First application 

The study aimed to investigate how starhead topminnows orient themselves in both aquatic 

and terrestrial environments. The researchers dispersed the fish to different beaches in a small 

forest pond and used a solar compass to track their movements. The fish were able to align 

their bodies with the position of the sun to move in a specific direction on land. However, on 

cloudy days, many fish moved randomly as they were unable to maintain the same body 

position with each leap. The researchers found significant individual differences in terrestrial 

locomotion. The dataset includes the sun compass directions of 50 Starhead Topminnows 

under cloudy skies [27]. 

Table 4: Estimated value, AIC, BIC, and Kolmogorov P-Value for the fit based on starhead 

topminnows data set. 

Distribution 𝝀̂ 𝜶̂ 𝜷̂ AIC BIC Kuiper Watson 

WE 0.115 - - 183.642 185.554 0.109 0.034 

TWE 0.086 0.093 - 185.871 189.439 0.108 0.033 

MOWE 0.000 0.687 - 185.541 189.365 0.1049 0.031 

HLWE 0.666 0.623 - 184.415 188.239 0.102 0.023 

EGWE 0.402 0.659 1.108 186.033 191.769 0.090 0.018 
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Figure 7: Estimated pdfs of the considered distributions for starhead topminnows data set. 

The results presented in Table 4 demonstrate that our proposed model provides a better fit to 

the data compared to the TWE distribution, as indicated by all statistical measures. 

Furthermore, our model outperforms the WE distribution according to the Kuiper and Watson 

statistics. These findings suggest that our proposed model is a more appropriate choice for 

modeling this particular data set compared to the TWE and WE distributions. 
 

Second application 

The feldspar laths data set provided by [28] consists of measurements of the long-axis 

orientations of feldspar laths. Feldspar laths are elongated crystals that are commonly found in 

rocks such as basalt. These measurements are given in degrees and specifically relate to the 

orientation of feldspar laths in basalt direction. The data set contains a total of 133 

measurements, which can be used for further analysis or to study the orientation of feldspar 

laths in basalt. 

Table 5: Estimated value, AIC, BIC, and Kolmogorov P-Value for the fit based on feldspar 

laths data set. 

Distribution 𝝀̂ 𝜶̂ 𝜷̂ AIC BIC Kuiper Watson 

WE 0.599 - - 368.873 371.717 1.778 0.750 

TWE 0.883 -0.788 - 352.186 357.842 1.840 0.310 

MOWE 1.452 6.931 - 337.839 343.495 1.876 0.249 

HLWE 1 × 10−8 4.736 - 336.216 341.873 1.856 0.223 

EGWE 5 × 10−8 4.040 1.351 347.201 355.638 1.861 0.261 
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Figure 8: Estimated pdfs of the considered distributions for feldspar laths data set. 

The results presented in Table 5 indicate that our proposed distribution provides a better fit to 

the data compared to the WE and TWE distributions, as indicated by all statistical measures 

except for the Kuiper statistic. The Kuiper statistic suggests that the WE distribution may 

provide a slightly better fit to the data. However, the overall performance of our proposed 

distribution across multiple statistical measures suggests that it is still a strong contender for 

modeling this particular data set. 
 

Third application 

The turtle data set was provided in [29] and contains information about the orientations of 76 

turtles while they lay their eggs. The data set records the direction of the head of each turtle 

when it begins to dig the egg chamber. The turtle data set is useful for studying the nesting 

behavior of turtles and can help researchers understand how turtles select nesting sites and the 

factors that influence their choice of orientation. 

Table 6: Estimated value, AIC, BIC, and Kolmogorov P-Value for the fit based on turtle data set. 

Distribution 𝝀̂ 𝜶̂ 𝜷̂ AIC BIC Kuiper Watson 

WE 0.423 - - 243.349 245.626 0.258 0.337 

TWE 0.195 0.626 - 245.444 249.942 0.258 0.336 

MOWE 0.628 1.710 - 244.500 248.997 0.239 0.304 

HLWE 1.072 0.668 - 243.839 248.337 0.231 0.286 

EGWE 1.108 0.637 1.699 240.086 246.745 0.211 0.212 
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Figure 9: Estimated pdfs and cdfs of the considered distributions for turtle data set. 

Fourth application 

The small blue periwinkles, Nodilittorina unifasciata, are known for their ability to adapt to 

changing environmental conditions. In one study, researchers transplanted these periwinkles 

downshore from their normal habitat to investigate how they would adjust to the change in 

height. 

The researchers found that the periwinkles responded to the change in height by altering both 

their distance from the water's edge and their orientation with respect to the water's edge. 

Specifically, the periwinkles moved closer to the water's edge and oriented themselves 

perpendicular to the shoreline, which allowed them to better withstand the effects of waves 

and tide. The data set consist of 32 angles of periwinkles orientation [30]. 

Table 7: Estimated value, AIC, BIC, and Kolmogorov P-Value for the fit based on blue 

periwinkles data set. 

Distribution 𝝀̂ 𝜶̂ 𝜷̂ AIC BIC Kuiper Watson 

WE 0.530 - - 96.471 97.803 1.173 0.682 

TWE 1.000 -0.900 - 87.360 89.878 1.305 0.433 

MOWE 2.253 32.260 - 74.922 77.440 1.522 0.123 

HLWE 3 × 10−7 4.587 - 85.942 88.460 1.307 0.401 

EGWE 0.328 3.210 4.6567 78.194 81.734 1.511 0.128 
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Figure 10: Estimated pdfs of the considered distributions for blue periwinkles data set. 

In summary of this section, our proposed models were tested across four different 

applications, and the statistical measures were used to evaluate the goodness-of-fit of our 

models. In the first and third applications, as shown in Tables 4 and 6, respectively, our 

proposed models provided a better fit to the data compared to the TWE distribution, as 

indicated by all statistical measures. Furthermore, our models outperformed the WE 

distribution according to the Kuiper and Watson statistics. 

In the second application, as shown in Table 5, our proposed distributions provided a better fit 

to the data compared to the WE and TWE distributions, as indicated by all statistical measures 

except for the Kuiper statistic. The Kuiper statistic suggested that the WE distribution may 

provide a slightly better fit to the data. 

Finally, in the fourth application, as shown in Table 7, our proposed models provided a better 

fit to the data compared to both the WE and TWE distributions, as indicated by all statistical 

measures. Overall, these results suggest that our proposed models are generally effective in 

fitting a range of data sets and outperform commonly used distributions in many cases. 

8. Conclusion 

In our study, we proposed three models of circular distributions. We extended the wrapped 

exponential distribution by incorporating it into the Marshall-Olkin, type I half logistic, and 

exponentiated generalized generators while considering a specific adaptation. We derived 

general formulas for the probability density functions and trigonometric moments of each 

model to facilitate their use. Additionally, we explained the parameter estimation process 



80                                               E. Zinhom, et al.: Wrapped Exponential Distribution Generalizations for Circular Data Analysis 

 

© 2024 NIDOC 

National Information and Documentation Center 

using the maximum likelihood, least squares, and weighted least squares methods. To 

demonstrate the practicality and adaptability of our proposed models, we applied them to four 

different real-world examples of circular data sets. We coded the essential calculations and 

graphics in MATLAB R2019a modules, which we have made available to the readers. 

Overall, our study provides a practical and useful approach to modeling circular data and 

offers an alternative to commonly used distributions. 
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