We initiate the study of domination and inverse domination in labeled graphs. In this paper, we determined the cardinality of maximal independent and minimum variant dominating (total dominating/independent dominating/co-independent dominating) sets and their inverse in divisor graph and in two new labeling definitions called 0-mod-difference and 1-mod-difference graphs.
Elsakhawy, S. (2023). Independence and domination in divisor graph and mod‑difference graphs. Journal of the Egyptian Mathematical Society, 31(1), 1-13. doi: 10.1186/s42787-023-00159-0
MLA
Sayed Elsakhawy. "Independence and domination in divisor graph and mod‑difference graphs", Journal of the Egyptian Mathematical Society, 31, 1, 2023, 1-13. doi: 10.1186/s42787-023-00159-0
HARVARD
Elsakhawy, S. (2023). 'Independence and domination in divisor graph and mod‑difference graphs', Journal of the Egyptian Mathematical Society, 31(1), pp. 1-13. doi: 10.1186/s42787-023-00159-0
VANCOUVER
Elsakhawy, S. Independence and domination in divisor graph and mod‑difference graphs. Journal of the Egyptian Mathematical Society, 2023; 31(1): 1-13. doi: 10.1186/s42787-023-00159-0