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Abstract: Both physical and mental health can be impacted by diseases, since a person’s outlook on life 

may change as a result of acquiring and managing a health condition. Understanding the dynamics of 

diseases can be greatly appreciated in dealing and maintaining the endemic strategically. In this paper, 

a mathematical model based on the SEIR (Susceptible, Exposed, Infectious, Recovered) framework is 

presented for the dengue transmission dynamics. The mosquito population, which serves as the vector 

population and depends on the human population for subsistence, is represented in the model by a 

logistic function. To evaluate the model’s capacity for spreading disease, the fundamental reproduction 

number 0R  is calculated. The disease-free equilibrium is determined to be locally stable if 0R  is less 

than one and unstable if 0R
 
is more significant than one. A stability analysis of the endemic and disease-

free equilibria is carried out. The findings of this study offer insightful information about dengue 

transmission dynamics and can guide the development of effective strategies for disease control and 

prevention. 
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1.  Introduction 

Dengue, a widespread viral disease transmitted by mosquitoes, poses a significant global health 

concern due to its potential for severe symptoms and occasional fatalities. Mathematical models 
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offer valuable insights into understanding dengue transmission dynamics, aiding the 

development of effective control strategies. This study introduces a SEIR mathematical model 

focusing on dengue transmission dynamics, integrating a logistic function to portray mosquito 

population growth and survival. The analysis determines the basic reproduction number 0R , and 

evaluates the stability of disease equilibria, aiming to provide critical perspectives on dengue 

transmission patterns for enhanced disease control strategies. 

Research in disease transmission modelling, notably by LaSalle (1976) and Singh et al. 

(2019, 2016a), has provided fundamental insights into stability analysis and disease dynamics, 

such as malaria and HIV/AIDS transmission. Studies by Van den Driessche and Watmough 

(2002) further explored reproduction numbers’ implications in disease models, shedding light 

on endemic and disease-free equilibrium stability. Several researchers investigated the nexus 

between disease dynamics and climate factors. Bal and Sodoudi (2020) integrated climate 

variables into dengue models, elucidating transmission dynamics. Baylis (2017) emphasized 

climate change’s impact on vector-borne diseases, stressing the need for its consideration in 

risk assessments. Benedum et al. (2018) analyzed rainfall’s influence on dengue transmission, 

highlighting the role of environmental variables. Globally, Bhatt et al. (2013) provided an 

overview of dengue distribution and its public health impact. Studies by Butterworth et al. 

(2017), Caldwell et al. (2021) and Davis et al. (2021) addressed climate change’s implications 

on disease dynamics, focusing on specific regions and forecasting disease adaptation to 

changing climates. 

Das et al. (2023) has used basic reproduction number as a controlling parameter to the 

coronavirus pandemic. Akinwandeet al. (2024), has demonstrated the prediction of a disease 

evolvement using the basic reproduction number. Recently, a dispersal strategy for infected 

individuals in a spatial susceptible-infected-susceptible (SIS) epidemic model has been 

proposed by Choi and Ahn (2024). A novel fractional model for simulating the 

coronavirus spread have been designed considering susceptible, infected, treated, and recovered 

classes in which the susceptible class is further subdivided into two subcategories (Adel et al. 

2024). El-Mesady et al. (2024) simulate the spread of a novel Lumpy skin disease virus using 

a novel Caputo fractional nonlinear model. They investigated the equilibrium and stability 

points of the model and the basic reproduction number. A similar study has been conducted to 

simulate the monkey pox virus spread in the human host and rodent populations (El-Mesady et al. 

2022). 

Higazy et al.  (2021) studied Infectious diseases in pregnant women know as Lassa 

hemorrhagic fever. The study found the approximate solution to the fractional-order model pf 

the disease using Laplace transforms and the Adomian decomposition method. Adel et al. 

(2023) investigate the dynamics of a novel fractional-order monkey pox epidemic model with 

optimal control. They established stability of the disease-free points. El-Mesady et al. (2023) 

studied monkey pox virus infection model considering stability analysis and optimal control 

strategies. The interaction between human and rodent populations along with the effects of 

control signals are investigated in the model. A similar study has been conducted introducing 

factors such as imperfect vaccination and nonlinear incidence rates (Elsonbaty et al. 2024). 

Further investigations by Gutierrez et al. (2022), Huber et al. (2018), Kakarla et al. (2020) 

and Liu-Helmersson et al. (2016) delved into climate-related factors influencing dengue 
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transmission, forecasting future risks and transmission patterns. Marino et al. (2008) and 

Mordecai et al. (2017) explored uncertainties and temperature effects on disease spread, while 

Morin et al. (2013) reviewed climate’s impact on dengue. Recent studies by Nuraini et al. 

(2021), Wang et al. (2022) and Xu et al. (2020) continued examining climate-driven disease 

dynamics, exploring predictive models and environmental influences on disease transmission. 

This literature review highlights various studies’ contributions, covering stability analysis, 

disease spread models, co-infection dynamics, environmental factors, climate change impacts, 

and mathematical modelling. These studies offer a thorough comprehension of the intricate 

interactions between climate, vectors, and disease dynamics in dengue transmission. Further 

research is crucial to address remaining uncertainties, enhance modeling approaches, and create 

efficient plans for controlling and preventing dengue. This study’s contributions and pertinent 

articles from the literature are encapsulated in Table 1. This table elucidates the gaps existing 

in prior research, and our paper aims to address these gaps by offering innovative insights and 

solutions within the field. 

Table 1: Summary of key features of the present study and other relevant articles 
 

Author Specific features 

 
SIR 

Model 

Dengue 

Fever 

Reproduction 

Number 

Disease-

Free 

Equilibrium 

Endemic 

Equilibrium 

Stability 

Analysis 
Bifurcation 

Chen & Hsieh 

(2012) 
   ✓ ✓ ✓  

Syafruddin & 

Noorani (2012) 
✓ ✓  ✓    

Chanprasopchai et 

al. (2018) 
✓ ✓ ✓ ✓  ✓  

Huber et al. (2018) ✓ ✓    ✓  

Nur et al. (2018) ✓ ✓ ✓ ✓ ✓ ✓  

Singh et al. (2019)    ✓ ✓ ✓  

Chamnan et al. 

(2021) 
✓ ✓ ✓ ✓ ✓   

Khalid et al. 

(2015) 
✓ ✓ ✓ ✓    

Asmaidi (2014) ✓ ✓ ✓ ✓ ✓   

Proposed Model ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

 

2. Methods 

This section provides a concise model description outlining the critical architecture and 

components. Follow it with a brief analysis, highlighting its strengths and limitations and 

emphasizing its applicability to the research objectives. 

 

2.1 Model Description 

The proposed work will analyze the population dynamics for the spread of dengue disease using 

the SEIR model. The overall population is categorized into two distinct groups: human and 
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vector populations. The total human population is represented by ( )tN h and subdivided into 

four classes: Susceptible Humans ( )hS , Exposed Humans ( )hE , Infected Humans ( )hI , and 

Recovered Humans ( )hR . Also, the overall vector population at time t  is represented by ( )tN v  

and subdivided into three classes: the Susceptible Vector ( )vS , Exposed Vector ( )vE , and 

Infected Vector ( )vI . 

 In this model, we assume that individuals enter the susceptible human class through 

processes like birth. Upon being bitten by an infected vector, a susceptible human undergoes 

the stages of exposure and subsequent infection at variable rates. Recovered individuals emerge 

from the infected class after a specified duration. Similarly, susceptible vectors are introduced 

into the population at a specific rate. The vector initially shifts to the exposed class, and over 

time, individuals progress from the exposed class to the infected class. Susceptible human 

populations are recruited at a rate h

h N
k

N








−


 , where  is the birth rate,   is the growth rate, 

and k  is the carrying capacity of the human population. Susceptible humans get the virus from 

an infected vector following an effective constant at the rate 
h

hv

N

SIb 1 . The dengue virus will 

likely infect humans through its vector population, represented by number 1 . Susceptible 

mosquitoes recruited at rate A  and become infectious at rate 
h

vh

N

SIb 2 after being contacted by 

infected humans. The likelihood that the dengue virus will spread through humans into the 

mosquito population is shown by
2 . h  represents a development rate from exposed class hE

to contaminated class 
hI , and v represents a development rate from exposed class vE to 

contaminated class 
vI . The improvement rate for the human population is h . h  denotes the 

inherent death estimate within the person inhabitants, and v represents the inherent death 

estimate within the vector population. Figure 1 illustrates the transmission diagram for the 

dengue fever model, while Table 2 provides definitions of the state parameters used in the 

model, offering clarity on the variables influencing the system's dynamics. 
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Figure 1: Transmission Dynamic Diagram. 

Table 2: Definition of state parameters used in the model 

Symbols Description 

  Recruitment rate of human population 

  Growth rate of human population 

k  Environment can support the maximum human population 

b  Biting rate of vector population 

A  Constant recruitment rate of vector population 

1  Transmission probability from vector to human population 

2  Transmission probability from human to vector population 

h  Progression rate from exposed class hE to infected class 
hI  

v  Progression rate from exposed class vE to infected class 
vI  

h  Recovery rate for human population 

h  Natural death rates of human population 

v  Natural death rates of vector population 

 

2.2 Governing Equations 

The model’s governing differential equations are formulated by taking into account the relevant 

inflow and outflow rates for each compartment: 

(I)  Human population 

,1

hh

h

v

h

h

h S
N

Ib
N

k

N
S 










+−








−= 




 

,)(1

hhhh

h

v

h ES
N

Ib
E 


+−=         (1)
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,)( hhhhhh IEI  +−=  

.hhhhh RIR  −=  

(II) Vector population 

,2

vv

h

h

v S
N

Ib
AS 










+−= 


 

,)(2

vvvv

h

h

v ES
N

Ib
E 


+−=         (2)

 

.vvvvv IEI  −=  

with initial conditions; 

( ) ( ) ( ) ( ) ( ) ( ) ( ) 0,0,0,0,0,0,0  tItEtStRtItEtS vvvhhhh . (Ali, et al., 2019) 

Therefore, the total human population and vector population is given by 

hhhhhhhhhh IESNRRIESN −−−=+++=  and 

vv

v

v

v

vvvv IE
A

S
A

IESN −−==++=


. 

The system of equations (1) and (2) can be simplified by letting 

1−= hhh NSs ,
1−= hhh NEe ,

1−= hhh NIi ,
1−= hhh NRr ,

1−= vvv NSs ,
1−= vvv NEe and .1−= vvv NIi

 
(3)

 
Differentiating the above system of equation (3) w.r.t, time 









−=

dt

dN
s

dt

dS

Ndt

ds h
h

h

h

h 1
,11 hhh

h

vh

h ss
k

N
isnb

k

N



 −








−−−−=

 









−=

dt

dN
e

dt

dE

Ndt

de h
h

h

h

h 1
,1)(1 h

h

hhhvh e
k

N
eisnb 








−−+−= 

 









−=

dt

dN
i

dt

dI

Ndt

di h
h

h

h

h 1
,1)( h

h

hhhhh i
k

N
ie 








−−+−= 

 









−=

dt

dN
r

dt

dR

Ndt

dr h
h

h

h

h 1
,1 h

h

hhhh r
k

N
ri 








−−−= 

 









−=

dt

dN
s

dt

dS

Ndt

ds v
v

v

v

v 1
,2 vvhvv sisb  −−=

 









−=

dt

dN
e

dt

dE

Ndt

de v
v

v

v

v 1
,)(2 vvvhv eisb  +−=
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







−=

dt

dN
i

dt

dI

Ndt

di v
v

v

v

v 1
.vvvv ie  −=

 

Hence, the simplified system of equations becomes  

( ) ,11 hhhvh

h ssisnb
dt

ds
 −−−−−=

 

( ) ,1)(1 hhhhvh

h eeisnb
dt

de
 −−+−=

 

( ) ,1)( hhhhhh

h iie
dt

di
 −−+−=

 

( ) ,1 hhhhh

h rri
dt

dr
 −−−=         (4)

 

,2 vvhvv

v sisb
dt

ds
 −−=

 

,)(2 vvvhv

v eisb
dt

de
 +−=

 

.vvvv

v ie
dt

di
 −=

 

.,Where
k

Nh=  

3. Basic properties 

This section explores essential principles pivotal for the subsequent mathematical 

examination of the provided model. 
 

3.1 Invariant region 

Considering the model’s tracking of swap in the person inhabitants, we assume all variables are 

changeable and constructive for .0t   Thus, the structure of calculations (4) is analyzed within 

a biologically relevant and feasible region denoted as  . The following lemma outlines the 

feasible region for the system (4). 
 

Lemma 1: The solution of the normalized model structure (4) is contained in the region
34

++ = vh . 

Proof: To demonstrate that in a proper subset of 
34

++  , all possible solutions are 

uniformly bounded. Splitting the system into a human component hn  and a vector component 

vn such that 

1=+++= hhhhh riesn and .1=++= vvvv iesn  (5) 
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Consider any solution hhhh ries ,,,  in 4

+ with non-negative initial conditions. By applying 

Birkhoff and Rota’s theorem (1989) to differential inequalities, it can be inferred that  

.1)(lim → tSht           (6) 

It is also similar for the solution of the vector population.   3,, +vvv ies that 

.1)(lim → tSvt           (7) 

From the system of equation (4), we have: 

hhhhh riesn +++= , .0=hn
 

Integrating, we get 1knh = , where 1k  constant. But, from 1=+++= hhhhh riesn , it follows 

that 11 =k . 

Hence; ( ) 1:,,, 4 =+++= + hhhhhhhhh riesries . 

Similarly: vvvv iesn ++= , 0=vn .
 

Integrating, we get 2knv = . Also, from 1=++= vvvv iesn , it follows that 12 =k . 

Hence; ( ) 1:,, 3 =++= + vvvvvvv iesies . 

As a result, we can affirm that the region   remains positively invariant, confirming that the 

model is well-defined and holds biological significance. Consequently, we can focus on the 

dynamics produced by the normalized model (4) within the   region. 

 

3.2 Positivity of solutions 

Lemma 2: With the initial conditions proposed in the model to lie in  , where 

( ) 0,0,0,0,0,0,0:,,,,,, 7 = + vvvhhhhvvvhhhh iesriesiesries .  

Then the solution set ( ) ( ) ( ) ( ) ( ) ( ) ( ) titetstrtitets vvvhhhh ,,,,,, of the simplified model system (4) 

is positive for all time .0t  

Proof: By using the simplified model system (4), from the first equation we have 

( ) ,11 hhhvh

h ssisnb
dt

ds
 −−−−−=

 

,1 hhhhvh sssisnb  −−−−−=
 

( ) .hh s +−
 

Integrating with initial condition, we have 

,)0(,0 0sst ==
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( ) ( ) ( )
.00 

+− t

hh
hests



 

The second equation of the simplified model system (4), we have  

( ) ,1)(1 hhhhvh

h eeisnb
dt

de
 −−+−=

 

,1 hhhhhhvh eeeeisnb  −−−−=
 

( ) .hhh e ++−
 

Integrating with initial condition, we have
 

,)0(,0 0eet ==
 

( ) ( ) ( )
.00 1 

++− t

hh
heete


 

Similarly, the remaining equation of the simplified system (4) are also positive for all .0t  

Thus if we consider the third equation  

( ) ,1)( hhhhhh

h iie
dt

di
 −−+−=

 

,hhhhhhhh iiiie  −−−−=
 

( ) .hhh i ++−
 

The integration will give 𝑖ℎ(𝑡) ≥ 𝑖ℎ(0)𝑒
−(𝛾+𝜇ℎ+𝛿ℎ)𝑡 ≥ 0.  

Now we consider the fourth equation 

,hhhhhh

h rrri
dt

dr
 +−−=

 

( ) .hh r +−
 

The integration will give ( ) ( ) ( )
00 

+− t

hh
hertr

 . 

also
  

.2 vvvvhvv

v ssisb
dt

ds
 −−−=

 

The integration will give ( ) ( ) 00 
− t

vv
vests

 . 

and 

.)()(2 vvvvvvhv

v eeisb
dt

de
 +−+−=  

The integration will give ( ) ( ) ( )
00 

+− t

vv
vveete


. 
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Lastly;
 

.vvvvvv

v iie
dt

di
 −−=

 

The integration will give ( ) ( ) 00 
− t

vv
veiti


.
 

Therefore, the solution set ( ) ( ) ( ) ( ) ( ) ( ) ( ) titetstrtitets vvvhhhh ,,,,,,  of the simplified model 

system (4) is positive for all time 𝑡 ≥ 0. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) 0,0,0,0,0,0,0.  titetstrtitetsei vvvhhhh . 

 

4. Analysis of the Model 

This segment is dedicated to computing the symmetry states, particularly the disease-free 

equilibrium (DFE) and the endemic equilibrium (EE). Additionally, we conduct a firmness 

examination by calculating the fundamental reproduction number. 
 

4.1 Disease Free Equilibrium (DFE) and Basic Reproduction Number 

The normalized system of equation (4) has a disease-free equilibrium given by 

( ) ( ).0,0,1,0,0,0,1,,,,,, 0000000

0 == vvvhhhh iesriesE  

The assessment of the direct firmness of the ailment-free symmetry state relies on the 

procreation figure, following the methodology outlined in Anderson and May (1988). To delve 

into the regional firmness of this symmetry, we employ the next-generation concept, as 

elucidated by Alexander et al. (2005) and Mushayabasa et al. (2011). To facilitate this, we 

introduce matrices 
*F  and *V , designed to introduction recently developed infections and the 

transition of persons out of contaminated sections. The derivations proceed as follows: 

,
2

1

*





















=

vv

hv

hh

vh

e

isb

e

isnb

F









 

and    

( )

( )
.

)(

)(1

)(1

*





















+

++−

++−

=

vv

vvv

hhhh

hhhh

i

e

ii

ee

V









  

Once the partial derivatives of 
*F  and *V  at 0E  are calculated, the corresponding matrices are 

,

000

000

000

000

2

1





















=

v

h

b

nb

F









and 
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( )

( )
.

000

0)(00

00)(10

000)(1





















+

++−

++−

=

v

vv

hh

hh

V









   

 
Consider the following matrix 

( )

( )
.

000

00
)(

0
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Thus, the reproduction number 0R , is obtained as
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4.2 Local Stability of Disease-Free Equilibrium (DFE) 

In this segment, we consider the local stability of the DFE. They are presented in Theorem 1. 

 

Theorem 1: The local asymptotic stability of the disease-free equilibrium 0E  in the system (4) 

is established when 10 R , and it becomes unstable otherwise.
 

Proof: The Jacobian matrix of the model system (4) at 0E is given by 
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Trace ,0)2()]([ 543210 +++++−= aaaaaEJ v  

where, ],)1([1 ha  +−−= )],()1([2 hha  ++−−= )],()1([3 hha  ++−−=

],)1([4 ha  +−−=  and )(5 vva  +−= . 
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0  R .10  R  

This shows that the disease-free equilibrium point 0E  is locally asymptotically stable (LAS) if 

,10 R otherwise unstable. 

 

4.3 Global Stability of Disease-Free Equilibrium (DFE) 

In this segment, we assess worldwide firmness by applying a comparison theorem outlined in 

Lakshmikantham et al. (1989) and Mushayabasa et al. (2011). 

 

Theorem 2: The global asymptotic stability (GAS) of the disease-free equilibrium 0E  in the 

system (4) is established when 10 R , and it becomes unstable otherwise. 

Proof: The behavior of the varying signifying the contaminated part in the order (4) can be 

stated as follows: 
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 Thus 
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(10) 

Given that every eigenvalue of the matrix VF −  possesses a negative real component, the 

stability of the linearized differential inequality (10) is ensured when 0R  is less than 1. 

Therefore ( ) ( )0,0,0,0,,, →vvhh ieie as →t . Substituting 0==== vvhh ieie , in (4) gives 

)0()( hh sts → as →t and )0()( vv sts → as →t . 

Hence, the DFE )( 0E  is globally asymptotically stable for 10 R  and unstable if .10 R  

 

4.4 Forward Bifurcation Analysis 

The occurrence of forward bifurcation is established by applying center-manifold criteria to the 

system (4). Utilizing the Center Manifold Theorem, as referenced in Castillo-Chavez and Song 

(2004), Okosun and Makinde (2014), and Carr, J. (1981), we analyze forward bifurcation. Two 

key parameters, denoted as a and b , are pivotal in determining the direction of forward 

bifurcation. Specifically, when a  is less than 0 and b is greater than 0, the system experiences 

forward bifurcation. Using this theorem, we arrive at the following conclusion: 

 

Theorem 3: Consider the following general system of ordinary differential equations with a 

parameter   

nnfxf
dt

dx
→= :),,(  and ).(2  nCf       (11) 

Without sacrificing generality, we assumed that 0 is an equilibrium for system (11) for all 

values of the parameter  , meaning 0),0( =f  for all  . Additionally, we assume the following 

conditions: 

A1: ( )

















== 0,0)0,0(

j

i

x
x

f
fDA represents the linearization of system (11) around the 

equilibrium 0 with   evaluated at .0 Zero is a simple eigenvalue of A , and other eigenvalues 

of A  have negative real parts. 

A2: Matrix A possesses a right eigenvector w  and a left eigenvector v corresponding to the 

eigenvalue of zero. 

 

Let kf   represent the Kth component of f and 
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),0,0(
1,,

2


= 


=

n

jik ji

k

jik
xx

f
wwva          (12)

   

 

).0,0(
1,

2


= 


=

n

ik i

k

ik
x

f
wvb


         (13) 

The local dynamic of (11) around 0 are totally governed by parameters a and b. 

(i)  ,0,0  ba when 0 with 1 , 0 is LAS, and there exists a positive unstable 

equilibrium, when ,10   0 is unstable and there exists a negative and LAS equilibrium. 

(ii) ,0,0  ba when 0  with 1 , 0 is unstable, when ,10   0 is asymptotically 

stable and there exists a positive unstable equilibrium. 

(iii) ,0,0  ba when 0  with 1 , 0 is unstable, and there exists a  LAS negative 

equilibrium, when 10  , 0 is stable, and a positive unstable equilibrium appears. 

(iv) ,0,0  ba when   changes from negative to positive, 0 changes its stability from 

stable to unstable. Corresponding, a negative equilibrium becomes positive and LAS. [Sing et 

al. (2016b)] 

To apply theorem 3 above, the following simplifications and change of variables are made first. 

Let 1xSh = , 2xEh = , 3xIh = , 4xRh = , 5xSV = , 6xEv = and .7xI v =  
So that 

4321 xxxxNh +++=
 

and 765 xxxNv ++= . Further, by using vector notation 

,),,,,,,( 7654321

TxxxxxxxX = model system (4) can be written in the form ),(XF
dt

dX
=  with 

,),,,,,,( 7654321

TfffffffF =  

( ) ,1 117111
1 xxxxnbf

dt

dx
h −−−−−==       (14) 

( ) ,1)( 227112
2 xxxxnbf

dt

dx
hh  −−+−==       (15) 

( ) ,1)( 3323

3 xxxf
dt

dx
hhh  −−+−==        (16) 

( ) ,1 4434
4 xxxf

dt

dx
hh  −−−==        (17) 

,53525

5 xxxbf
dt

dx
vv  −−==         (18) 

,)( 63526

6 xxxbf
dt

dx
vv  +−==         (19) 



Raina et al. A Mathematical Model of Logistic Human Population Growth and Vector Population for Dengue Transmission Dynamics        37 

                 © 2024 NIDOC 
National Information and Documentation Center 

,767

7 xxf
dt

dx
vv  −==          (20) 

with h += . 

The Jacobian of the above normalized model system (14)-(20) is given as 
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( ) 00 = EJ . Either 0=− v , ( ) ,0
2
=−   

or ( )( )( ) .021
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1
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

++−+−
==  

Eigen vectors of ( )0EJ : It can be shown that the Jacobian of (14)-(20) has a right eigenvector 

associated with the zero eigenvalues given by ( ) ,,,,,,, 7654321

T
wwwwwwwW = which is 

obtained from 
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Furthermore, the Jacobian of (14)-(20) has a left eigenvector associated with the zero 

eigenvalues given by ( )TvvvvvvvV 7654321 ,,,,,,= , such that 
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4.5 Computation of parameters a and b 

Given the normalised model system (14)-(20), the partial derivatives of F  that are not zero are 

as follows: 
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Consequently, based on the aforementioned expression, 
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It can be shown that the pertinent non-zero partial derivatives of f  are in order to ascertain 

the symbol of b . 
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Since, by using item (iv) of theorem 3, we have established forward bifurcation. 
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4.6 Endemic Equilibrium (EE) 

The system (4) attains an endemic equilibrium point, which is given by: 
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Adding (21) and (22), we get 
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Put the value of 
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hi in equation (31) and (29), we get 
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Equating equations (28) and (35), we get 
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Put the value of 

hs in equation (28), we get 
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Put the value of 
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Put the value of 

hs in equation (32),we get 
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4.7 Global Stability of Endemic Equilibrium 

In this subsection, we address the endemic equilibrium’s general stability. 

 

Theorem 4: The GAS of the endemic equilibrium 
*E in the system (4) is established when 

10 R , and it becomes unstable otherwise. 

Proof: Consider a Lyapunov function V  as a means of demonstrating the global stability of 

endemic equilibrium. 
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If G < H then V will be negative it means that .0V  It follows that 0=V  = hh ss , = hh ee

,
= hh ii ,

= hh rr ,
= vv ss ,

= vv ee  and 
= vv ii . The maximum invariant set of system (4) on the set 

( ) 0:,,,,,, = Viesries vvvhhhh  is the singleton )( E . Thus, for system (4), the endemic 

equilibrium 
*E is GAS if HG  by LaSalle’s invariance principle (1976). 

 

5. Results 

The study’s numerical simulations are illustrated through the application of the Runge-Kutta 

method to the normalized model system (4), utilizing the estimated parameter values listed in 

Table 3. 

Table 3: Parameter values for the model of the disease dengue fever. 

Parameters Values Source 

  0.00002 Chen and Hsieh (2012) 

  0.000004 Assumed 

B 0.33 Adams and Boots (2010) 

1  0.375 KMTL (2006) 

2  0.75 KMTL (2006) 

h  0.197 Assumed 

v  0.183 Assumed 

h  0.000016 Chen and Hsieh (2012) 

v  0.331 Chen and Hsieh (2012) 

h  0.142 Adams and Boots (2010) 

n  12 Assumed 

  0.637 Assumed 

 

Figures 2 to 7 depict the variations in terms of proportions of susceptible humans, infected 

humans, recovered humans, susceptible vectors, exposed vectors, and infective vectors for 

various biting rates denoted as ‘b’. 
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Figure 2: Variation in the susceptible human 

population for varying biting rates b . 

Figure 3: Variation in the infected human 

population for varying biting ratesb . 

  

Figure 4: Variation in the recovered human 

population for varying biting ratesb . 

Figure 5: Variation in the susceptible vector 

population for varying biting ratesb . 

  

Figure 6: Variation in the exposed vector 

population for varying biting rates b . 

Figure 7: Variation in the infected vector 

population for varying biting ratesb .  
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In Figure 2, a notable trend is the decline in the susceptible human population as the biting rate 

rises. In contrast, as we observe in Figures 3 and 4, a rise in the biting rate corresponds to a rise 

in the proportions of the infected and the recovered human population. Furthermore, when the 

rate of biting rises, there is a noticeable reduction in the proportion of susceptible vector 

populations. Conversely, a rise in the biting rate is associated with an increase in the proportions 

of exposed vector populations and infected vector populations, which is evident in Figures 6 

and 7, respectively. 

Figures 8 to 14 illustrate the changes in terms of proportions of susceptible, exposed, infected, 

and recovered human populations concerning susceptible, exposed, and infected vector 

populations. These variations are observed for different values of the transmission probability 

from vectors to the human population, denoted as
1 . 

  

Figure 8: Variation in the proportion of 

susceptible human for different transmission 

probability rates 1 . 

Figure 10: Variation in the proportion of 

infected human for different transmission 

probability rates 1 . 

Figure 9: Variation in the proportion of 

exposed human for different transmission 

probability rates 1 . 

Figure 11: Variation in the proportion of 

recovered human for different transmission 

probability rates 1 . 
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Figure 12: Variation in the proportion of 

susceptible vector population for different 

transmission probability rates
1 . 

 
Figure 13: Variation in the proportion of 

exposed vector population for different 

transmission probability rates
1 . 

 

Figure 14: Variation in the proportion of infected vector population for different transmission 

probability rates 1 . 

It is clear from Figures 8, 9, 10, and 11 that a rise in the likelihood of the virus spreading from 

the vector to the human population causes several noteworthy patterns. The fraction of 

vulnerable people in the human population falls dramatically as this chance increases and more 

people contract the disease. The percentages of exposed and infected people in the human 

population rise simultaneously. In addition, the human recovery rate increases as more people 

beat the illness. 

It is clear from Figure 12 that when the likelihood of viruses spreading from vectors to human 

populations rises, the percentage of susceptible vectors falls. The likelihood of viruses 

spreading from vectors to human populations rises simultaneously as the number of exposed 

and infected vector populations rises. Figures 13 and 14 provide more examples of these 

tendencies, respectively. The differences between susceptible human, exposed human, infected 

human, and recovered human populations and susceptible vector, exposed vector, and infected 

vector populations are shown in Figures 15 through 21. These graphic representations are 

produced for various distinct values of the likelihood of transmission from the human 

population to the vector population, which is indicated as 2 . 
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Figure 15: Variation in the proportion of 

susceptible human population for different 

transmission probability rates 2 .  

Figure 16: Variation in the proportion of 

exposed human population for different 

transmission probability rates 2 .  

  

Figure 17: Variation in the proportion of 

infected human population for different 

transmission probability rates 2 .  

Figure 18: Variation in the proportion of 

recovered human population for different 

transmission probability rates 2 .  

  

Figure 19: Variation in the proportion of 

susceptible vector population for different 

transmission probability rates 2 . 

Figure 20: Variation in the proportion of 

exposed vector population for different 

transmission probability rates 2 . 
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Figure 21: Variation in the proportion of infected vector population for different transmission 

probability rates 2 . 

Figures 15, 16, 17, and 18 clarify that several distinct trends appear as the probability of the 

virus spreading from humans to vector populations rises. The fraction of vulnerable people in 

the human population falls dramatically as this likelihood increases because more people 

contract the disease. The percentages of exposed and sick people in the human population climb 

simultaneously, and as more people recover from the disease, so does the percentage of the 

recovered population. We see a similar pattern in Figure 19. The likelihood of a virus spreading 

from humans to the vector population increases with the fraction of susceptible vectors falling. 

Figures 20 and 21 further illustrate this relationship, showing that as the risk of the virus 

spreading from humans to vector populations increases, so does the percentage of exposed and 

infected vector populations. The distribution of exposed and infected human populations varies, 

as seen in Figures 22 and 23, respectively. These graphs show these differences across a range 

of distinct progression rate values, indicated by the symbol h . 

  

Figure 22: Variation in the proportion of exposed 

human population for different progression rates

h .  

Figure 23: Variation in the proportion of infected 

human population for different progression rates

h .  
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In Figure 22, it is observed that the exposed human population decreases as the progression 

rate, denoted as )( h , increases, whereas with an increase in the progression rate )( h , the 

proportion of the infected human population also increases, as indicated in Figure 23. 

Furthermore, Figures 24 and 25 present the variations in the proportions of exposed vector and 

infected vector populations. These figures demonstrate these variations for a range of different 

values of the progression rate, referred to as v . 

  

Figure 24: Variation in the proportion of exposed 

vector population for different progression rates v .  

Figure 25: Variation in the proportion of 

infected vector population for different 

progression rates v .  

In Figure 24, it is observed that the exposed vector population decreases as the progression rate 

)( v  increases while the increase of progression rate )( v  the proportion of infected vector 

population increases as it is indicated in Figure 25. 

 

6. Discussion 
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interaction between the vector and human populations in disseminating dengue. Through our 

scrutiny, we have ascertained the fundamental reproduction number, symbolized by 0R , which 

acts as a pivotal gauge of disease transmission potential. Our observations unveil that the 

equilibrium devoid of disease retains local stability when 0R is below one, signifying the 

feasibility of efficacious control and eradication of the disease under specific circumstances. 

Conversely, if it surpasses one, the equilibrium void of disease becomes precarious, indicating 

the potential for persistent transmission within the populace. Furthermore, we thoroughly 

analyzed stability for both disease-free and endemic equilibria. This scrutiny enabled us to 

explore the enduring behavior of the system and pinpoint conditions under which the disease 

may persist or wane. Such discernments are imperative in guiding the formulation of targeted 

disease control and prevention strategies. 
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Overall, our research provides valuable contributions to the understanding of dengue 

transmission dynamics. We have shed light on the complex interplay between the mosquito 

vector and human host by employing mathematical modelling techniques and considering the 

logistic human population and exposed class. These insights can assist policymakers, healthcare 

professionals, and researchers formulate effective measures to combat dengue, mitigate its 

impact, and ultimately reduce its burden on affected communities. However, it is essential to 

acknowledge that our model, like any mathematical representation, simplifies the complexity 

of real-world dynamics. Further research and data collection are necessary to refine and validate 

the model, incorporating additional factors such as spatial heterogeneity, environmental 

influences, and intervention strategies. These extensions would contribute to a more 

comprehensive understanding of dengue transmission and aid in developing targeted 

interventions to control and prevent this significant public health concern. 

 

7. Conclusion 

According to estimates, 40-50% of the world’s population is at risk for dengue in tropical, 

subtropical, and most recently, more temperate regions due to the disease’s sharp rise in 

prevalence in recent decades. Dealing with such a dynamic endemic is challenging and requires 

scientific resources. If not well and strategically tackled, the disease will eliminate a population. 

This study demonstrates the potential of mathematical modelling to elucidate the transmission 

dynamics of dengue. By providing insights into the role of the human population and the 

interaction with the mosquito vector, our findings contribute to the broader body of knowledge 

aimed at controlling and mitigating the impact of dengue, ultimately working towards a future 

with reduced disease prevalence and improved public health outcomes. The list of abbreviations 

and its meanings as used in this work are presented in Table 4. For future work, we suggest 

generalizing the studied of SEIR model to show the effect of the infection from other sources 

other than the mosquito as considered in this study and investigate the effects and stability of 

the model by introducing additional compartments as recovered and reinfected after contact 

with infected individual. This study can be extended further to animals that highly fragile with 

some communicable diseases.  
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Appendix 

List of Abbreviations 

SEIR Susceptible, Exposed, Infected, and 

Recovered 

HIV Human Immunodeficiency Virus 

AIDS Acquired Immunodeficiency Syndrome 

DFE Disease Free Equilibrium 

EE Endemic Equilibrium 

GAS Global Asymptotically Stable 

LAS Locally Asymptotically Stable 
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