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Introduction
Neutral differential/difference equations find numerous applications in biology, engi-
neering, economics, physics, neural networks, social sciences, etc (see, for example, [4, 
12, 16]). In the last few decades, many authors have focused their interest on the study 
of the oscillation of solutions of neutral differential/difference equations with deviating 
arguments, and in this regard, we refer the reader to the monographs of Agarwal et al. 
[1, 2] and the papers [3, 7–11, 13–15, 22, 29].

Introduced by Stefan Hilger [17], the notion of time scales is not only to unify the the-
ories of differential equations and difference equations, but also to extend some cases 
in between these classical ones. For details on the theory of dynamic equations on time 
scales and its applications as well as for basic concepts and notations, we refer the reader 
to the works of Bohner and Peterson [5, 6]. By employing a Riccati transformation tech-
nique and applying some inequalities, a large number of papers have been devoted to the 
oscillatory behavior of solutions to second order dynamic equations with nonnegative 
neutral coefficients; for example, see [3, 8, 9, 23–27] and the references cited therein. 
At the same time, there are comparatively few papers concerned with the oscillation of 
equations with nonpositive neutral coefficients; for example, see [7, 14, 18, 20, 28].

Bohner and Li [7] considered the second order dynamic equation

(1)
(

r(ℓ)|z�(ℓ)|p−2z�(ℓ)
)�

+ q(ℓ)|x(δ(ℓ))|p−2x(δ(ℓ)) = 0,
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where z(ℓ) = x(ℓ)− a(ℓ)x(τ (ℓ)) , p > 1 is a constant, and 0 ≤ a(ℓ) ≤ a0 < 1 . They 
improved the papers [14, 18] by developing a new method for the analysis of the oscilla-
tion of (1) via a comparison principle.

Recently, Zhang et al. [28] discussed the neutral dynamic equation

where z(ℓ) = x(ℓ)− p(ℓ)x(τ (ℓ)) , α ≥ 1 is a quotient of odd positive integers, 
0 ≤ p(ℓ) ≤ p0 < 1 , and there is a positive constant k such that f (x)xα ≥ k for all x  = 0 . 
They present some new oscillation criteria to ensure that a solution of (2) either oscil-
lates or converges to zero.

Motivated by the results in [28] and the discussion above, in this work we wish to find 
conditions that are sufficient as well as necessary for the oscillation of second order non-
linear dynamic equations on time scales of the form

where the time scale T satisfies supT = ∞ , ℓ ∈ [ℓ0,∞)T with ℓ0 ∈ T , and 
v(ℓ) = u(ℓ)+ q(ℓ)u(m(ℓ)) . A solution of (3) is a real function u ∈ C1

rd[ℓ0,∞)T such that 
a(ℓ)(v�(ℓ))α ∈ C1

rd[ℓ0,∞)T and which satisfies (3) on [Tu,∞)T , where Tu > ℓ0 is cho-
sen so that τ(ℓ) > ℓ0 for ℓ ≥ Tu , and Crd(T,R) is the space of real valued right-dense 
continuous functions (see [5]). Throughout this paper, we restrict our attention to those 
solutions of (3) that exist on some half line [ℓu,∞)T and satisfy sup{|u(ℓ)| : ℓ ≥ T } > 0 
for any T > Tu . Such a solution is said to be oscillatory if it is not eventually positive or 
eventually negative, and to be nonoscillatory otherwise.

Throughout, we assume that: 

(H1)	� α , β are quotient of odd positive integers, α > 1 , and −1 < q1 ≤ q(ℓ) ≤ 0;
(H2)	� m, τ ∈ Crd([l0,∞)T,T) with m(ℓ) ≤ ℓ , τ(ℓ) ≤ ℓ , and 

limℓ→∞m(ℓ) = limℓ→∞ τ(ℓ) = ∞;
(H3)	� � , a ∈ Crd([ℓ0,∞)T,R+) with �(ℓ)  ≡ 0 and 

 Defining

we have limℓ→∞A(ℓ) = ∞.

Methods
The approach used involves the construction of an appropriate Banach space and 
defining two mappings. The sum of these two mapping then yields an operator that 
is equivalent to an integral representation of the solution to the nonlinear dynamic 
equation (3) under investigation. By applying Krasnosel’skii’s fixed point theorem 
on time scales, it is then possible to obtain a fixed point of the operator that in turn 

(2)
(

r(ℓ)(z�(ℓ))α
)�

+ q(ℓ)f (x(δ(ℓ))) = 0,

(3)[a(ℓ)
(

v�(ℓ)
)α
]� +�(ℓ)uβ(τ (ℓ)) = 0, ℓ ∈ [ℓ0,∞)T,

∫ ∞

ℓ0

�s

a1/α(s)
= ∞.

A(ℓ) =

∫ ℓ

ℓ0

�s

a1/α(s)
,
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corresponds to a solution of Eq.  (3). Once this is accomplished, various qualitative 
properties of solution can be obtained.

Results
In what follows, all functional inequalities are assumed to hold eventually, that is, 
they are satisfied for all ℓ large enough. Without loss of generality, in our proofs we 
only deal with positive solutions of (3).

The following two lemmas provide some inequalities that will be useful in our 
proofs.

Lemma 1  Let 0 < ω < 1 be the ratio of odd positive integers and A, B ≥ 0 with A ≥ B . 
Then: Aω − Bω ≤ (A− B)ω.

Proof  For x ≥ 1 let f (x) = (x − 1)ω − xω + 1 . Then,

for x > 1 . Therefore, f (x) ≥ f (1) = 0 for x ≥ 1 . Letting x = A/B proves the lemma. �

Lemma 2  [15] Suppose that ω > 0 and |x|� is of one sign on [t0,∞) . Then

Lemma 3 below can be proved by following the lines of the proof of [20, Lemma 2.1].

Lemma 3  Let u be an eventually positive solution of (3). Then v satisfies one of the fol-
lowing cases:

(a)	� v > 0 , v� > 0 , and (a(v�)α)� ≤ 0;
(b)	� v < 0 , v� > 0 , and (a(v�)α)� ≤ 0

 for ℓ ∈ T sufficiently large.
Lemma 4  Let u be an eventually positive solution of (3) such that v satisfies case (b) of 
Lemma 3. Then

Proof  Let u be an eventually positive solution of (3) with u(m(ℓ)) > 0 and u(τ (ℓ)) > 0 
and such that Lemma 3(b) holds for ℓ ≥ ℓ1 for some ℓ1 ≥ ℓ0 . Then v(ℓ) < 0 and 
v�(ℓ) > 0 for ℓ ≥ ℓ1 , so v(ℓ) is bounded.

We will consider two possibilities. First assume that u(ℓ) is bounded. Then,

f ′(x) = ω

[

(x − 1)ω−1 − xω−1
]

=

[

x1−ω − (x − 1)1−ω

x1−ω(x − 1)1−ω

]

≥ 0

|x|�

(|x|σ )ω
≤

(|x|1−ω)�

1− ω
≤

|x|�

|x|ω
on [t0,∞).

lim
ℓ→∞

u(ℓ) = 0.

lim sup
ℓ→∞

u(ℓ) = L with 0 ≤ L < ∞.
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To show that L = 0 , assume that L > 0 . Then there is a sequence {ℓk} → ∞ such that 
{u(ℓk)} → L as ℓ → ∞ . Let ǫ = −L(1+ q1)/2q1 > 0 ; then for large k, u(m(ℓk)) < L+ ǫ , 
so

which is a contradiction.

Finally, to complete the proof, we need to show that u(ℓ) is not unbounded. If u(ℓ) is 
unbounded, then there is a sequence {ℓj} → ∞ such that {u(ℓj)} → ∞ as j → ∞ and 
u(ℓj) = max{u(ℓ) : ℓ0 ≤ ℓ ≤ ℓj} . Now {m(ℓj)} → ∞ and m(ℓj) ≤ ℓj , so

Hence, for large j,

which contradicts the fact that v(ℓ) < 0 . This completes the proof of the lemma. �

Our first result on the asymptotic behavior of solutions of Eq. (3) is as follows.

Theorem  5  Let (H1)–(H3) hold and assume that α ≥ 1 and there is a constant 
γ ∈ R+ such that β < γ < α . Then any solution of (3) either oscillates or satisfies 
limℓ→∞ u(ℓ) = 0 if and only if

(H4)	�    
∫ ∞

ℓ0

�(s)Aβ(τ (s))�s = ∞.

Proof  Necessity: To prove the necessity of the condition, assume that (H4) does not 
hold. Then there exists ℓ1 > ℓ0 such that

Let

Clearly, χ is a Banach space with the norm �u� = supℓ∈[ℓ0,∞)T

u(ℓ)
A(ℓ)

 . For any ς1 > 0 , 
ς2 > 0 , and ℓ∗ ∈ [ℓ0,∞)T with ς1 < (1+ q1)ς2 , let �ς1,ς2 ⊂ χ be given by

By (4), we can find ℓ∗ > ℓ1 , ς1 , ς2 , and ς3 such that (ς1)α < ς3 < ((1+ q1)ς2)
α and

Define two maps Ŵ1 and Ŵ2 on �ς1,ς2 by

0 ≥ lim
k→∞

v(ℓk) = lim
k→∞

[u(ℓk)+ q(ℓk)u(m(ℓk)) > L+ q1(L+ ǫ) > L(1+ q1)/2 > 0,

u(m(ℓj)) ≤ max{u(ℓ) : ℓ0 ≤ ℓ ≤ ℓj} = u(ℓj).

v(ℓj) = u(ℓj)+ q(ℓj)u(m(ℓj)) ≥ u(ℓj)+ q1u(m(ℓj)) ≥ (1+ q1)u(ℓj) > 0,

(4)
∫ ∞

ℓ1

�(s)Aβ(τ (s)))�s < ∞.

χ =

{

u : u ∈ Crd([ℓ0,∞)T,R)

∣

∣

∣

∣

∣

sup
ℓ∈[ℓ0,∞)T

u(ℓ)

A(ℓ)
< ∞

}

.

�ς1,ς2 = {u ∈ χ : ς1[A(ℓ)−A(ℓ∗)] ≤ u(ℓ) ≤ ς2[A(ℓ)−A(ℓ∗)], ℓ ∈ [ℓ0,∞)T}.

(5)
∫ ∞

ℓ∗
�(s)Aβ(τ (s)))�s ≤

((1+ q1)ς2)
α − ς3

ς
β
2

.



Page 5 of 14Chhatria et al. J Egypt Math Soc           (2021) 29:22 	

and

First, we show that for any u1 , u2 ∈ �ς1,ς2 , we have Ŵ1u1 + Ŵ2u2 ∈ �ς1,ς2 . To do this, let 
u1,u2 ∈ �ς1,ς2 . Note that u(ℓ) ≤ ς2A(ℓ) , so uβ(τ (ℓ)) ≤ ς

β
2 A

β(τ (ℓ)) . This, together with 
(5) implies that for ℓ ≥ ℓ∗,

and

Therefore, Ŵ1u1 + Ŵ2u2 ∈ �ς1,ς2.

Next, we show that Ŵ1 is a contraction mapping on �ς1,ς2 . Now for u1 , u2 ∈ �ς1,ς2 and 
ℓ ≥ ℓ∗ , we have

that is,

Since 0 ≤ −q1 < 1 , Ŵ1 is a contraction.

To show that Ŵ2 is completely continuous, we will first show that Ŵ2 is continuous. So fix 
ℓ ≥ ℓ∗ and let uk ∈ �ς1,ς2 be such that uk(ℓ) → u(ℓ) as k → ∞ . By taking a subsequence 
if necessary and again calling it uk(ℓ) , we can assume that uk(ℓ)− u(ℓ) is of fixed sign, 
say uk(ℓ) ≥ u(ℓ) for k = 1, 2, . . . . Since �ς1,ς2 is closed, u(ℓ) ∈ �ς1,ς2 . By Lemma 1 with 
ω = 1/α ≤ 1 , we obtain

(Ŵ1u)(ℓ) =

{

(Ŵ1u)(ℓ
∗), ℓ ∈ [ℓ0, ℓ

∗)T,
−q(ℓ)u(m(ℓ)), ℓ ∈ [ℓ∗,∞)T

(Ŵ2u)(ℓ) =

{

(Ŵ2u)(ℓ
∗), ℓ ∈ [ℓ0, ℓ

∗)T,
∫ ℓ

ℓ∗

[

1
a(s)

[

ς3 +
∫∞

s �(θ)uβ(τ (θ))�θ
]

]1/α
�s, ℓ ∈ [ℓ∗,∞)T.

(Ŵ1u1)(ℓ)+ (Ŵ2u2)(ℓ) = − q(ℓ)u1(m(ℓ))+

∫ ℓ

ℓ∗

[

1

a(s)

[

ς3 +

∫ ∞

s
�(θ)u

β
2 (τ (θ))�θ

]]1/α

�s

≤ − q(ℓ)u1(m(ℓ))+

∫ ℓ

ℓ∗

[

1

a(s)

[

ς3 +

∫ ∞

s
ς
β
2 �(θ)Aβ(τ (θ))�θ

]]1/α

�s

≤ − q1ς2[A(m(ℓ))−A(ℓ∗)] +

∫ ℓ

ℓ∗

[

1

a(s)

(

ς3 + ((1+ q1)ς2)
α − ς3

)

]1/α

�s

≤ − q1ς2[A(ℓ)−A(ℓ∗)] + (1+ q1)ς2[A(ℓ)−A(ℓ∗)]

≤ ς2[A(ℓ)−A(ℓ∗)]

(Ŵ1u1)(ℓ)+ (Ŵ2u2)(ℓ) = − q(ℓ)u1(m(ℓ))+

∫ ℓ

ℓ∗

[

1

a(s)

[

ς3 +

∫ ∞

s
�(θ)u

β
2 (τ (θ))�θ

]]1/α

�s

≥

[
∫ ℓ

ℓ∗
ς3

1

a(s)

]1/α

�s

= ς
1/α
3 [A(ℓ)−A(ℓ∗)]

≥ ς1[A(ℓ)−A(ℓ∗)].

|(Ŵ1u1)(ℓ)− (Ŵ1u2)(ℓ)| ≤ |q(ℓ)||u1(m(ℓ))− u2(m(ℓ))| ≤ − q1|u1(m(ℓ))− u2(m(ℓ))|,

�Ŵ1u1 − Ŵ1u2� ≤ − q1�u1 − u2�.
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Since |uβk (τ (θ))− uβ(τ (θ))| → 0 as k → ∞ , an application of Lebesgue’s domi-
nated convergence theorem shows that limk→∞ |(Ŵ2uk)(ℓ)− (Ŵ2u)(ℓ)| → 0 , so Ŵ2u is 
continuous.

To show that Ŵ2 is relatively compact, it suffices to show that the family of functions 
{Ŵ2u : u ∈ �ς1,ς2} is uniformly bounded and equicontinuous on [ℓ∗,∞)T . Clearly, Ŵ2u is 
uniformly bounded. To see that Ŵ2 is equicontinuous, let ǫ > 0 be given and choose 
δ > 0 such that ℓ3 > ℓ2 ≥ ℓ∗ and |ℓ2 − ℓ1| < δ implies 
|A(ℓ3)−A(ℓ2)| < ǫ

{

1
[(1+q1)ς2]α−ς3

}1/α
 . Then,

Thus, {Ŵ2u : u ∈ �ς1,ς2} is uniformly bounded and equicontinuous on [ℓ∗,∞)T , and so 
Ŵ2u is relatively compact. By Krasnosel’skii’s fixed point theorem [29, Lemma 5], Ŵ1 + Ŵ2 
has a unique fixed point u ∈ �ς1,ς2 , i.e., Ŵ1u+ Ŵ2u = u . That is,

is a nonoscillatory solution of (3).

Sufficiency: Now assume that v is a nonoscillatory solution of (3). Then Lemma 3 holds 
for ℓ ∈ [ℓ1,∞)T for some ℓ1 ≥ ℓ0 , and there are two possible cases.

Case a Since a(v�)α is nonincreasing and positive for ℓ ∈ [ℓ1,∞)T , we can find C > 0 
and ℓ2 > ℓ0 such that

Integrating from ℓ2 to ℓ gives

|(Ŵ2uk)(ℓ)− (Ŵ2u)(ℓ)| =

∣

∣

∣

∣

∣

∫ ℓ

ℓ∗

[

1

a(s)

[

ς3 +

∫ ∞

s
�(θ)u

β

k (τ (θ))�θ

]]1/α

�s

−

∫ ℓ

ℓ∗

[

1

a(s)

[

ς3 +

∫ ∞

s
�(θ)uβ(τ (θ))�θ

]]1/α

�s

∣

∣

∣

∣

∣

≤

∫ ℓ

ℓ∗

[

1

a(s)

∫ ∞

s
�(θ)

∣

∣

∣
u
β

k (τ (θ))− uβ(τ (θ))
∣

∣

∣
�θ

]1/α

�s.

|(Ŵ2u)(ℓ3)− (Ŵ2u)(ℓ2)|

=

∣

∣

∣

∣

∣

∫ ℓ3

ℓ∗

[

1

a(s)

∫ ∞

s
�(θ)uβ(τ (θ))�θ

]1/α

�s −

∫ ℓ2

ℓ∗

[

1

a(s)

∫ ∞

s
�(θ)uβ(τ (θ))�θ

]1/α

�s

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ ℓ3

ℓ2

[

1

a(s)

∫ ∞

s
�(θ)uβ(τ (θ))�θ

]1/α

�s

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∫ ℓ3

ℓ2

[

1

a(s)

∫ ∞

s
�(θ)ς

β
2 A

β(τ (θ))�θ

]1/α

�s

∣

∣

∣

∣

∣

≤ [A(ℓ3)−A(ℓ2)]

[
∫ ∞

s
�(θ)ς

β
2 A

β(τ (θ))�θ

]1/α

�s < ǫ.

u(ℓ) = −q(ℓ)u(m(ℓ))+

∫ ℓ

ℓ∗

[

1

a(s)

[

ς3 +

∫ ∞

s
�(θ)uβ(τ (θ))�θ

]]1/α

�s, ℓ ∈ [ℓ∗,∞)T.

a(ℓ)(v�(ℓ))α ≤ C for ℓ ∈ [ℓ2,∞)T.
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Since limℓ→∞A(ℓ) = ∞,

for ℓ sufficiently large, say ℓ ≥ ℓ3 . Now β < γ and (6) imply

Therefore, (3) becomes

Integrating the last inequality from ℓ ≥ ℓ3 to ∞ gives

which implies

As a result,

Integrating this from ℓ3 to ℓ , we have

Consequently,

Clearly, 
∫ ℓ

ℓ3

1

a(s)
�s = A(ℓ)−A(ℓ3) = π(ℓ)A(ℓ) , where π(ℓ) = A(ℓ)−A(ℓ3)

A(ℓ)
 . In view of 

(H3) , we have limℓ→∞ π(ℓ) = 1 , so there exists ℓ4 ≥ ℓ3 and π∗ ∈ (0, 1) such that 
π(ℓ) ≥ π∗ , that is,

Setting

in (8), we have

v(ℓ) ≤ v(ℓ2)+ C
1/α

∫ ℓ

ℓ2

�s

a1/α(s)
= v(ℓ2)+ C

1/α(A(ℓ)−A(ℓ2)).

(6)v(ℓ) ≤ C
1/α

A(ℓ)

vβ(τ (ℓ)) = vβ−γ (τ (ℓ))vγ (τ (ℓ)) ≥ [C1/αA(τ (ℓ))]β−γ vγ (τ (ℓ)).

[a(t)(v�(ℓ))α]� +�(ℓ)[C1/αA(τ (ℓ))]β−γ vγ (τ (ℓ)) ≤ 0.

lim
t→∞

a(t)(v�(t))α − a(ℓ)(v�(ℓ))α +

∫ ∞

ℓ

�(s)[C1/αA(τ (s))]β−γ vγ (τ (s))�s ≤ 0,

a(ℓ)(v�(ℓ))α ≥

∫ ∞

ℓ

�(s)[C1/αA(τ (s))]β−γ vγ (τ (s))�s.

(7)v�(ℓ) ≥

[

1

a(ℓ)

∫ ∞

ℓ

�(s)[C1/αA(τ (s))]β−γ vγ (τ (s))�s

]1/α

.

v(ℓ) ≥

∫ ℓ

ℓ3

[

1

a(s)

∫ ∞

s
�(θ)[C1/αA(τ (θ))]β−γ vγ (τ (θ))�θ

]1/α

�s.

(8)v(ℓ) ≥ [A(ℓ)−A(ℓ1)]

[
∫ ∞

s
�(θ)[C1/αA(τ (θ))]β−γ vγ (τ (θ))�θ

]1/α

.

(9)A(ℓ)−A(ℓ3) ≥ π∗
A(ℓ) for ℓ ∈ [ℓ4,∞)T.

(10)�(ℓ) =

∫ ∞

ℓ

�(s)(C1/αA(τ (s))β−γ vγ (τ (s))�s,
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and in view of (9),

for ℓ ∈ [ℓ4,∞)T . From the preceding inequality, it is easy to verify that

which implies that

for ℓ ∈ [ℓ5,∞)T ⊂ [ℓ4,∞)T . From (10), we have

From Lemma 2 with ω = γ /α and x = �(ℓ) and the fact that γ < α , it follows that

for ℓ ∈ [ℓ5,∞)T . Integrating (11) from ℓ5 to ℓ,

so

contradicting (H4).

Case b Now suppose v < 0 for ℓ ∈ [ℓ0,∞)T . Then u(ℓ) → 0 as ℓ → ∞ by Lemma 4. This 
completes the proof of the theorem. �

The following corollary is immediate.

v(ℓ) ≥ [A(ℓ)−A(ℓ1)]�
1/α(ℓ).

v(ℓ) ≥ π∗
A(ℓ)�1/α(ℓ)

vγ (ℓ)

Cγ /αAγ (ℓ)
≥

(

π∗

C1/α

)γ

�γ/α(ℓ)

vγ (τ (ℓ))

Cγ /αAγ (τ (ℓ))
≥

(

π∗

C1/α

)γ

�γ/α(τ (ℓ))

��(ℓ) =

(
∫ ∞

ℓ

�(s)(C1/αA(τ (s))β−γ vγ (τ (s))�s

)�

= −�(ℓ)(C1/αA(τ (ℓ))β−γ vγ (τ (ℓ))

= −�(ℓ)(C1/αA(τ (ℓ))β
(

v(τ (ℓ))

C1/αA(τ (ℓ))

)γ

≤ −(π∗)γ C(β−γ )/α�(ℓ)Aβ(τ (ℓ))�γ/α(τ (ℓ)).

(11)

−[�1−γ /α(ℓ)]� ≥ −(1− γ /α)�−γ /α(ℓ)��(ℓ)

≥ (π∗)γ C(β−γ )/α(1− γ /α)�−γ /α(ℓ)�(ℓ)Aβ(τ (ℓ))�γ/α(τ (ℓ))

= (π∗)γ C(β−γ )/α(1− γ /α)�(ℓ)Aβ(τ (ℓ))

−�1−γ /α(ℓ)+�1−γ /α(ℓ5) ≥ (π∗)γ C(β−γ )/α(1− γ /α)

∫ ℓ

ℓ5

�(s)Aβ(τ (s))�s

∫ ℓ

ℓ5

�(s)Aβ(τ (s))�s ≤
C(γ−β)/α

(π∗)γ (1− γ /α)
�1−γ /α(ℓ5)
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Corollary 6  Under the assumption of Theorem 5, every unbounded solution of (3) oscil-
lates if and only if (H4) holds.

Theorem 7  Let (H1)–(H3) hold, σ(τ(ℓ)) = τ(σ (ℓ)) , a�(ℓ) ≥ 0 , and there is a constant 
γ ∈ R+ such that α < γ < β . Then any solution u(ℓ) of (3) is either oscillatory or satisfies 
limℓ→∞ u(ℓ) = 0 if and only if

(H5)	�     lim
ℓ→∞

∫ ℓ

ℓ0

∫ ∞

s

(

�(θ)

a(s)

)1/α

�θ�s = ∞ .

Proof  Necessity: Assume that (H5) does not hold so that there exists ℓ1 > ℓ0 such that

Letting

we see that χ is a Banach space with the norm �u� = supℓ∈[ℓ0,∞)T
u(ℓ) . Choose ς1 > 0 

and ς2 > 0 so that ς1 − q1ς2 < ς2 and consider �ς1,ς2 ⊂ χ to be

By (12), we can find ℓ∗ > ℓ1 and ς3 > 0 such that ς1 < ς3 < (1+ q1)ς2 and

Define two maps Ŵ1 and Ŵ2 on � by

and

To show that Ŵ1 + Ŵ2 : � → � , let u1 , u2 ∈ � . Then from (13),

(12)
∫ ∞

ℓ1

[

1

a(s)

∫ ∞

s
�(θ)�θ

]1/α

�s < ∞.

χ =

{

u : u ∈ Crd([ℓ0,∞)T,R)

∣

∣

∣

∣

∣

sup
ℓ∈[ℓ0,∞)T

u(ℓ) < ∞

}

,

�ς1,ς2 = {u ∈ χ : ς1 ≤ u(ℓ) ≤ ς2, ℓ ∈ [ℓ0,∞)T}.

(13)
∫ ∞

ℓ∗

[

1

a(s)

∫ ∞

s
�(θ)�θ

]1/α

�s ≤
(1+ q1)ς2 − ς3

ς
β/α
2

.

(Ŵ1u)(ℓ) =

{

(Ŵ1u)(ℓ
∗), ℓ ∈ [ℓ0, ℓ

∗)T,
ς3 − q(ℓ)u(m(ℓ)), ℓ ∈ [ℓ∗,∞)T

(Ŵ2u)(ℓ) =

{

(Ŵ2u)(ℓ
∗), ℓ ∈ [ℓ0, ℓ

∗)T,
∫ ℓ

ℓ∗

[

1
a(s)

∫∞

s �(θ)uβ(τ (θ))�θ

]1/α
�s, ℓ ∈ [ℓ∗,∞)T.

(Ŵ1u1)(ℓ)+ (Ŵ2u2)(ℓ) = ς3 − q(ℓ)u1(m(ℓ))+

∫ ℓ

ℓ∗

[

1

a(s)

∫ ∞

s
�(θ)u

β
2 (τ (θ))�θ

]1/α

�s

≤ ς3 − q1ς2 +

∫ ℓ

ℓ∗

[

1

a(s)

∫ ∞

s
�(θ)u

β
2 (τ (θ))�θ

]1/α

�s

≤ ς3 − q1ς2 + ς
β/α
2

∫ ℓ

ℓ∗

[

1

a(s)

∫ ∞

s
�(θ)�θ

]1/α

�s

≤ ς2
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and

for ℓ ≥ ℓ∗ . Hence, Ŵ1u1 + Ŵ2u2 ∈ �ς1,ς2.

To see that Ŵ1 is a contraction, let u1 , u2 ∈ �ς1,ς2 and ℓ ≥ ℓ∗ . Then,

so

i.e., Ŵ1 is a contraction mapping.

To show that Ŵ2 is completely continuous, we begin by letting uk ∈ �ς1,ς2 be such that 
uk(ℓ) → u(ℓ) as k → ∞ . Since �ς1,ς2 is closed, u(ℓ) ∈ �ς1,ς2 . Now

Since |uβk (τ (θ))− uβ(τ (θ))| → 0 as k → ∞ , an application of Lebesgue’s dominated 
convergence theorem implies limk→∞ |(Ŵ2uk)(ℓ)− (Ŵ2u)(ℓ)| → 0 . Hence, Ŵ2u is con-
tinuous. To show that Ŵ2u is relatively compact, it suffices to show that the family of 
functions {Ŵ2u : u ∈ �ς1,ς2} is uniformly bounded and equicontinuous on [ℓ∗,∞)T . The 
uniform boundedness is clear.

To show Ŵ2u is equicontinuous, let ǫ > 0 be given and choose δ > 0 such that 
ℓ3 > ℓ2 ≥ ℓ∗ and |ℓ2 − ℓ1| < δ implies

Then,

Therefore, Ŵ2u is relatively compact, and by Krasnosel’skii’s fixed point theorem [, 
Lemma 5], 29Ŵ1 + Ŵ2 has a unique fixed point u ∈ �ς1,ς2 . It follows that

(Ŵ1u1)(ℓ)+ (Ŵ2u2)(ℓ) ≥ ς3 − q(ℓ)u1(m(ℓ)) ≥ ς3 ≥ ς1

|(Ŵ1u1)(ℓ)− (Ŵ1u2)(ℓ)| ≤ |q(ℓ)||u1(m(ℓ))− u2(m(ℓ))| ≤ −q1|u1(m(ℓ))− u2(m(ℓ))|,

�Ŵ1u1 − Ŵ1u2� ≤ −q1�u1 − u2�,

|(Ŵ2uk)(ℓ)− (Ŵ2u)(ℓ)| ≤

∫ ℓ

ℓ∗

[

1

a(s)

∫ ∞

s
�(θ)|u

β

k (τ (θ))− uβ(τ (θ))|�θ

]1/α

�s.

∫ ℓ3

ℓ2

[

1

a(s)

∫ ∞

s
�(θ)�θ

]1/α

�s <
ǫ

ς
β/α
2

.

|(Ŵ2u)(ℓ3)− (Ŵ2u)(ℓ2)|

=

∣

∣

∣

∣

∣

∫ ℓ3

ℓ∗

[

1

a(s)

∫ ∞

s
�(θ)uβ(τ (θ))�θ

]1/α

�s −

∫ ℓ2

ℓ∗

[

1

a(s)

∫ ∞

s
�(θ)uβ(τ (θ))�θ

]1/α

�s

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ ℓ3

ℓ2

[

1

a(s)

∫ ∞

s
�(θ)uβ(τ (θ))�θ

]1/α

�s

∣

∣

∣

∣

∣

≤ ς
β/α
2

∫ ℓ3

ℓ2

[

1

a(s)

∫ ∞

s
�(θ)�θ

]1/α

�s < ǫ.

u(ℓ) = ς3 − q(ℓ)u(m(ℓ))+

∫ ℓ

ℓ∗

[

1

a(s)

∫ ∞

s
�(θ)uβ(τ (θ))�θ

]1/α

�s, ℓ ∈ [ℓ∗,∞)T
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is a nonoscillatory solution of (3).

Sufficiency: Let u be a nonoscillatory solution of (3) with Lemma  3 holding for 
ℓ ∈ [ℓ1,∞)T . We again consider two cases.

Case a Let v > 0 ; then u(ℓ) ≥ v(ℓ) for ℓ ∈ [ℓ1,∞)T . From the fact that v�(ℓ) > 0 for 
ℓ ∈ [ℓ1,∞)T , it follows that v(τ (ℓ)) ≥ v(τ (ℓ1)) = C for ℓ ∈ [ℓ2,∞)T for some ℓ2 ≥ ℓ1 . 
Since γ < β,

Using (14) in (3), we obtain

and an integration from ℓ to ∞ gives

that is,

Using the fact that a�(ℓ) ≥ 0 , we see that

which implies

that is

Since α < γ , by Lemma 2

Integrating the preceding inequality from ℓ2 to ℓ gives

(14)vβ(τ (ℓ)) = vβ−γ (τ (ℓ))vγ (τ (ℓ)) ≥ C
β−γ vγ (τ (ℓ)).

[a(ℓ)(v�(ℓ))α]� + C
β−γ�(ℓ)vγ (τ (ℓ)) ≤ 0,

lim
t→∞

a(t)(v�(t))α − a(ℓ)(v�(ℓ))α + C
β−γ

∫ ∞

ℓ

�(s)vγ (τ (s))�s ≤ 0,

C
β−γ

∫ ∞

ℓ

�(s)vγ (τ (s))�s ≤ a(ℓ)(v�(ℓ))α ≤ a(τ (ℓ))(v�(τ(ℓ)))α .

(v�(τ(ℓ)))α ≥
Cβ−γ

a(ℓ)

∫ ∞

ℓ

�(s)vγ (τ (s))�s,

v�(τ(ℓ)) ≥
C(β−γ )/α

a1/α(ℓ)

[
∫ ∞

ℓ

�(s)vγ (τ (s))�s

]1/α

≥
C(β−γ )/α

a1/α(ℓ)

[
∫ ∞

σ(ℓ)

�(s)vγ (τ (s))�s

]1/α

≥
C(β−γ )/α

a1/α(ℓ)

[
∫ ∞

σ(ℓ)

�(s)�s

]1/α

(vσ (τ (ℓ)))γ /α ,

v�(τ(ℓ))(vσ (τ (ℓ)))−γ /α ≥
C(β−γ )/α

a1/α(ℓ)

[
∫ ∞

σ(ℓ)

�(s)�s

]1/α

.

C(β−γ )/α

a1/α(ℓ)

[
∫ ∞

σ(ℓ)

�(s)�s

]1/α

≤ v�(τ(ℓ))(vσ (τ (ℓ)))−γ /α ≤
[v1−γ /α(τ (ℓ))]�

1− γ /α
.
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contradicting (H5).

Case b If v < 0 , then u(ℓ) → 0 by Lemma 4. This proves the theorem. �

The following corollary is analogous to Corollary 6.

Corollary 8  Under the assumption of Theorem 5, every unbounded solution of (3) oscil-
lates if and only if (H5) holds.

Discussion
First, we constructed an appropriate Banach space as the setting on which to defining 
two mappings Ŵ1 and Ŵ2 . The sum of these two mappings is an operator that is equivalent 
to an integral representation of the solution to the nonlinear dynamic equation (3) under 
investigation. By applying Krasnosel’skii’s fixed point theorem on time scales, it was then 
possible to obtain a fixed point of the operator that in turn corresponds to a solution of 
Eq. (3). Once this was accomplished, various results on the qualitative properties of solu-
tion were obtained. For example, we found sufficient conditions for positive solutions to 
converge to zero (Lemma 4). In addition, we were able to prove necessary and sufficient 
conditions for a solution to either oscillate or converge to zero (Theorems 5 and 7) , and 
necessary and sufficient conditions for unbounded solutions to oscillate (Corollaries 6 
and 8).

Conclusion
In this work, we discuss two classes of oscillation criteria for (3). Note that Theorem 5 
and Theorem 7 guarantee that a solution of (3) either oscillates or converges to zero. In 
Corollaries 6 and 8, we restrict the solutions to make (3) oscillatory. Here, we formulate 
some interesting problem for future research: 

1.	 Is it possible to find necessary and sufficient conditions for the oscillation of 

 under the assumption β < γ < α or α < γ < β?
2.	 Following the work in [19, 21], is it possible to find necessary and sufficient condi-

tions for the oscillation of the forced equation 

 with either β < γ < α or α < γ < β?

C
(β−γ )/α

∫ ℓ

ℓ2

[

1

a(s)

∫ ∞

s
�(θ)�θ

]1/α

�s ≤
1

1− γ /α

∫ ℓ

ℓ2

[

v1−γ /α(τ (s)))
]�

�s

=
1

γ /α − 1

[

v1−γ /α(τ (ℓ2)))− v1−γ /α(τ (ℓ))
]

≤
1

γ /α − 1
v1−γ /α(τ (ℓ2)),

[a(ℓ)((u(ℓ)+ q(ℓ)u(m(ℓ)))�)α]� +�(ℓ)uβ([τ(ℓ)]) = 0

[a(ℓ)((u(ℓ)+ q(ℓ)u(m(ℓ)))�)α]� +�(ℓ)uβ(τ (ℓ)) = f (ℓ),
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