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Introduction
Lately, many authors have proposed new classes of distributions, which are modifica-
tions of the cumulative distribution functions (cdf ) that provide hazard rate functions 
(hrf ) taking various shapes. We can cite the exponentiated  Weibull  (EW)[1, 21, 22], 
which has an upside-down bathtub (unimodal) hrf form [2]. Carrasco et al. [3] showed 
a four-parameter distribution denoted generalized modified Weibull distribution whose 
hrf exhibits non-monotonic shapes such as a bathtub and upside-down bathtub; Gusmão 
et al. [4] introduced and studied the tri-parametric inverse Weibull generalized distribu-
tion that possesses failure rate with unimodal, increasing and decreasing form.

Several families proposed in the literature comprise a source of probability distribu-
tions for modeling lifetime data, since, in general, the resulting distribution and the 
baseline have the same support. Cordeiro et al. [5] proposed a new family, the exponen-
tiated generalized ( EG ) class of distributions, to generalize other distributions. Consid-
ering that a random variable T has distribution G, they suggest applying the new class of 
distributions to generalize any distribution G by
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where a > 0 and b > 0 are two additional shape parameters. The authors point out that 
the new class of distributions is simpler and more tractable than the generalized beta 
family [6]. The quantile function (qf )  of the new class has closed form. It entails that 
simulations regarding (1) are easier to perform.

The following well-known baseline distributions have been discussed in recent works for 
the exponentiated generalized class [5] (this list is not exhaustive): Birnbaum–Saunders 
distribution [7], generalized gamma distribution [8], Gumbel distribution [9], Dagum dis-
tribution [10], Weibull distribution [11], extended exponential distribution [12], arcsine dis-
tribution [13], standardized half-logistic distribution [14], extended Pareto distribution [15] 
standardized Gumbel distribution [16] and extended Gompertz [17].

It is well-known that the addition of parameters to distribution classes can lead to 
identifiability problems and consequently bring complications to the estimation of 
parameters in the proposed model. According to [18], a parameter θ for a family of dis-
tributions 

{

f (x, θ) : θ ∈ Θ
}

 is identifiable if different values of θ correspond to different 
probability density functions (pdf) or probability mass functions. That is, if θ  = θ ′ , then 
f (x, θ)  = f

(

x, θ ′
)

.
Jones et al. [19] define identifiability as follows: Consider a stack of probabilities p1, ..., pn , 

n ∈ N , within a single vector ψ with dimensions q × 1 and the parametric model with a 
vector γ with dimensions r × 1 . The presented model, implicitly specifies, a function F that 
determines how ψ is calculated from γ,

Hence, the model will be identifiable if F is an invertible function; it follows that there is a 
one-to-one correspondence between γ and ψ . If γ 1  = γ 2 and F

(

γ 1

)

= F
(

γ 2

)

 , the model 
will have identifiability problems. Nevertheless, Jones et al. [19] state that the model will 
be locally identifiable in a particular γ if F is an invertible function in the vicinity of γ.

In a review paper on statistical identifiability, Paulino and Pereira [20] studied issues like 
parallelism between parametric identifiability and sample sufficiency. They also discussed 
how identifiability, measures of sample information and inferential estimation concepts are 
related. Additionally, classic and Bayesian methods were considered as strategies for mak-
ing inferences on models with parametric identification problems.

Based on the aforementioned ideas and considering the relation between the parameters 
of the exponentiated generalized class of distributions and the baseline function, we used 
the Weibull distribution as a candidate for G. Using Eq. (1) and performing some math-
ematical manipulations, we obtain a parameterization for the exponentiated generalized 
Weibull ( EGW ) distribution that was introduced by [11]. It was also studied by [1, 21, 22]. 
This paper aims to study the similarities that evince the problem of identifiability of the 
EGW distribution.

Methods
The EGW distribution and a study on identifiability

The Weibull distribution has received considerable attention in the statistical literature. 
Many authors have studied the shapes of the density and failure rate functions for the 

(1)FG(t; a, b) =
{

1− [1− G(t)]a
}b

,

ψ = F(γ ).
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basic model of the Weibull distribution. Let T be a random variable with Weibull distri-
bution, then its cdf can be written as:

where α > 0 , β > 0.
Replacing G(t) in Eq. (1) by (2), we have

where FEGW(·) is the EGW cdf. The pdf is given by

where θ = (a, b,α,β) is the vector of parameters of FEGW(t; a, b,α,β).
Consider that ΘEGW is the parametric space of the EGW distribution, Γ  is a specific 

set of indices and θ i = (ai, bi,αi,βi) ∈ ΘEGW where ai, bi,αi,βi > 0 for all i ∈ Γ  . Let 
FΘEGW

= {FEGW(t; θ i) : θ i ∈ ΘEGW , ∀i ∈ Γ } be a family of cdfs of the EGW distribu-
tion. Given that i  = j for all i, j ∈ Γ  , if θ i  = θ j ⇒ FEGW(t; θ i) = FEGW

(

t; θ j
)

 , we say that 
ΘEGW is not identifiable.

Let θ i and θ j be such that θ i  = θ j with ai  = aj , bi = bj = b , αi  = αj and βi = βj = β . 
Then, by hypothesis, we have that

Take ai =
ajα

β
j

α
β
i

 , then

Therefore, the ΘEGW is not identifiable.

The EW distribution and a study on identifiability

The reparameterization performed on the parameters αa
1
β solves the problem of identifi-

ability, see the work of [23], where a is the parameter recently introduced. Without this 
reparameterization various values of a and α satisfy the relation c = aαβ for fixed value 
of c. With the cited relation it is possible to rewrite Eq. (3), obtaining the EW cdf:

wherein b > 0 is the shape parameter, and c > 0 is the scale parameter. Hence, the EW 
distribution has three parameters, and its pdf is given by

Consider that ΘEW is the parametric space of the EW distribution, Γ  is a spe-
cific set of indices and θ i = (bi, ci,βi) ∈ ΘEW where bi, ci,βi > 0 for all i ∈ Γ  . Let 
FΘEW

= {FEW(t; θ i) : θ i ∈ ΘEW , ∀i ∈ Γ } be a family of cdfs of the EW distribution. 

(2)G(t) = 1− exp
[

−(αt)β
]

, t > 0,

(3)FEGW(t; a, b,α,β) =
{

1− exp
[

−a(αt)β
]}b

(4)fEGW(t; a, b,α,β) = a b β αβ tβ−1 exp
[

−a(αt)β
]{

1− exp
[

−a(αt)β
]}b−1

,

αi  = αj ⇒ (αit)
β  =

(

αjt
)β
.

∃ ai �= aj : ai(αit)
β = aj

(

αjt
)β

⇒ FEGW(t; θ i) = FEGW
(

t; θ j
)

.

(5)FEW(t; b, c,β) =
{

1− exp
[

−(ct)β
]}b

,

(6)fEW (t; b, c,β) = β b cβ t(β−1) exp
[

−(ct)β
]{

1− exp
[

−(ct)β
]}b−1

.
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Given that i  = j for all i, j ∈ Γ  , if θ i  = θ j ⇒ FEW (t; θ i) = FEW
(

t; θ j
)

 , we say that ΘEW is 
not identifiable.

The vector θ i differs from θ j in seven ways. Next, consider Case 1. Let θ i and θ j such 
that θ i  = θ j with bi  = bj , ci = cj = c and βi = βj = β . Then, from this hypothesis, we 
have the following chain of implications:

Table  1 summarizes the proof of identifiability for each of the other cases from the 
hypothesis, and also displays its appropriate implications.

Therefore, the ΘEW is identifiable.
Note that FEGW and FEW are equal functions, as long as they have the same domain 

and image set. However, FEW as an identifiable cdf has reliable estimation which is quite 
different from FEGW . Let FEGW(t; θ) for all t > 0 and θ = (a, b,α,β) . Hence,

Let cβ = aαβ where c > 0 , hence we have that

where θ ′ = (b, c,β).
Therefore, FEGW(t; θ) = FEW

(

t; θ ′
)

 for all t > 0.

Results and discussion
Monte Carlo simulations based on EGW and EW models

Computational experiments play an important role in probability and statistics since 
they can verify the validity of a hypothesis, examine the performance of something 
new or demonstrate a known truth. In this section, we present the estimates of the 
parameters under the maximum likelihood method for the EGW and EW models. 
They were obtained via BFGS, SANN, and Nelder–Mead, implemented in R OPTIM 
function [24]. For this, we implemented two other functions to automate the simu-
lations: fitDist and getSimulation. The pseudo-codes of those algorithms as well as 

bi  = bj ⇒
{

1− exp
[

−(ct)β
]}bi

 =
{

1− exp
[

−(ct)β
]}bj

⇒ FEW (t; θ i)  = FEW
(

t; θ j
)

.

FEGW(t; θ) =
{

1− exp
[

−a(αt)β
]}b

=
{

1− exp
[

−aαβ tβ
]}b

.

FEGW(t; θ) =
{

1− exp
[

−cβ tβ
]}b

=
{

1− exp
[

−(ct)β
]}b

= FEW
(

t; θ ′
)

Table 1  Proof that ΘEW is identifiable

Cases Hypothesis: θ i  = θ j Implication for the thesis

1 bi  = bj , ci = cj and βi = βj FEW (t; θ i) �= FEW
(

t; θ j
)

2 bi = bj , ci = cj = c and βi  = βj βi  = βj ⇒ (ct)βi  = (ct)βj

3 bi = bj , ci  = cj and βi = βj = β ci  = cj ⇒ (ci t)
β  =

(

cj t
)β

4 bi = bj , ci  = cj and βi  = βj ci  = cj ⇒ (ci t)
βi  =

(

cj t
)βj

5 bi  = bj , ci  = cj and βi = βj = β ci  = cj ⇒ (ci t)
β  =

(

cj t
)β

6 bi  = bj , ci = cj = c and βi  = βj ci = cj ⇒ (ct)βi �= (ct)βj

7 bi  = bj , ci  = cj and βi  = βj ci  = cj ⇒ (ci t)
βi  =

(

cj t
)βj
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these functions can be seen in “Appendix.” Nowadays, with the available computa-
tional resources, such as parallel processing of many cores and multiple processes, it 
is possible speed-up the results of the computational simulations. Therefore, we run 
the simulations on parallel processes to explore the high-performance computing and 
runtime optimization. Thus, the results of the simulations as well as their execution 
times were gathered from a notebook Intel® CoreTM i5-7200U, CPU 2.50 GHz, 2712 
Mhz, 2 cores, 4 logical processors, RAM 8.00 GB, Microsoft® Windows 10 Home Sin-
gle Language, X64 system, R © version 3.6.1, and RStudio© version 1.2.5001.

Simulation for the EGW distribution

Samples of size 50, 100, 500 and 1000 were obtained using the EGW qf given by

where q takes random values from a U(0, 1) , adopting a = 2 , b = 3 , α = 4 and β = 5 . 
The estimates were acquired by the maximum likelihood method via BFGS, SANN, and 
Nelder–Mead.

Figures 1 and 2 display the histogram from simulated data of the EGW distribution 
with density for the EGW distribution and the empirical distribution for data set size 
of 50, 100, 500 and 1000 . The histogram was obtained using the qf of the EGW dis-
tribution, and the algorithms BFGS, SANN, and Nelder–Mead obtained estimates via 
MLE.

Next, we present the results of the parameter estimation using the EGW distribu-
tion. The BFGS method for estimating parameter a proved to be inefficient, even with 
the increase in the number of simulated data. For parameter b, the estimates showed 
reasonable results for 500 and 1000 simulated data. However, the method was not 

(7)QEGW(q) =

{

log
[

1− q
1
b

]−

(

1

aαβ

)}
1
β

,
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Fig. 1  Estimated densities for EGW distribution and the distribution of the empirical values for the sets of 
simulated data of sizes 50 and 100
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satisfactory regarding the α parameter. Finally, a reasonable result was obtained for 
the β parameter only for 1000 simulated data.

Regarding the SANN method, the estimation was inefficient for the parameters a and 
α . The estimates for parameter b were reasonable only from 500 simulated data. For the β 
parameter, there was a reasonable estimate only when 1000 simulated data was reached.

The Nelder–Mead method did not give satisfactory results for the estimation of 
parameters a and α . However, it presented a reasonable estimate for parameter b from 
500 simulated data, as well as for the β parameter, but only for 1000 simulated data.

In the simulations concerning the estimation of the parameters of the EGW distribu-
tion, we obtained 81.25% (39/48) of inefficient estimates, 18.75% (9/48) of reasonable 
estimates and none satisfactory.

The graphs of all methods showed equivalent adjustments; more details are available 
in “Appendix.” See  Table  2  including the standard error  (SE) and the mean squared 
error (MSE) and Figs. 1, 2.

Simulation for EW distribution

Although it is a well-known model and numerous other models generalize it, to our 
knowledge, simulation studies have not been carried out with the EW distribution. Sam-
ples of size 50, 100, 500, and 1000 were obtained using the  qf of the EW distribution. 
The results of the simulations are presented in Table 3. The EW qf is given by

where q takes random values from a U(0, 1) adopting b = 3 , c = 4 , and β = 5 . We obtain 
points of the EW distribution given by (8).

(8)QEW (q) =

{

log
[

1− q
1
b

]−

(

1

cβ

)}
1
β

,
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Fig. 2  Estimated densities for EGW distribution and the distribution of the empirical values for the sets of 
simulated data of sizes 500 and 1000
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Figures  3 and 4 present the histogram from simulated data of the EW distribution 
density and the empirical distribution for data size of 50, 100, 500, and 1000 using the 
EW qf, and BFGS, SANN, and Nelder–Mead performed the estimates via MLE.

The estimation of the parameters of the EW distribution presented the following 
results.

For the BFGS method, with only 1000 simulated data, there was a reasonable result in 
estimating parameter b. Regarding parameter c, with 500 simulated data, we observed 
a reasonable estimate. However, for 1000 observations, the BFGS method had a satis-
factory result. Regarding the β parameter, the estimates were reasonable only from 500 
simulated data.

With respect to the SANN method, the estimates for parameter b were reasonable 
only for 1000 simulated data. For parameter c, there was a reasonable estimate for 500 
simulated data. However, for 1000 simulated data, the estimation was satisfactory. For 
500 simulated data onwards, the β parameter estimates were reasonable.
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Fig. 3  Estimated densities for EW distribution and the distribution of the empirical values for the sets of 
simulated data of sizes 50 and 100
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Fig. 4  Estimated densities for EW distribution and the distribution of the empirical values for the sets of 
simulated data of sizes 500 and 1000
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Finally, for the Nelder–Mead method, the estimation of parameter b was reasonable 
only for 1000 simulated data. The estimates for parameter c were reasonable and sat-
isfactory, for 500 and 1000 simulated data, respectively. From 500 simulated data, the 
estimates for the β parameter were reasonable.

For the simulations generated for the EW distribution, we obtained 58.33% (21/36) 
inefficient estimates, 33.34% (12/36) reasonable and 8.33% (3/36) satisfactory.

Thus, we can observe that the identifiability (reparameterization) of the EW distribu-
tion provided better results in the simulations, as it decreased the amount of inefficient 
estimates (81.25% → 58.33%) and increased the amount of reasonable estimates (18.75% 
→ 33.34%) and satisfactory (0% → 8.33%).

The ratio between the execution times (in seconds) of the simulations of the EGW 
and EW distributions were as follows: 61,052/31845 (1.92), 164,702/55,106 (2.99), 
397,079/231,317 (1.72), and 590,006/390,454 (1.51). These results show that the EW 
distribution requires a much shorter execution time. Thus, the identifiability of the EW 
distribution has the additional advantage of optimizing the time for running computer 
simulations.

Application with the EGW distribution and the EW distribution

In this section, we analyze a real data set of Nelore cattle [25] using the EGW distri-
bution and the EW distribution. The algorithms of BFGS, SANN, and Nelder–Mead 
performed the maximum likelihood estimates. The commercial production of beef in 
Brazil, which mostly originates from the Nelore breed, searches to optimize the process 
to obtain a time for the calves to reach the specific weight from their birth to weaning. 
We observed the data with 69 Nelore bulls, the time (in days) until the animals achieved 
the weight of 160kg relative to the period from birth to weaning.

Figure 5 exhibits the results obtained for EGW such as the plot 5 and the parameters 
estimation table (Table 4 in “Appendix”). One can note that the BFGS method performed 
a better fit concerning the empirical function and to the histogram than the other meth-
ods proposed in this article.
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Fig. 5  a Estimated density for EGW distribution and the empirical distribution for the set of Nelore data. b 
Estimated survival function for EGW distribution and the Kaplan–Meier distribution for the set of Nelore data 
with a confidence interval of 0.95
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Analyzing the plots in Fig. 6 and the results Tables (see the Table 5 in “Appendix”), it 
is observed that the Nelder–Mead method adjusted the EW distribution, concerning the 
histogram and the empirical function, better than the other methods. Notwithstanding, 
the estimation of the parameters by the Nelder–Mead method did not produce results 
for the  SE  of parameters b and c. Hence, as the estimation of the parameters by the 
BFGS method was the second-best fit, and the results were also produced for the  SE for 
the parameters b, c and β one can consider that the BFGS method performed the most 
suitable adjustment for the data via EW distribution.

Table 4 (in “Appendix”) shows that the Nelder–Mead method was able to perform 
the estimation of the parameters of the EGW distribution, but there was failure to 
report the   SE, since the produced Hessian returned NaN (abbreviation for Not a 
Number) for the first row and the first column, whose information refers to the 
parameter a.

This suggests that the solution found by the Nelder–Mead method is not reliable, in 
this case, and consequently, that the model adjusted by the estimates of the parameters 
found is not suitable for these data. This fact may be related to the lack of identifiability 
of the EGW distribution.

Conclusions
In this study, we presented a technique to reduce the parameters of the exponentiated 
generalized Weibull distribution (EGW) . Additionally, we identified that the exponen-
tiated Weibull distribution (EW) displayed more parsimony and identifiability in the 
parameters than the EGW . The performances of the two distributions were analyzed 
using simulated and a real dataset; the EW performed slightly better with simulated data 
and lightly worse with real data.

Appendix
See Tables 2, 3, 4 and 5.
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Fig. 6  a Estimated density for EW distribution and the empirical distribution for the set of Nelore data. b 
Estimated survive function for EW distribution and the Kaplan–Meier distribution for the set of Nelore data 
with a confidence interval of 0.95
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BFGS algorithm
Henceforward, the following notation is used: p is the number of parameters 
to be estimated, θ = (θ1, . . . , θp)

⊤ ∈ Θ is the vector of unknown parameters, 
θ0 = (θ01, . . . , θ0p)

⊤ ∈ Θ the initial guess solution, f the objective function (minimization 
by default) representing the log-likelihood function ℓ(θ |x) , and x the dataset. The BFGS 
is a Quasi-Newton second-derivative line search method used to solve unconstrained 
optimization problems. Algorithm  1 shows the pseudo-code of the BFGS algorithm 
[26–29]. 

Table 2  MLE estimates for the parameters of EGW distribution with simulated data from EGW 
distribution via BFGS, SANN, and Nelder–Mead algorithms

n Method Inference results a b α β

50 BFGS Estimates 6.559792 4.508665 3.222132 5.679618

SE 21.726748 5.959038 142.025577 2.451735

MSE 21.252218 30.410082 0.624046 5.544654

SANN Estimates 5.758308 4.205869 3.638858 5.638019

SE 5.773811 5.391740 1.419861 2.597639

MSE 36.580530 17.459904 0.942536 4.807788

Nelder–Mead Estimates 2.445578 4.636861 4.541140 5.677241

SE 34.326846 6.496251 71.788950 2.461764

MSE 10.188337 39.203020 2.132110 5.576713

Time 0d:16h:57m:32s (61052 s)

100 BFGS Estimates 10.076350 3.687458 2.938870 5.431711

SE 3.324494 2.853083 7.095580 1.568548

MSE 66.070093 9.705820 1.132114 2.587435

SANN Estimates 5.860451 3.682335 3.611025 5.428296

SE 5.255925 2.956691 1.248130 1.629309

MSE 38.041064 9.051131 0.890948 2.579751

Nelder–Mead Estimates 1.833553 3.704633 4.466173 5.430765

SE 29.335765 2.898004 27.704366 1.570119

MSE 3.074604 10.360465 1.047837 2.595298

Time 1d:21h:45m:2s (164702 s)

500 BFGS Estimates 10.228551 3.052343 2.898200
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Table 3  MLE estimates for the parameters of EW distribution with simulated data from EW 
distribution via BFGS, SANN, and Nelder–Mead algorithms

n Method Inference results b c β

50 BFGS Estimates 4.402925 4.102611 5.949618

SE 5.697425 0.751590 2.601159

MSE 22.795855 0.402740 9.699106

SANN Estimates 4.449711 4.106828 5.920183

SE 6.085270 0.789521 2.686872

MSE 24.098193 0.413645 8.739624

Nelder–Mead Estimates 4.472318 4.107355 5.951902

SE 5.962889 0.764355 2.603384

MSE 25.399142 0.420800 10.046063

Time 0d:8h:50m:45s (31845 s)

100 BFGS Estimates 4.213534 4.113357 5.299846

SE 3.566710 0.509471 1.548855

MSE 18.221747 0.290249 2.756462

SANN Estimates 4.207505 4.114013 5.297310

SE 3.650426 0.521174 1.571037

MSE 17.379728 0.288609 2.753479

Nelder–Mead Estimates 4.249701 4.115646 5.298766

SE 3.666593 0.513693 1.549940

MSE 19.982132 0.299304 2.763964

Time 0d:15h:18m:26s (55106 s)

500 BFGS Estimates 3.155945 4.017774 5.055031

SE 0.906044 0.185317 0.627086

MSE 0.906766 0.035019 0.396619

SANN Estimates 3.157440 4.017996 5.054715

SE 0.911430 0.186253 0.629546

MSE 0.911503 0.035196 0.398176

Nelder–Mead Estimates 3.156035 4.017759 5.055316

SE 0.906550 0.185396 0.627336

MSE 0.908748 0.035088 0.397327

Time 2d:16h:15m:17s (231317 s)

1000 BFGS Estimates 3.078456 4.009790 5.023386

SE 0.609515 0.128449 0.437921

MSE 0.390373 0.016572 0.189574

SANN Estimates 3.078632 4.009775 5.023852

SE 0.611345 0.128798 0.439047

MSE 0.393664 0.016703 0.190998

Nelder–Mead Estimates 3.077648 4.009598 5.024238

SE 0.609420 0.128441 0.438062

MSE 0.391118 0.016610 0.190232

Time 4d:12h:27m:34s (390454 s)
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Table 4  MLE estimates for the parameters of EGW distribution with Nelore data via BFGS, SANN, 
and Nelder–Mead algorithms

Methods Parameters Estimates SE Confidence Interval (0.95)

BFGS a 0.01631688 0.004142414 [0.01625805; 0.01637572]

b 58.74132600 27.050302156 [58.35713331; 59.12551870]

α 0.03633065 0.004862259 [0.03626159; 0.03639970]

β 3.17753052 0.241423958 [3.17410160; 3.18095944]

SANN a 0.801092593 0.495883447 [0.794049611; 0.808135576]

b 4.477365906 0.822148967 [4.465689008; 4.489042804]

α 0.009091301 0.002221628 [0.009059748; 0.009122855]

β 2.454931581 0.286086581 [2.450868322; 2.458994840]

Nelder–Mead a 1.27972e−10 – –

b 13.08793619 4.6261741 [13.0808279; 13.0950445]

α 0.69883693 0.2502418 [0.6884190; 0.7092548]

β 5.052449497 0.3667520 [4.9210393; 5.1838597]

Table 5  MLE estimates for the parameters of EW distribution with Nelore data via BFGS, SANN, 
and Nelder–Mead algorithms

Methods Parameters Estimates SE Confidence Interval (0.95)

BFGS b 40.34715566 1.479593e+01 [40.13701054; 40.55730079]

c 0.01018772 5.397052e−04 [0.01018006; 0.01019539]

β 2.85355684 1.892528e−01 [2.85086890; 2.85624478]

SANN b 4.109734969 0.8629722253 [4.097478262; 4.121991676]

c 0.007648857 0.0003420323 [0.007643999; 0.007653715]

β 2.942210704 0.2948368954 [2.938023166; 2.946398243]

Nelder–Mead b 58.782451666 67.03485145 [56.87827328; 60.68663006]

c 0.009599516 0.00169215 [0.00955145; 0.00964758]

β 3.443419884 0.81707386 [3.42021025; 3.46662952]
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SANN algorithm
Annealing is the physical process used to melt metals, which are heated to high tem-
peratures and then cooled slowly, producing a homogeneous material. The simulated 
annealing (SA) algorithm was originally proposed by [30], being developed later by 
[31] in the context of optimization problem. The SANN is a variant of SA given in 
[32], and its pseudo-code is presented in Algorithm 2, adapted from [33]. 

Nelder–Mead algorithm
The [34] simplex method is an algorithm of unconstrained optimization that belongs to 
a more general class of direct search whose objective is to find the minimum of a func-
tion f. Algorithm 3 shows the pseudo-code of Nelder–Mead algorithm [35]. 
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fitDist function
Algorithm  4 shows the pseudo-code to the fitDist function. This function is used to 
obtain parameter estimates as well as their log-likelihood, variance, confidence interval 
and MSE. 
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getSimulation function
Algorithm 5 shows the pseudo-code to the function getSimulation. This is the main rou-
tine for generating the simulations of the distributions. 
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Abbreviations
cdf: cumulative distribution function; hrf: hazard rate function; EW :: exponentiated Weibull; EGW :: exponentiated 
generalized Weibull; qf: quantile function; pdf: probability density function; BFGS: Brogden–Fletcher–Golfarb–Shanno; 
SANN: simulated annealing; SE: standard error; MSE: mean squared error.
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