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Abstract In this paper, two different mechanisms are used to study a homogeneous Cournot 
duopoly in a market characterized by the downward sloping and concave price function. Two firms, 
which have constant marginal costs, use adaptive, low-rationality mechanisms to adjust their produc- 
tion levels toward equilibrium. In particular, the stability of the equilibrium for two different mecha- 
nisms is studied. However, complex dynamics arise, especially when the reaction coefficient increases. 
Finally, we compare the obtained results of the two models. 
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1. Introduction 

The economic competition among few firms goes back to
Cournot [1] who introduced a model of imperfect competition
between firms, and by now it become a central concept in the
field of economical market. Cournot suggested quantities as
strategic variables, so that firms adapt the production levels in
order to obtain their optimal profits. A different approach was
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proposed in 1883 by Bertrand in [2] , in which he proposed that
firms can instead compete with respect to prices. Since these two
important papers, a huge number of researches focused on the
oligopoly modeling. Quite early studies on such economic com-
petition have suggested that complex dynamic behaviors such
bifurcation and chaos may arise [3–20] . 

Bounded rationality and Puu’s incomplete information are
two different approaches that have been recently used to study
monopoly and duopoly markets. Bounded rational players
(firms) update their production strategies based on discrete time
periods and by using a local estimate of the marginal profit.
With such local adjustment mechanism, the players are not re-
quested to have a complete knowledge of the demand and the
cost functions [15] , as all they need to know is how the mar-
ket will response to small production changes, in order to ad-
just their production levels by means of a local estimate of the
marginal profit. On the other hand, Puu’s [21] has recently in-
troduced the so-called Puu’s incomplete information in which,
oduction and hosting by Elsevier B.V. This is an open access article 
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ore realistically, a firm does not need to know the local slope
f the profit function to choose the quantity to produce in the
ext time step [4,6] . Instead all it needs is its profit and the quan-
ities produced in the past two times. 

Recently, some papers [7,16] have shown that complex dy- 
amical characteristics such as bifurcation and chaos, in a 
onopoly if a market characterized by gradient rule is consid- 

red, can be achieved if a market characterized by a simple de-
and function that has no inflection point is considered. Askar 

22] has studied the Cournot duopoly game with a cubic de- 
and function and considering boundedly rational firms and 

uu’s incomplete information. In this paper, we extend the in- 
estigations of Askar [22] to more general demand function, 
onsidering a different adjustment mechanism too. 

The paper is organized as follows: In Section 2 , the bounded
ationality version of the model and its analysis are illustrated 

nd discussed in detail. In Section 3 , Puu’s incomplete infor- 
ation version of the model and its analysis are illustrated and 

iscussed. Finally, conclusions are presented. 

. The bounded rationality version of the model 

n this work, we consider a more general form of downward 

loping and concave inverse demand function with respect to 

hat presented in [16,22] 

(Q 

t ) = a − b (Q 

t ) 2 n +1 , n ∈ N , (1)

here P is the commodity price, Q 

t = q t 1 + q t 2 is the aggregated
uantity in which q t i is the i th quantity of commodity produced 

y the i th firm, i = 1 , 2 , while the parameters a , b are posi-
ive constants. We remark that function P ( Q t ) has no inflection
oints. Also, for a cubic demand function and a monopolistic 
arket, it was shown in [7,16] that the Nash equilibrium points 

oses its stability through a period doubling bifurcation which 

eads to chaos. We assume that the market has only two firms
ith linear cost function 

 i (q t 1 , q 
t 
2 ) = c q t i , i = 1 , 2 , (2)

here c > 0 is the constant marginal cost. 
Each firm wants to maximize its profit 

�1 (q t 1 , q 
t 
2 ) = (a − c − b (Q 

t ) 2 n +1 ) q t 1 , 

�2 (q t 1 , q 
t 
2 ) = (a − c − b (Q 

t ) 2 n +1 ) q t 2 . 
(3) 

nd to do this, they use a gradient mechanism. A positive (neg-
tive) variation of the profits will induce a change in the quan-
ity in the same (opposite) direction from that of the previous 
eriod. The resulting quantity adjustment mechanism can be 
escribed by the following dynamical system 

 

t+1 
i = q t i + αi (q t i ) 

∂ �(q t 1 , q 
t 
2 ) 

∂ q t i 
, i = 1 , 2 , (4)

imilar to those used in [16] . Function αi (q t i ) represents the
peed of adjustment and it is a positive function which gives 
he extent of production variation of the i th firm following a 
iven profit signal. Moreover it captures the fact that relative ef- 
ort variations are proportional to the marginal profit. Here, we 
ssume that αi (q t i ) = k i q t i , where k i is a positive constant. Sub-
tituting Eq. (3) in Eq. (4) , we get the following two-dimensional
onlinear dynamical system 

q t+1 
1 = q t 1 + k 1 q t 1 (a − c − b (Q 

t ) 2 n (2 (n + 1) q t 1 + q t 2 )) , 

q t+1 
2 = q t 2 + k 2 q t 2 (a − c − b (Q 

t ) 2 n (q t 1 + 2 (n + 1) q t 2 )) . 
(5) 

his system has the following equilibrium points 

 0 = (0 , 0) , E 1 = 

((
a − c 

2 (n + 1) b 

) 1 
2 n +1 

, 0 
)

, 

E 2 = 

(
0 , 

(
a − c 

2 (n + 1) b 

) 1 
2 n +1 

)
, 

 3 = 

((
a − c 

2 2 n (2 n + 3) b 

) 1 
2 n +1 

, 

(
a − c 

2 2 n (2 n + 3) b 

) 1 
2 n +1 

)
, 

he positivity which is guaranteed by a > c . 

roposition 2.1. Steady states E 0 , E 1 and E 2 are unstable equi-
ibrium points of system ( 5 ), whereas the steady state E 3 is locally
symptotically stable if k 1 + k 2 < 

4 (2 n +3) 

(n +2) (2 n +1) (a −c ) and k 1 k 2 < 

4 (2 n +3) 

(2 n +1) 2 (a −c ) 2 . 

roof. The proof of the above proposition is based on the stan-
ard analysis of eigenvalues for more details we refer to [23] .
he Jacobian matrix of system (5) is 

(q 1 , q 2 ) = 

[
J 11 J 12 

J 21 J 22 

]
, 

here 

 11 = 1 + k 1 
(
a − c − b Q 

2 n −1 
(
(2 n + 2) 2 q 2 1 

+(6 n + 5) q 1 q 2 + q 2 2 

))
, 

 12 = −(2 n + 1) k 1 b Q 

2 n −1 
(
(2 n + 1) q 2 1 + q 1 q 2 

)
, 

 21 = −(2 n + 1) k 2 b Q 

2 n −1 
(
q 1 q 2 + (2 n + 1) q 2 2 

)
, 

 22 = 1 + k 2 
(
a − c − b Q 

2 n −1 
(
q 2 1 + (6 n + 5) q 1 q 2 

+(2 n + 2) 2 q 2 2 

))
. (6) 

t the equilibrium point E 0 , the Jacobian matrix becomes 

(0 , 0) = 

[ 

1 + k 1 (a − c ) 0 

0 1 + k 2 (a − c ) 

] 

, 

hose eigenvalues are λ1 = 1 + k 1 (a − c ) > 1 , λ2 =
 + k 2 (a − c ) > 1 . Thus, the equilibrium point E 0 is un-
table. 

At the equilibrium point E 1 , the Jacobian matrix is 

( q 1 , 0) = 

⎡ 

⎢ ⎣ 

1 − (2 n + 1) k 1 (a − c ) −(2 n +1) 2 k 1 (a −c ) 
2 (n +1) 

0 1 + 

(2 n +1) k 2 (a −c ) 
2 (n +1) 

⎤ 

⎥ ⎦ 

, 

ith eigenvalues λ1 = 1 − (2 n + 1) k 1 (a − c ) < 1 and λ2 =
 + 

(2 n +1) k 2 (a −c ) 
2 (n +1) 

> 1 , meaning that the equilibrium point E 1 is
nstable. For E 2 , the same considerations and arguments hold 

xchanging indices 1, 2. 
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Fig. 1 The complex behavior of the model at the quantities a = 4 . 0 , b = 0 . 6 , c = 0 . 5 and (a) n = 1 , (b) n = 2 , (c) n = 3 and (d) n = 4 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To study the stability of the equilibrium point E 3 , we notice
that evaluating J at it, we obtain 

J( q 1 , q 2 ) = 

⎡ 

⎣ 

1 − (n +2) (2 n +1) k 1 (a −c ) 
2 n +3 − (n +1) (2 n +1) k 1 (a −c ) 

2 n +3 

− (n +1) (2 n +1) k 2 (a −c ) 
2 n +3 1 − (n +2) (2 n +1) k 2 (a −c ) 

2 n +3 

⎤ 

⎦ , 

which has the characteristic equation λ2 − β λ + γ = 0 ,
where β = 2 − (n +2) (2 n +1) (a −c ) (k 1 + k 2 ) 

2 n +3 and γ = 1 −
(n +2) (2 n +1) (a −c ) (k 1 + k 2 ) 

2 n +3 + 

(2 n +1) 2 (a −c ) 2 (k 1 k 2 ) 
2 n +3 . This equation

has eigenvalues less than one under the condition
2 < 1 + γ < abs (β) . Thus the conditions of stability for
the equilibrium point E 3 become k 1 + k 2 < 

4 (2 n +3) 

(n +2) (2 n +1) (a −c ) and

k 1 k 2 < 

4 (2 n +3) 

(2 n +1) 2 (a −c ) 2 . 

To investigate the dynamical behavior of system (5) when the
equilibrium loses its stability, some numerical simulations are
presented. Setting a = 4 . 0 , b = 0 . 6 , c = 0 . 5 , it is shown in Fig. 1
that the equilibrium point E 3 loses its stability through period
doubling bifurcation which leads to chaos when the value of k
increases. This behavior is the same for n = 1 , 2 , 3 , 4 as shown
in Fig. 1 (a)–(d) in which we can see that instability arises for
the reaction coefficient k ≈ 0.19, 0.12, 0.08, 0.06, respectively. A
similar behavior is shown in Fig. 2 , in which we set a = 1 . 0 , b =
0 . 3 , c = 0 . 1 . For n = 1 , 2 , 3 , 4 as shown in Fig. 2 (a)–(d), the val-
ues of the reaction coefficient for which equilibrium loses its sta-
bility are k ≈ 0.74, 0.44, 0.31, 0.24, respectively. Note that, the
value of k at which the system loses its stability is inversely pro-
portional to the value of n , this means that k decreases when n
increases. Conversely, parameter b has effect on the equilibrium
points but has no effect on their stability. �

3. Puu’s incomplete information version of the model 

In concrete economic contexts, the firms might not know the
profit function to estimate the quantities produced in the next
step [3,6] . Actually all they need are the profits they achieved
and the produced quantities in the last two time steps. Next
period strategy can be established using the so called Puu’s in-
complete information approach, namely by means of the rule of
thumb mechanism described by 

q t+1 
i = q t i + αi (q t i ) 

� t 
i − � t−1 

i 

q t i − q t−1 
i 

, i = 1 , 2 . (7)

Recently, Ahmed et al. [5] showed that systems based on ap-
proaches similar to [2] suffer from numerical instabilities when
the dynamic approaches the equilibrium. Moreover such sys-
tems exhibit serious instabilities in the case of duopoly. Again,
αi (q t i ) represents the speed of adjustment and we will assume
that αi (q t i ) = k i q t i , where k i is a positive constant. 
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Fig. 2 The complex behavior of the model at the quantities a = 1 . 0 , b = 0 . 3 , c = 0 . 1 and (a) n = 1 , (b) n = 2 , (c) n = 3 and (d) n = 4 . 
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Here, to simplify the analysis, we assume that the two firms 
trategies are sufficiently close, so that we can set q t 1 ≈ q t 2 and
 

t−1 
1 ≈ q t−1 

2 . Thus, from Eqs. (3) and (7) , the corresponding dy-
amical system is 

 

t+1 
i = q t i + k i q t i (a − c − 2 2 n +1 b 

× ((q t i ) 
n +1 + (q t−1 

i ) n +1 ) ((q t i ) 
n +1 − (q t−1 

i ) n +1 ) 

q t i − q t−1 
i 

) , i = 1 , 2 .

(8) 

skar [7] has studied this system for n = 1 . Here, we will study
his system for n = 2 , obtaining 

 

t+1 
1 = q t 1 + k 1 q t 1 (a − c − 2 5 b ((q t 1 ) 

3 + (q t−1 
1 ) 3 ) ((q t 1 ) 

2 

+ q t 1 q 
t−1 
1 + (q t−1 

1 ) 2 )) , 

 

t+1 
2 = q t 2 + k 2 q t 2 (a − c − 2 5 b ((q t 2 ) 

3 + (q t−1 
2 ) 3 ) ((q t 2 ) 

2 

+ q t 2 q 
t−1 
2 + (q t−1 

2 ) 2 )) . (9) 

his system has the following equilibrium points 

 0 = (0 , 0) , e 1 = 

((
a − c 
192 b 

) 1 
5 

, 

(
a − c 
192 b 

) 1 
5 
)

. 

roposition 3.1. Steady state e 0 is unstable equilibrium point for 
he system (9) , whereas the steady state e 1 is locally asymptoti-
ally stable if k 1 , k 2 < 

2 
5 (a −c ) . 
roof. The proof of the above proposition is based on the stan-
ard analysis of eigenvalues for more details we refer to [23] .
ince q t 1 ≈ q t 2 and q t−1 

1 ≈ q t−1 
2 , then the Jacobian matrix of

he system (9) becomes 

(q 1 , q 2 ) 

 

⎡ 

⎣ 

1 + k 1 [ a − c − (32 ) (36 q 5 1 )] 0 

0 1 + k 2 [ a − c − (32 ) (36 q 5 2 )] 

⎤ 

⎦ .

t the point e 0 , the Jacobian matrix becomes 

(0 , 0) = 

[ 

1 + k 1 (a − c ) 0 

0 1 + k 2 (a − c ) 

] 

, 

hose eigenvalues are λ1 = 1 + k 1 (a − c ) > 1 , λ2 =
 + k 2 (a − c ) > 1 . Thus, the steady state e 0 is unstable. 

To study the stability of the steady state e 1 , we notice that
valuating J in it we obtain 

( q 1 , q 2 ) = 

[ 

1 − 5 k 1 (a − c ) 0 

0 1 − 5 k 2 (a − c ) 

] 

, 

ith eigenvalues λ1 = 1 − 5 k 1 (a − c ) , λ2 = 1 − 5 k 2 (a − c ) .
hus, the condition of stability becomes k 1 , k 2 < 

2 
5 (a −c ) . 
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Fig. 3 The complex behavior of the model at n = 2 and the quantities (a) a = 4 . 0 , b = 0 . 6 , c = 0 . 5 , (b) a = 1 . 0 , b = 0 . 3 , c = 0 . 1 , (c) 
a = 1 . 5 , b = 0 . 33 , c = 0 . 1 , and (d) a = 0 . 5 , b = 0 . 3 , c = 0 . 1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The dynamical behavior of system (9) is shown in Fig. 3 . It
is easy to see that the quantities move from stability through a
sequence of period doubling bifurcation to chaos. Note that, in
Fig. 3 (a), where the system parameters values are a = 4 . 0 , b =
0 . 6 , c = 0 . 5 , as in Fig. 3 (b), the equilibrium point loses its sta-
bility at the same value k < 

2 
(2 n +1) (a −c ) . This means that the

two approaches of bounded rationality and Puu’s incomplete
information are nearly give the same behavior (at least in the
case n = 2 ). This behavior repeated in Fig. 3 (b)–(d) for (b)
a = 1 . 0 , b = 0 . 3 , c = 0 . 1 , (c) a = 1 . 5 , b = 0 . 33 , c = 0 . 1 , and
(d) a = 0 . 5 , b = 0 . 3 , c = 0 . 1 . �

4. Conclusion 

In this paper, two different kinds of repeated games are in-
troduced, which are based on a gradient adjustment mecha-
nism and Puu’s incomplete information approaches. A demand
function without inflection points is used. By using rational-
ity process firms do not need to solve any optimization prob-
lem but they adjust their production on the base of the estima-
tion of the marginal profit. using Puu’s approach, firms only
need to know their profits and the quantities produced in the
past two time steps. We obtained the equilibrium points of each
case, which correspond to the profit maximizing quantities and
found the local stability conditions of them. Complex dynam-
ics arose when the reaction coefficient parameter was increased.
We compared the properties of the two models under the two
approaches. The paper generalized the results of other authors
that consider similar processes. 
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