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. Introduction 

n this paper, we consider the following constrained optimiza- 
ion problem 

mi ni mi ze f (x ) 

sub ject to a i (x ) = 0 i ∈ E, 

a i (x ) ≤ 0 i ∈ I, 
α ≤ x ≤ β, 

(1.1) 
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here f : � 

n → � , a i : � 

n → � 

m , E 

⋃ 

I = { 1 , ..., m } and E 

⋂ 

I =
 , α ∈ {� 

⋃ {−∞}} n , β ∈ {� 

⋃ {∞}} n , m < n , and α < β. The
unctions f and a i , i = { 1 , ..., m } are presumed to be at least
wice continuously differentiable. We denote the feasible set 
 = { x : α ≤ x ≤ β} and the strict interior feasible set int( F ) =
 x : α < x < β} . 

In this paper, we use an active-set strategy in [1] to con-
ert the above problem to an equality constrained optimization 

roblem with bounded variables. The head feature of the sug- 
ested active set is that it is identified and updated naturally by
he step. See [2–4] . 

A penalty method is used in this paper to transform the
quality constrained optimization problem which was obtained 

rom the above step to unconstrained optimization problem 

ith bound on variables. Some penalty functions have been sug- 
ested and many contributions addressing the convergence of 
hese methods have been made, see [5,6] . 
duction and hosting by Elsevier B.V. This is an open access article 
nc-nd/4.0/ ). 
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A Coleman–Li strategy in [7] is used to form a sequen-
tial quadratic programming subproblem of unconstrained op-
timization problem. For more details, see [7–9] . 

In this paper, we use a trust-region strategy to evaluate a step.
A trust-region strategy is globalization method which means
modifying the local method in such a way that it is ensured
to converge even if the starting point is far away from the so-
lution. Most trust-region algorithms for solving a constrained
optimization problem try to merge the trust-region idea with the
sequential quadratic programming method. See [2–4,10] . Under
credible assumptions, a convergence theory for our algorithm is
introduced. 

The rest of this section introduces some notations that are
used throughout the rest of the paper. The paper is arranged
as follows. In Section 2 , a detailed characterization of the main
steps to form a sequential quadratic programming subproblem
is introduced. In Section 3 , a detailed characterization of an
interior-point trust-region algorithm is given. Sections 4 –9 are
devoted to the global convergence theory of the proposed algo-
rithm under important assumptions. Section 10 contains a Mat-
lab implementation of the interior-point trust-region algorithm
and our numerical results. Finally, Section 11 contains conclud-
ing remarks. 

In this paper, we use the symbol f k = f (x k ) , ∇ f k = ∇ f (x k ) ,

∇ 

2 f k = ∇ 

2 f (x k ) , A k = A (x k ) , ∇ A k = ∇ A (x k ) , Z k = Z(x k ) ,

 k = W (x k ) and so on to denote the function value at a
particular point. We denote to the Hessian of the objective
function f k or an approximation to it by H k . Finally, all norms
are l 2 -norms. 

2. A sequential quadratic subproblem 

Motivated by the active-set strategy in [1] , we define a 0–1 diag-
onal matrix W ( x ) ∈ � 

m × m whose diagonal entries are 

w i (x ) = 

⎧ ⎨ 

⎩ 

1 , if i ∈ E , 
1 , if i ∈ I and a i (x ) ≥ 0 , 
0 , if i ∈ I and a i (x ) < 0 . 

(2.1)

Using the above matrix, problem (1.1) is converted to the
following 

mi ni mi ze f (x ) , 

sub ject to A (x ) T W (x ) A (x ) = 0 , 
α ≤ x ≤ β, 

where A (x ) = (a 1 (x ) , ..., a m 

(x )) T is a continuously differen-
tiable function. 

Using a penalty method, the above problem is transformed
to the following unconstrained optimization problem with
bounds on the variable 

mi ni mi ze f (x ) + 

r 
2 
‖ W (x ) A (x ) ‖ 2 , 

sub ject to α ≤ x ≤ β, 
(2.2)

where r > 0 is a penalty parameter. Let 

φ(x ; r ) = f (x ) + 

r 
2 
‖ W (x ) A (x ) ‖ 2 . (2.3)

The Lagrangian function associated with bounded problem
(2.2) is given by 
L (x, λ, μ; r ) = φ(x ; r ) − λT (x − α) − μT (β − x ) , (2.4)

where λ and μ are Lagrange multiplier vectors associated with
the inequality constraints x − α ≥ 0 and β − x ≥ 0 respectively.

The first-order necessary conditions for a point x ∗ to be a
solution of problem (1.1) are the existence of multipliers λ∗ ∈
� 

n 
+ , and μ∗ ∈ � 

n 
+ , such that ( x ∗, λ∗, μ∗) satisfies 

∇φ(x ∗; r ∗) − λ∗ + μ∗ = 0 , (2.5)

α ≤ x ∗ ≤ β, (2.6)

and for all j corresponding to x 

( j ) with finite bound, we have 

λ( j) 
∗ (x 

( j) 
∗ − α( j) ) = 0 , (2.7)

μ( j) 
∗ (β( j) − x 

( j) 
∗ ) = 0 , (2.8)

where ∇φ(x ∗; r ∗) = ∇ f (x ∗) + r ∗∇A (x ∗) W (x ∗) A (x ∗) . 
Let Z ( x ) be the diagonal scaling matrix whose diagonal ele-

ments are given by 

z ( j) (x ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

√ 

(x 

( j) − α( j) ) , if (∇φ(x ; r )) ( j) ≥ 0 and α( j) > −∞ , √ 

( β( j) − x 

( j) ) , if ( ∇φ( x ; r )) ( j) < 0 and β( j) < + ∞ ,

1 , otherwise. 

(2.9)

For more details see [7,8] . 
Using the diagonal scaling matrix Z ( x ), the first order neces-

sary conditions for the point x ∗ to solve problem (1.1) are that
x ∗ ∈ F and solves the following nonlinear system 

Z 

2 (x ) ∇φ(x ; r ) = 0 . (2.10)

Any point x ∗ ∈ F that satisfies the condition (2.10) is called a
Karush–Kuhn–Tucker point or KKT point. For more details
see [5] . 

A system (2.10) is continuous but not differentiable at some
point x ∈ F . The non-differentiability happens when z ( j) = 0
and these points are averted by restricting x ∈ int F . Also the
non-differentiability happens when a variable x 

( j ) has a finite
lower bound and an infinite upper bound and (∇φ(x ; r )) ( j) = 0 .
But these points are not significant, so we define a vector ψ( x )

whose components are ψ 

( j) (x ) = 

∂( ( z ( j) ) 
2 
) 

∂x ( j) , j = 1 , ..., n such that
ψ 

( j ) to be zero whenever (∇φ(x ; r )) ( j) = 0 . Hence, we can write

ψ 

( j) (x ) = 

⎧ ⎨ 

⎩ 

1 , if (∇φ(x ; r )) ( j) ≥ 0 and α( j) > −∞ , 
−1 , if (∇φ(x ; r )) ( j) < 0 and β( j) < + ∞ , 
0 , otherwise. 

(2.11)

Assuming x ∈ int ( F ) and applied Newton’s method on the sys-
tem (2.10) , then we have 

[ Z 

2 (x ) ∇ 

2 φ(x ; r ) + diag(∇φ(x ; r )) diag(ψ(x ))] �x 

= −Z 

2 (x ) ∇φ(x ; r ) , (2.12)

where 

∇ 

2 φ(x ; r ) = H + r ∇ A (x ) W (x ) ∇ A (x ) T , (2.13)

and H is the Hessian of the objective function f ( x ) or an approx-
imation to it. Multiplying both sides of Eq. (2.12) by Z 

−1 (x ) and
scale the step using �x = Z(x ) s, then we have 

[ Z(x ) ∇ 

2 φ(x ; r ) Z(x ) + diag(∇φ(x ; r )) diag(ψ(x ))] s 

= −Z(x ) ∇φ(x ; r ) , (2.14)
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otice that (2.14) represents the first order necessary con- 
ition of the following sequential quadratic programming 
roblem 

i ni mi ze φ(x ; r ) + (Z∇φ(x ; r )) T s + 

1 
2 

s T Bs, (2.15)

here 

 = Z(x ) ∇ 

2 φ(x ; r ) Z(x ) + diag(∇φ(x ; r )) diag(ψ(x )) . (2.16)

hat is, the point x ∗ that satisfies the first order necessary condi-
ion of problem (2.15) will satisfy the first order necessary con- 
ition of problem (1.1) . 

In the following section, we present main steps of our 
nterior-point trust-region algorithm for solving problem (1.1) . 

. An interior-point trust-region algorithm 

his section is devoted to the description of a new interior-point 
ethod. 

.1. Evaluating a step s k 

n this section, a step s k is computed by solving the following
rust-region subproblem 

i ni mi ze q k (Z k s ) = φ(x k ; r k ) + (Z k ∇φ(x k ; r k )) T s + 

1 
2 

s T B k s 

ub ject to ‖ s ‖≤ δk , 

(3.1) 

here δk > 0 is the radius of the trust region. 
It is not necessary to obtain a very precise approximation to 

he solution of the subproblem (3.1) . Instead any approximation 

o the solution of the subproblem (3.1) can be used as long as
he predicted decrease obtained by s k is greater than or equal 
o a fraction of the predicted decrease obtained by the Cauchy 
tep s cp 

k . That is 

 k (0) − q k (Z k s k ) ≥ ϕ[ q k (0) − q k (Z k s 
cp 
k )] , (3.2)

or some ϕ ∈ (0, 1], where s cp 
k is given by 

 

cp 
k = −t cp 

k (Z k ∇φ(x k ; r k )) , 

nd the parameter t cp 
k is defined by 

 

cp 
k = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

‖ (Z k ∇φ(x k ;r k )) ‖ 2 
(Z k ∇φ(x k ;r k )) T B k (Z k ∇φ(x k ;r k )) if ‖ Z k ∇φ(x k ;r k ) ‖ 3 

(Z k ∇φ(x k ;r k )) T B k (Z k ∇φ(x k ;r k )) 

≤ δk and (Z k ∇φ(x k ; r k )) T 

B k (Z k ∇φ(x k ; r k )) > 0 , 
δk 

‖ Z k ∇φ(x k ;r k ) ‖ otherwise . 

(3.3) 

herefore, a generalized dogleg algorithm introduced by Stei- 
aug [11] can be used to evaluate the step. Once the step s k is
valuated, the damping parameter τ k is computed to ensure that 
 k +1 ∈ int( F ) . Our way of evaluating the damping parameter τ k 

s presented in Step 4 of algorithm (3.3) below. 
Another damping parameter θk may be needed to satisfy 

 k ∈ int ( F ), where θk is defined as follows. If (x k + τk Z k s k ) ∈
nt( F ) , we set θk = 1 . Otherwise, we set x k +1 = x k + θk τk Z k s k ,
uch that θk ∈ [1 − σ‖ Z k s k ‖ , 1] and σ > 0 is a pre-specified fixed
onstant. It is easy to see that 1 − θk = O (‖ Z k s k ‖ ) . 

.2. Accepting s k and updating δk 

fter s k is obtained, the penalty function φ( x k ; r k ) is used as a
erit function to test if the step s k is accepted or not. This is

one by comparing Pred k against Ared k . The actual reduction 

red k is defined as 

red k = φ(x k ; r k ) − φ(x k + Z k ̃  τk s k ; r k ) 

here ˜ τk = θk τk . Ared k can be written as 

red k = f (x k ) − f (x k + Z k ̃  τk s k ) 

+ 

r k 
2 

[ ‖ W k A k ‖ 2 − ‖ W k +1 A k +1 ‖ 2 ] . (3.4) 

The predicted reduction Pred k is defined to be 

red k = −(Z k ∇ f k ) T ˜ τk s k − 1 
2 ̃

 τ 2 
k s 

T 
k G k s k 

+ 

r k 
2 

[ ‖ W k A k ‖ 2 − ‖ W k (A k + (Z k ∇A k ) 
T ˜ τk s k ) ‖ 2 ] , 

(3.5) 

here 

 k = Z k H k Z k + diag(∇φ(x k ; r k )) diag(ηk ) . 

ur way of testing s k and updating the trust-region radius δk is
resented in the following algorithm. 

lgorithm 3.1 (Test s k and update the trust-region radius algo- 
ithm) . Choose 0 < η1 < η2 ≤ 1, δmax > δmin , and 0 < α1 < 1 <
2 . 

While Ared k 
Pred k 

< η1 , or Pred k ≤ 0. 
Set δk = α1 ‖ s k ‖ . 
Evaluate a new s k . 

If η1 ≤ Ared k 
Pred k 

< η2 , then set x k +1 = x k + ˜ τk Z k s k . 
δk +1 = max (δk , δmin ) . 
End if. 
If Ared k 

Pred k 
≥ η2 , then set x k +1 = x k + ˜ τk Z k s k . 

δk +1 = min { δmax , max { δmin , α2 δk }} . 
End if. 

To update the penalty parameter r k , we use a scheme sug-
ested by Yuan [12] . Our way of updating r k is presented in the
ollowing algorithm. 

lgorithm 3.2 (Update r k algorithm) . 

Set r 0 = 1 . Compute Pred k given by Eq. (3.5) . 
If 

red k ≥‖ Z k ∇A k W k A k ‖ min {‖ Z k ∇A k W k A k ‖ , δk } . (3.6)

Set r k +1 = r k . 
Else, set r k +1 = 2 r k . 
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End if 

Either ‖ Z k ∇ f k ‖ + ‖ Z k ∇A k W k A k ‖≤ ε1 or ‖ s k ‖ ≤ ε2 for
some ε1 > 0 and ε2 > 0, the algorithm is stopped 

3.3. The master algorithm 

Master steps of our algorithm is presented in the following al-
gorithm. 

Algorithm 3.3 (The Main Algorithm) . Step 0. 

Given x 0 ∈ int ( F ). Compute matrices W 0 , Z 0 and ψ 0 . Set
r 0 = 1 . 
Choose ε1 , ε2 , α1 , α2 , η1 , η2 and σ such that ε1 > 0, ε2 > 0,
0 < α1 < 1 < α2 , 0 < η1 < η2 ≤ 1, and σ > 0. Choose δmin ,
δmax , and δ0 such that δmin ≤ δ0 ≤ δmax . 
Set k = 0 . 

Step 1. If ‖ Z k ∇ f k ‖ + ‖ Z k ∇A k W k A k ‖≤ ε1 , then stop. 
Step 3. A step s k is evaluated by solving the subproblem (3.1) .
If ‖ s k ‖ ≤ ε2 , stop, end. 
Step 4. 

(a) Compute 

u (i) k = 

⎧ ⎨ 

⎩ 

α(i) −x (i) k 

Z (i) k s (i) k 
, if α(i) > −∞ and Z 

(i) 
k s (i) k < 0 

1 , otherwise, 

(b) Compute 

v (i) k = 

⎧ ⎨ 

⎩ 

β(i) −x (i) k 

Z (i) k s (i) k 
, if β(i) < ∞ and Z 

(i) 
k s (i) k > 0 

1 , otherwise. 

(c) Compute 

τk = min { 1 , min 

i 
{ u (i) k , v 

(i) 
k }} . (3.7)

(d) Set x k +1 = x k + τk Z k s k . 
If x k +1 ∈ int( F ) , then go to step 5. 
Else, set x k +1 = x k + θk τk Z k s k , end. 

Step 5. Compute W k +1 given by (2.1) . 
Step 6. Test the step and update the trust-region radius using

algorithm (3.1) . 
Step 7. Update the penalty parameter r k using algorithm

(3.2) . 
Step 8. Compute Z k +1 given by (2.9) and ψ k +1 given by

(2.11) . 
Step 9. Set k = k + 1 and go to Step 1. 

In Sections 5 –9 , we present our global convergence theory to
the set of the first order points under some assumptions which
are stated in the following section. 

4. General assumptions 

Let { x k } be the sequence of points generated by the algorithm
(3.3) and let � be a convex subset of � 

n that contains all iterates
x k ∈ int ( F ) and x k + ˜ τk Z k s k ∈ int( F ) , for all trial steps s k . 

On the set �, we state the following general assumptions un-
der which our global convergence theory is proved. 

A general assumptions: 
[GA 1 ] The functions f and a i , i = { 1 , ..., m } are presumed to be
at least twice continuously differentiable ∀ x ∈ �. 

[GA 2 ] All of f ( x ), ∇f ( x ), ∇ 

2 f ( x ), a i ( x ), ∇a i ( x ), i = { 1 , ..., m } are
uniformly bounded in �. 

[GA 3 ] The sequence of Hessian matrices { H k } is bounded. 

In the above general assumptions, we do not presume ∇a i ( x ),
i = { 1 , ..., m } has inverse for all x ∈ �. So, we may have other
kinds of stationary points. They are presented in the following
section. 

5. Stationary points 

In this section, we define four kinds of stationary points, a Fritz
John point, an infeasible Fritz John point, an infeasible Mayer–
Bliss point, and a KKT point. 

Definition 5.1 (Fritz John point) . A point x ∗ ∈ � is called a Fritz
John point, if there exist γ ∗ ∈ � and a Lagrange multiplier vec-
tor ν∗ ∈ � 

m not all zero such that: 

γ∗Z(x ∗) ∇ f (x ∗) + Z(x ∗) ∇A (x ∗) ν∗ = 0 , (5.1)

 (x ∗) A (x ∗) = 0 , (5.2)

γ∗, (ν∗) i ≥ 0 , i = 1 , 2 , ..., m, (5.3)

The above conditions are called Fritz John conditions. For
more details see [13] . 

If γ ∗ 
 = 0, then Eqs. (5.1) –(5.3) correspond with KKT condi-
tions (2.10) and the point (x ∗, 1 , ν∗

γ∗ ) is called KKT point. 

Definition 5.2 (Infeasible Fritz John point) . A point x ∗ ∈ � is
called an infeasible Fritz John point, if there exist γ ∗ ∈ � and a
Lagrange multiplier vector ν∗ ∈ � 

m not all zero such that: 

γ∗Z(x ∗) ∇ f (x ∗) + Z(x ∗) ∇A (x ∗) ν∗ = 0 , (5.4)

Z(x ∗) ∇A (x ∗) W (x ∗) A (x ∗) = 0 but ‖ W (x ∗) A (x ∗) ‖ > 0 , (5.5)

γ∗, (ν∗) i ≥ 0 , i = 1 , 2 , ..., m. (5.6)

The above conditions are called infeasible Fritz John condi-
tions. For more details see [13] . 

If γ ∗ 
 = 0 then Eqs. (5.4) –(5.6) are called an infeasible KKT
conditions and the point (x ∗, 1 , ν∗

γ∗ ) is called an infeasible KKT
point. 

Definition 5.3 (Infeasible Mayer–Bliss point) . A point x ∗ ∈ � is
called an infeasible Mayer–Bliss point if 

Z(x ∗) ∇A (x ∗) W (x ∗) A (x ∗) = 0 , 

‖ W (x ∗) A (x ∗) ‖ > 0 . 

The above conditions are called infeasible Mayer–Bliss con-
ditions. For more details see [14] . 

The conditions stated in Definitions (5.1) –(5.3) are called
stationary conditions of problem (1.1) and the point that sat-
isfies any of these stationary conditions is called a stationary
point. 

The following three lemmas provide conditions equivalent to
the conditions given in Definitions (5.1) –(5.3) 
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emma 5.1. Suppose GA 1 –GA 3 . A subsequence { x k i } of the it-
ration sequence asymptotically satisfies infeasible Mayer–Bliss 
onditions if it satisfies: 

(1) lim k i →∞ 

‖ W k i A k i ‖ > 0 . 
(2) lim k i →∞ 

{
min s ∈� n −m 

{‖ W k i (A k i + (Z k ∇A k i ) 
T ˜ τk i s ) ‖ 2 

}} = 

im k i →∞ 

‖ W k i A k i ‖ 2 . 
roof. Let the subsequence { k i } be renamed to { k } to sim-
lify the notations avoiding double indices. The minimizer ˆ s k 
f min s ‖ W k (A k + (Z k ∇A k ) 

T ˜ τk s ) ‖ 2 satisfies 

˜ 2 k Z k ∇A k W k ∇A 

T 
k Z k ̂  s k + ˜ τk Z k ∇A k W k A k = 0 , (5.7)

rom condition 2, we have 

lim 

 →∞ 

{ ˜ τ 2 
k ̂  s T k Z k ∇A k W k ∇A 

T 
k Z k ̂  s k + 2 ̃  τk ̂  s T k Z k ∇A k W k A k 

} = 0 . 

(5.8) 

e consider two cases: 

(i) If lim k →∞ 

ˆ s k = 0 , then from (5.7) we have 

lim 

k →∞ 

{ ˜ τk Z k ∇A k W k A k } = 0 . (5.9) 

(ii) If lim k →∞ 

ˆ s k 
 = 0 , then by multiplying Eq. (5.7) from the 
left by 2 ̄s T k and subtract it from (5.8) , we have 

lim 

k →∞ 

{ ˜ τ 2 
k ̂  s T k Z k ∇A k W k ∇A 

T 
k Z k ̂  s k 

} = 0 . 

But this implies that lim k →∞ 

{ ˜ τk Z k ∇A k W k A k } = 0 . Hence 
in either case, we have 

lim 

k →∞ 

{ Z k ∇A k W k A k } = 0 , 

where lim k →∞ 

˜ τk = 1 . Thus conditions of Definition 

(5.3) hold in the limit. �

emma 5.2. Suppose GA 1 -GA 3 . A subsequence { x k i } of the iter-
tion sequence asymptotically satisfies the infeasible Fritz John 
onditions if it satisfies: 

(1) lim k i →∞ 

‖ W k i A k i ‖ > 0 . 
(2) lim k i →∞ 

Z k i ∇A k i W k i A k i = 0 . 

roof. Let the subsequence { k i } be renamed to { k } to simplify
he notations avoiding double indices. From condition 2, we can 

rite 

lim 

 →∞ 

Z k ∇A k W k A k = 0 . 

ake (νk ) i = (W k A k ) i , i = 1 , ..., m . Since lim k → ∞ 

‖ W k A k ‖ > 0,
hen lim k → ∞ 

( νk ) i ≥ 0, for i = 1 , ..., m and lim k → ∞ 

( νk ) i > 0, for
ome i . Therefore lim k →∞ 

Z k ∇A k νk = 0 . Thus in the limit with
∗ = 0 , the conditions of Definition (5.2) hold . �

If lim k i →∞ 

∇ f k i + Z k i ∇ A k i νk i = 0 , then the infeasible (KKT)
onditions are satisfied in the limit. Otherwise, the infeasible 
ritz John conditions are satisfied. 

emma 5.3. Suppose GA 1 -GA 3 . A subsequence { x k i } of the itera-
ion sequence asymptotically satisfies the Fritz John’s conditions 
f it satisfies: 

(1) For all k i , ‖ W k i A k i ‖ > 0 and lim k i →∞ 

W k i A k i = 0 . 
(2) lim k i →∞ 

{
min s ∈� n −m 

{
‖ W k i 

(A k i +(Z k ∇A k i ) 
T ˜ τk i 

s ) ‖ 2 
‖ W k i 

A k i ‖ 2 

}}
= 1 . 

roof. Let the subsequence { k i } be renamed to { k } to simplify
he notations avoiding double indices. The limit in Condition 2 
s equivalent to 

lim 

 →∞ 

{
min 

d∈� n 
{‖ U k + W k ∇A 

T 
k Z k ̃  τk d‖ 2 }} = 1 , (5.10) 

here U k is a unit vector in the direction of W k A k , d = 

s 
‖ W k A k ‖ . 

Let d̄ k be a minimizer to the following problem 

in 

∈� n 
{‖ U k + W k (Z k ∇A k ) 

T ˜ τk d‖ 2 }, (5.11) 

hen, from the optimality conditions we have 

Z k ∇A k ) W k (Z k ∇A k ) 
T ˜ τ 2 

k d̄ k + (Z k ∇A k ) W k U k ̃  τk = 0 , (5.12)

e consider two cases: 

(i) If lim k →∞ 

d̄ k = 0 in the above equation, then we have, 
lim k →∞ 

(Z k ∇A k ) W k U k ̃  τk = 0 . 
(ii) If lim k →∞ 

d̄ k 
 = 0 , then from (5.10) and the fact that d̄ k is a
solution to the minimization problem in (5.11) , we have 

lim 

k →∞ 

{ ̄d k T (Z k ∇A k ) W k (Z k ∇A k ) 
T ˜ τ 2 

k d̄ k 

+ 2 U 

T 
k W k (Z k ∇A k ) 

T ˜ τk d̄ k } = 0 . 

Multiplying (5.12) from the left by 2 d̄ k T and subtract it 
from the above limit, we have 

lim 

k →∞ ̃

 τ 2 
k d̄ k (Z k ∇A k ) W k (Z k ∇A k ) 

T d̄ k = 0 . 

This implies lim k →∞ 

{ Z k ∇A k W k U k ̃  τk } = 0 . Hence in both 

cases, we have 

lim 

k →∞ 

{ Z k ∇A k W k U k } = 0 , (5.13) 

where lim k →∞ 

˜ τk = 1 . The rest of the proof follows using
arguments similar to those in the above lemma. �

From lemma (5.3) we can see that, for any subsequence of the
teration sequence that satisfies Fritz John’s conditions, the cor- 
esponding subsequence of smallest singular values of W k ∇A 

T 
k 

s not bounded away from zero. This means that asymptoti- 
ally the gradients of the active constraints are linear depen- 
ent. In the following section, we introduce some lemmas which 

s needed in the proof of our main results. 

. Important lemmas 

he following lemma shows that, at any iteration k , the pre-
icted reduction Pred k is at least equal to the decrease in the
uadratic model of the penalty function obtained by the Cauchy 
tep. 

emma 6.1. Suppose GA 1 –GA 3 . Then for all k > k̄ , there exists
 positive constant K 1 independent of the iterates such that, 

red k ≥ K 1 ̃  τk ‖ Z k ∇φ(x k ; r k ) ‖ min 

{
δk , 

‖ Z k ∇φ(x k ; r k ) ‖ 
‖ B k ‖ 

}
. 

(6.1) 
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Proof. Since the trial step s k satisfies the fraction-of-Cauchy de-
crease condition (3.2) . Then we consider two cases: 

(i) If s cp 
k = − δk 

‖ Z k ∇φ(x k ;r k ) ‖ (Z k ∇φ(x k ; r k )) and ‖ Z k ∇φ( x k ; r k ) ‖ 3
≥ δk [( Z k ∇φ( x k ; r k )) T B k ( Z k ∇φ( x k ; r k ))], then 

q k (0) − q k (Z k s 
cp 
k ) = −(Z k ∇φ(x k ; r k )) T s 

cp 
k − 1 

2 
s cp T 

k B k s 
cp 
k 

= 

δk 

‖ Z k ∇φ(x k ; r k ) ‖ ‖ Z k ∇φ(x k ; r k ) ‖ 2 

− 1 
2 

δ2 
k 

‖ Z k ∇φ(x k ; r k ) ‖ 2 ((Z k ∇φ(x k ; r k )) T B k (Z k ∇φ(x k ; r k ))) 

≥ 1 
2 
δk ‖ Z k ∇φ(x k ; r k ) ‖ . (6.2)

(ii) If s cp 
k = − ‖ Z k ∇φ(x k ;r k ) ‖ 2 

(Z k ∇φ(x k ;r k )) T B k (Z k ∇φ(x k ;r k )) (Z k ∇φ(x k ; r k )) , and

‖ Z k ∇φ( x k ; r k ) ‖ 3 ≤ δk (( Z k ∇φ( x k ; r k )) T B k ( Z k ∇φ( x k ; r k ))), then 

q k (0) − q k (Z k s 
cp 
k ) = −(Z k ∇φ(x k ; r k )) T s 

cp 
k − 1 

2 
s cp T 

k B k s 
cp 
k 

= 

1 
2 

‖ Z k ∇φ(x k ; r k ) ‖ 4 
(Z k ∇φ(x k ; r k )) T B k (Z k ∇φ(x k ; r k )) 

≥ ‖ Z k ∇φ(x k ; r k ) ‖ 2 
2 ‖ B k ‖ . (6.3)

From inequalities (3.2), (6.2) , and (6.3) we have, 

q k (0) − q k (Z k s k ) ≥ K 1 ‖ Z k ∇φ(x k ; r k ) ‖ min 

×
{
δk , 

‖ Z k ∇φ(x k ; r k ) ‖ 
‖ B k ‖ 

}
. 

From the above inequality and the following fact 

q k (0) − q k (Z k ̃  τk s k ) ≥ ˜ τk [ q k (0) − q k (Z k s k )] 

where 0 ≤ ˜ τk ≤ 1 , then we have 

q k (0) − q k (Z k ̃  τk s k ) ≥ K 1 ̃  τk ‖ Z k ∇φ(x k ; r k ) ‖ min 

×
{
δk , 

‖ Z k ∇φ(x k ; r k ) ‖ 
‖ B k ‖ 

}
. 

But the predicted reduction which given by (3.5) can be written
as follows 

Pred k = q (0) − q (Z k ̃  τk s k ) . 

Hence 

Pred k ≥ K 1 ̃  τk ‖ Z k ∇φ(x k ; r k ) ‖ min 

{
δk , 

‖ Z k ∇φ(x k ; r k ) ‖ 
‖ B k ‖ 

}
. 

�

Lemma 6.2. Suppose GA 1 and GA 3 . Then W ( x ) A ( x ) is Lipschitz
continuous in �. 

Proof. The proof is similar to the proof of lemma 4.1 of [1] . �

From the above lemma, we conclude that A ( x ) T W ( x ) A ( x ) is
differentiable and ∇A ( x ) W ( x ) A ( x ) is Lipschitz continuous in �.

Lemma 6.3. At any iteration k , let D ( x k ) ∈ � 

m × m be a diagonal
matrix whose diagonal entries are 

(d k ) i = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 if (A k ) i < 0 and (A k +1 ) i ≥ 0 , 

−1 if ( A k ) i ≥ 0 and (A k +1 ) i < 0 , 

0 otherwise , 

(6.4)
where i = 1 , 2 , ..., m . Then 

 k +1 = W k + D k . (6.5)

Proof. The proof is similar to the proof of lemma 6.2 of [3] . �

Lemma 6.4. Suppose GA 1 –GA 3 . At any iteration k , there exists
a positive constant K 1 independent of k , such that 

‖ D k A k ‖ ≤ K 2 ‖ s k ‖ , (6.6)

where D k ∈ � 

m × m is the diagonal matrix whose diagonal entries
are defined in (6.4) . 

Proof. The proof is similar to the proof of lemma 6.3 of [3] . �

Lemma 6.5. Suppose GA 1 –GA 3 , then there exists a constant K 3

> 0 that does not depend on k , such that 

| Ared k − Pred k |≤ K 3 ̃  τk r k ‖ s k ‖ 2 . (6.7)

Proof. From Eqs. (3.4) and (6.5) we have 

Ared k = f (x k ) − f (x k + Z k ̃  τk s k ) + 

r k 
2 

[ A 

T 
k W k A k 

− A (x k + Z k ̃  τk s k ) T (W k + D k ) A (x k + Z k ̃  τk s k )] . 

From the above equation, Eq. (3.5) , and using Cauchy–Schwarz
inequality, we have 

| Ared k − Pred k | ≤ ˜ τ 2 
k 

2 
| s T k Z k (∇ 

2 f (x k ) 

− ∇ 

2 f (x k + ξ1 Z k ̃  τk s k )) Z k s k | 

+ 

˜ τ 2 
k 

2 
| s T k diag(∇φ(x k ; r k )) diag(ψ) s k | 

+ r k ̃  τk | Z k (∇ A k − ∇ A (x k + ξ2 Z k ̃  τk s k )) W k A k s k | 
+ 

r k ̃  τ 2 
k 

2 
| s T k Z k [ ∇A k W k ∇A 

T 
k 

− ∇A (x k + ξ2 s k ) W k ∇A (x k + ξ2 Z k ̃  τk s k ) T ] Z k s k | 
+ 

r k ̃  τ 2 
k 

2 
‖ D k A k ‖ 2 + r k ̃  τk | Z k ∇A (x k + ξ2 Z k ̃  τk s k ) D k A k s k | 

+ 

r k ̃  τ 2 
k 

2 
| s T k Z k [ ∇A (x k + ξ2 s k ) D k ∇A (x k + ξ2 Z k ̃  τk s k ) T ] Z k s k | 

for some ξ 1 and ξ 2 ∈ (0, 1). From lemma (6.4) and general as-
sumptions, the proof is completed. �

7. Convergence when r k goes to infinity 

In this section, the convergence of the sequence of iteration is
studied when the parameter r k goes to infinity. From algorithm
(3.2) , we observe that the sequence { r k } goes to infinity only
when there exists an infinite subsequence of indices { k i } index-
ing iterates of acceptable steps that satisfy, for all k ∈ { k i } 

Pred k < ‖ Z k ∇A k W k A k ‖ min {‖ Z k ∇A k W k A k ‖ , δk } . (7.1)

The following lemma studies the case when lim sup k → ∞ 

‖ W k A k ‖
> 0. 

Lemma 7.1. Suppose GA 1 -GA 3 . If r k → ∞ , as k → ∞ and there
exists a subsequence { k j } of indices indexing iterates that satisfy
‖ W k A k ‖ ≥ ε1 > 0 for all k ∈ { k j }, then a subsequence of the
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This completes the proof. �
equence of iteration indexed { k j } satisfies the infeasible Mayer–
liss conditions in the limit. 

roof. Let the subsequence { k i } be renamed to { k } to simplify
he notations avoiding double indices. By using a contradic- 
ion we prove this lemma. So we presume that there exists no
ubsequence of the iteration sequence that satisfies the infea- 
ible Mayer–Bliss conditions in the limit. Using Lemma (5.1) , 
e have for all k , | ‖ W k A k ‖ 2 − ‖ W k (A k + (Z k ∇A k ) 

T ˜ τk s k ) ‖ 2 |≥
 1 for some ε 1 > 0 and from Definition (5.3) , we have, 
 Z k ∇A k W k A k ‖ ≥ ε 2 for some ε 2 > 0. 

Since r k → ∞ , then there exists an infinite number of accept-
ble iterates at which inequality (7.1) holds. We consider two 

ases: 
(i) If ‖ W k A k ‖ 2 − ‖ W k (A k + (Z k ∇A k ) 

T ˜ τk s k ) ‖ 2 ≥ ε 1 , we have

 k {‖ W k A k ‖ 2 − ‖ W k (A k + (Z k ∇A k ) 
T ˜ τk s k ) ‖ 2 } ≥ r k ε 1 → ∞ . 

(7.2) 

ince ˜ τk → 1 as k → ∞ , then under assumptions GA 2 - GA 3 and
sing (3.5) and (7.2) , we have Pred k → ∞ . Hence, as k → ∞ ,
he left hand side of inequality (7.1) tends to infinity while the
ight hand side goes to zero. This gives a contradiction in this
ase. 

(ii) If ‖ W k A k ‖ 2 − ‖ W k (A k + (Z k ∇A k ) 
T ˜ τk s k ) ‖ 2 ≤ −ε 1 . Be-

ause r k → ∞ and ˜ τk → 1 as k → ∞ , we have 

 k {‖ W k A k ‖ 2 − ‖ W k (A k + (Z k ∇A k ) 
T ˜ τk s k ) ‖ 2 } ≤ −r k ε 1 → −∞ . 

(7.3) 

imilar to the above case, Pred k → −∞ . This gives a contra-
iction with Pred k > 0. These two contradictions prove the 

emma. �

The following lemma studies the case when r k → ∞ as k →
 , and lim in f k →∞ 

‖ W k A k ‖ = 0 . 

emma 7.2. Suppose GA 1 -GA 3 . If r k → ∞ , as k → ∞ , and there
xists a subsequence { k j } of the sequence of iterates that satisfies
 W k A k ‖ > 0 for all k ∈ { k j } and lim k j →∞ 

‖ W k j A k j ‖ = 0 , then a
ubsequence of the iteration sequence indexed { k j } satisfies Fritz 
ohn’s conditions in the limit. 

roof. Let the subsequence { k i } be renamed to { k } to simplify
he notations avoiding double indices. By using a contradiction 

e prove this lemma. So we presume that there exists no sub-
equence that satisfies the feasible Fritz John’s conditions in the 
imit. By using lemma (5.3) , there exists a constant ε 3 such that
or all k sufficiently large, 

| ‖ W k A k ‖ 2 − ‖ W k (A k + (Z k ∇A k ) 
T ˜ τk s k ) ‖ 2 | 

‖ W k A k ‖ 2 ≥ ε 3 . (7.4) 

e consider three cases: 
(i) If lim in f k →∞ 

s k 
‖ W k A k ‖ = 0 , the above inequality gives a con-

radiction. 
(ii) If lim sup k →∞ 

s k 
‖ W k A k ‖ = ∞ . From the way of computing 

 k , we have 

 k (∇ f k + r k ∇A k W k A k ) = −(B k + ρk I ) s, 
here ρk ≥ 0 is the Lagrange multiplier of the trust region con-
traint. Using the above equation, then inequality (6.1) can be 
ritten in the form 

red k ≥ K 1 ̃  τk ‖ Z k (∇ f k + r k ∇A k W k A k ) ‖ min 

×
{ 

δk , 
‖ [ 1 r k 

G k + Z k ∇A k W k ∇A 

T 
k Z k + 

ρk 
r k 

I ] s k ‖ 
‖ 1 

r k 
G k + Z k ∇A k W k ∇A 

T 
k Z k ‖ 

} 

. (7.5) 

ecause r k → ∞ , as k → ∞ , there exists an infinite number of
cceptable steps such that inequality (7.1) holds. But inequality 
7.1) can be written as 

red k < ‖ Z k ∇A k ‖ 2 ‖ W k A k ‖ 2 . (7.6)

rom inequalities (7.5) and (7.6) , we have 

 1 ̃  τk ‖ Z k (∇ f k + r k ∇A k W k A k ) ‖ min 

×
{ 

δk , 
‖ [ 1 r k 

G k + Z k ∇A k W k ∇A 

T 
k Z k + 

ρk 
r k 

I ] s k ‖ 
‖ 1 

r k 
G k + Z k ∇A k W k ∇A 

T 
k Z k ‖ 

} 

< b 2 1 ‖ W k A k ‖ 2 , 

here b 1 = sup x ∈ �‖ Z k ∇A k ‖ . Hence, if we divided the above in-
quality by ‖ W k A k ‖ , we obtain 

 1 ̃  τk ‖ Z k (∇ f k + r k ∇A k W k A k ) ‖ min 

×
{ 

δk 

‖ W k A k ‖ , 
‖ [ 1 r k 

G k + Z k ∇A k W k ∇A 

T 
k Z k + 

ρk 
r k 

I ] s k ‖ 
‖ 1 

r k 
G k + Z k ∇A k W k ∇A 

T 
k Z k ‖ ‖ W k A k ‖ 

} 

< b 2 1 ‖ W k A k ‖ . (7.7) 

he right hand side of the above inequality goes to zero as
 → ∞ . This implies that along the subsequence { k i } where

im k i →∞ 

s k i 
‖ W k i 

A k i ‖ 
= ∞ , we have 

 Z k (∇ f k i + r k i ∇ A k i W k i A k i ) ‖ 

×
‖ [ 1 

r k i 
G k i + Z k ∇A k i W k i ∇A 

T 
k i 

Z k + 

ρk i 
r k i 

I ] s k i ‖ 
‖ 1 

r k i 
G k i + Z k ∇A k i W k i ∇A 

T 
k i 

Z k ‖ ‖ W k i A k i ‖ 
, 

s bounded. Therefore, asymptotically, either 
s k i 

‖ W k i 
A k i ‖ 

lies in 

he null space of Z k ∇A k i W k i ∇A 

T 
k i 

Z k + 

ρk i 
r k i 

I or ‖ Z k (∇ f k i +
 k i ∇A k i W k i A k i ) ‖→ 0 . The first possibility occurs only when

ρk i 
r k i 

→ 0 as k i → ∞ and 

s k i 
‖ W k i 

A k i ‖ 
lies in the null space of the ma-

rix Z k ∇A k i W k i ∇A 

T 
k i 

Z k which contradicts assumption (7.4) and
mplies that a subsequence of the iteration sequence satisfies the 
ritz John conditions in the limit. The second possibility implies 

hat as k i → ∞ , ‖ Z k (∇ f k i + r k i ∇ A k i W k i A k i ) ‖→ 0 . Hence as k i 

 ∞ , r k i ‖ Z k ∇A k i W k i A k i ‖ must be bounded. This implies that
 subsequence of the sequence of iterates satisfies the Fritz John
onditions in the limit. 

(iii) If lim sup k →∞ 

s k 
‖ W k A k ‖ < ∞ and lim in f k →∞ 

s k 
‖ W k A k ‖ > 0 . 

herefore ‖ s k ‖ → 0. Hence, as in the second case, the right hand
ide of (7.7) goes to zero as k → ∞ . This implies that 

Z k (∇ f k + r k ∇A k W k A k ) ‖ 
‖ (Z k ∇A k W k ∇A 

T 
k Z k + 

ρk 
r k 

I ) s k ‖ 
‖ Z k ∇A k W k ∇A 

T 
k Z k ‖ ‖ W k A k ‖ → 0 .

ut this implies that asymptotically, either ‖ Z k (∇ f k + 

 k ∇A k W k A k ) ‖→ 0 or 
‖ (Z k ∇A k W k ∇A T k Z k + 

ρk 
r k 

I ) s k ‖ 
‖ Z k ∇A k W k ∇A T k Z k ‖‖ W k A k ‖ → 0 . As the sec-

nd case, the two possibilities imply that a subsequence of the
teration sequence satisfies the Fritz John conditions in the limit. 
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8. Convergence when r k is bounded 

In this section, we presume that the parameter r k is bounded.
This means that, we presume the existence of an integer k̄ such
that for all k ≥ k̄ , r k = r̄ < ∞ . 

Lemma 8.1. Suppose GA 1 -GA 3 . At any iteration indexed k at
which ‖ Z k ∇φ(x k ; r̄ k ) ‖ + ‖ Z k ∇A k W k A k ) ‖ > ε1 , there exists a
positive constant K 4 that depends on ε1 but does not depend on
k , such that 

Pred k ≥ K 4 ̃  τk δk . (8.1)

Proof. From equalities (2.13), (2.16) , and general assumptions
GA 1 − GA 3 , then for all k , there exists b 2 > 0 such that ‖ B k ‖
≤ b 2 . Let ‖ Z k ∇φ(x k ; r̄ k ) ‖ > 

ε1 
2 and using inequality (6.1) , we

have 

Pred k ≥ K 1 ̃  τk ‖ Z k ∇φ(x k ; r̄ k ) ‖ min 

{
δk , 

‖ Z k ∇φ(x k ; r̄ k ) ‖ 
‖ B k ‖ 

}

≥ 1 
2 

K 1 ̃  τk ε1 min 

{
1 , 

ε1 

2 b 2 δmax 

}
δk 

≥ K 4 ̃  τk δk , 

where K 4 = 

1 
2 K 1 ε1 min { 1 , ε1 

2 b 2 δmax 
} . �

Lemma 8.2. Suppose GA 1 -GA 3 . If ‖ Z k ∇φ(x k ; r̄ k ) ‖ +
‖ Z k ∇A k W k A k ) ‖ > ε1 , then an acceptable step is found after

finitely many trials i.e., the condition 
Ared k j 
Pred k j 

≥ η1 will be satisfied

for some finite j. 

Proof. Since ‖ Z k ∇φ(x k ; r̄ k ) ‖ + ‖ Z k ∇A k W k A k ) ‖ > ε1 , then
from lemmas (6.5) and (8.1) , we have 

∣∣∣∣Ared k 
Pred k 

− 1 

∣∣∣∣ = 

| Ared k − Pred k | 
Pred k 

≤ K 3 ̄r ̃  τk δ
2 
k 

K 4 ̃  τk δk 
≤ K 3 ̄r δk 

K 4 
. 

Now as the step s k j gets rejected, δk j becomes small and eventu-
ally after finite number of trials, (i.e., for j finite), the acceptance
rule will be met. This completes the proof. �

Lemma 8.3. Suppose GA 1 -GA 3 . If ‖ Z k ∇φ(x k ; r̄ k ) ‖ + ‖ Z k ∇A k

 k A k ) ‖ > ε1 , at a given iteration k , the jth trial step satisfies 

‖ s k j ‖ ≤
(1 − η1 ) K 4 

2 ̄r K 3 
, (8.2)

then it must be accepted. 

Proof. By using a contradiction we prove this lemma. Presume
that the step s k j is rejected and inequality (8.2) holds. Then,
from inequalities (6.7) and (8.1) we have 

(1 − η1 ) < 

| Ared k j − Pred k j | 
Pred k j 

< 

K 3 ̄r ̃  τk j ‖ s k j ‖ 2 
K 4 ̃  τk j ‖ s k j ‖ 

≤ (1 − η1 ) 

2 
. 

This gives a contradiction and proves the lemma. �

9. Global convergence outcomes 

In this section, we prove our master global convergence result
for our trust-region algorithm. 
Theorem 9.1. Suppose GA 1 –GA 3 . Then the sequence of iterates
generated by the algorithm satisfies 

lim inf 
k →∞ 

[ ‖ Z k ∇ f k ‖ + ‖ Z k ∇A k W k A k ‖ ] = 0 . (9.1)

Proof. First, we prove that 

lim inf 
k →∞ 

‖ Z k ∇φ(x k ; r̄ k ) ‖ + ‖ Z k ∇A k W k A k ‖ = 0 . (9.2)

We prove (9.2) by contradiction. Suppose that, for all k ,
‖ Z k ∇φ(x k ; r̄ k ) ‖ + ‖ Z k ∇A k W k A k ‖ > ε1 . Let k ≥ k̄ and consider
a trial step indexed j of the iteration indexed k such that k 

j ≥ k̄ .
Using lemma (8.1) , we have for any acceptable step indexed k 

j ,

�k j − �k j +1 = Ared k j ≥ η1 Pred k j ≥ η1 K 4 ̃  τk j δk j . (9.3)

As k goes to infinity, then ˜ τk j → 1 and the above inequality im-
plies that 

lim 

k →∞ 

δk j = 0 . (9.4)

This implies that the radius of the trust region is not bounded
below. 

If we consider an iteration indexed k 

j > k̄ and if the previ-
ous step was accepted; i . e . if j = 1 , then δk 1 ≥ δmin . Hence δk j is
bounded in this case. 

Now presume that j > 1. i . e ., there exists at least one rejected
trial step. For the rejected trial step, we have from lemma (8.3) 

‖ s k i ‖ > 

(1 − η1 ) K 4 

2 ̄r K 3 
, 

for all i = 1 , 2 , ... j − 1 . Since s k i is a rejected trial step, then from
the way of updating the radius of trust region (see algorithm
(3.1) ) and using the above inequality, we have 

δk j = α1 ‖ s k j−1 ‖ > α1 
(1 − η1 ) K 4 

2 ̄r K 3 
. 

Hence δk j is bounded. But this contradicts (9.4) . Therefore, the
supposition is wrong. Hence, 

lim inf 
k →∞ 

‖ Z k ∇φ(x k ; r̄ k ) ‖ + ‖ Z k ∇A k W k A k ‖ = 0 . 

But this also implies (9.1) . This completes the proof of the
theorem. �

From the above theorem, we conclude that, given any ε1 > 0,
the algorithm terminates because ‖ Z k ∇ f k ‖ + ‖ Z k ∇A k W k A k ‖ <
ε1 . 

10. Numerical outcomes 

In this section, we present the numerical results of the interior-
point trust-region Algorithm (3.3) which have been performed
on a laptop with Intel Core (TM)i7-2670QM CPU 2.2 GHz
and 8 GB RAM. Algorithm (3.3) was implemented as a
MATLAB code and run under MATLAB version 7.10.0.499
(R2010a). A starting point x 0 ∈ int ( F ) is given, we select δ0 =
max (‖ s cp 

0 ‖ , δmin ) , where δmin = 10 −3 , and we select δmax = 10 5 δ0 .
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Table 10.1 Numerical outcomes of LANCELOT and proposed algorithm. 

Problem The number of The number of The number of LANCELOT Propose algorithm 

Name variables equalities inequalities iter(nfunc) iter(nfunc) 

Problem 6 2 1 0 49 (56) 15 (25) 
Problem 7 2 1 0 18 (19) 9 (12) 
Problem 9 2 1 0 4 (5) 16 (17) 
Problem 10 2 0 1 17 (18) 26 (29) 
Problem 12 2 0 1 22 (23) 8 (9) 
Problem 14 2 1 1 12 (13) 11 (12) 
Problem 16 2 0 5 15 (16) 3 (4) 
Problem 21 2 0 5 1 (2) 3 (4) 
Problem 22 2 0 2 9 (10) 22 (24) 
Problem 24 2 0 5 7 (8) 33 (41) 
Problem 30 3 0 7 7 (8) 3 (4) 
Problem 34 3 0 8 19 (19) 26 (27) 
Problem 41 4 1 0 6 (7) 20 (21) 
Problem 60 3 1 0 15 (15) 11 (13) 
Problem 77 5 2 0 22 (24) 21 (22) 
Problem 78 5 3 0 11 (11) 10 (15) 
Problem 79 5 3 0 9 (10) 5 (12) 
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The values of the constants that are needed in Step 0 of al-
orithm (3.3) were select to be η1 = 0 . 25 , η2 = 0 . 75 , α1 = 0 . 5 ,
2 = 2 , ε1 = 10 −7 , and ε2 = 10 −6 . 

We report the numerical outcomes of the proposed algo- 
ithm in Table 10.1 . The problems which are tested in this Table
re the Hock and Schittkowski ’s subset of the constrained and 

nconstrained testing environment [15] . 
In Table 10.1 , we compare the numerical outcomes of algo- 

ithm (3.3) versus the corresponding outcomes of LANCELOT 

Release A) [16] . 
The value of x ∗ and f ( x ∗) are the same value indicated in

ock and Schittkowski [15] . In many of the test problems re-
orted in Table 10.1 , the number of iterations and the number
f function evaluations of the interior-point trust-region algo- 
ithm are better than those obtained by LANCELOT. This in- 
icates the viability of our approach. 

1. Concluding remarks 

e described a new interior-point penalty active-set trust- 
egion algorithm for solving general nonlinear programming 
roblem with bound on variables. The penalty method and the 
ctive set strategy are used in the proposed algorithm to trans- 
orm the optimization problem with equality and inequality 
onstraints with bound on variables to unconstrained optimiza- 
ion problem with bound on variables. The algorithm uses a 
oleman–Li strategies and the requirement of strict feasibility 

o examine the optimality conditions for the bound constrained 

ptimization problem. 
There are many question should be answered for future 

ork. We can improve the proposed algorithm to make it capa- 
le of treating nondifferentiation bound constrained optimiza- 
ion problem with equality and inequality constraints. 
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