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A fractional model for the modified point kinetics equations is derived and analyzed. An
analytical method is used to solve the fractional model for the modified point kinetics equations. This
methodical technique is based on the representation of the neutron density as a power series of the
relaxation time as a small parameter. The validity of the fractional model is tested for different cases
of step, ramp and sinusoidal reactivity. The results show that the fractional model for the modified
point kinetics equations is the best representation of neutron density for subcritical and supercritical
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1. Introduction

The neutron density and the precursor concentrations of de-
layed neutrons at the center of a homogeneous nuclear reactor
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are described by a system of stiff coupled linear and/or non-
linear differential equations. An important peculiarity of the re-
actor kinetics is the stiffness of the system. A host of mathemat-
ical methods are developed to solve this system as a function
of neutron density with different energy groups of delayed neu-
trons. Although, it is still currently requires more effort from the
scientists to develops a new mathematical techniques and com-
putational scheme to overcome this problem. The continuous
indication of the neutron density and its rate of change are im-
portant for the safe startup, accurate determination of reactivity
effects and operation of reactors. Recently, the interest of the nu-
clear reactor scientists is the development and analysis of differ-
ent versions and approximations of the fractional-order point
reactor kinetics model for a nuclear reactor “fractional neutron
point kinetics equations (FNPKE)”. For example: Espinosa-
Paredes, Polo-Labarrios, et al. [1-7]; Ray and Patra [§]; Nowak
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et al. [9,10]; and Schramm et al. [11]. Espinosa-Paredes et al.
[1] is the first scientific group derived the FNPKE. Aboanber
and Nahla commented on the paper [1] through letter to edi-
tor [12,13]. In this letter, the corrected form for the fractional
neutron point kinetics equations is developed. In this work we
focus on the derivation of the fractional modified point kinetics
equations (FMPKE) and its analytical solution. The developed
solution of the FMPKE is based on the representation of the
neutron density as a power series in terms of the relaxation time
as a small parameter, which is less than 1073 (s).

The presented paper is organized as follows: Section 2 con-
tains the derivation of the fractional modified point kinetics
equations. An analytical method based on the representation
of the neutron density as a power series of a small parameter is
presented in Section 3. A comparison between the neutron den-
sity of the fractional modified point kinetics equations and the
point kinetics equations is discussed in Section 4. The conclu-
sion is suggested in Section 5.

2. Fractional modified point kinetics equations (FMPKE)

The explicit forms taken by the neutron conservation equation
and the corresponding equation for the current density in the
one-speed case are [14]

%%QD(L 0+ VI, 1)+ 0, 1) = S0, 1) + S, 1), (1)

10 A A N N
SoEn v./ Qo O, 1)dQ + T, 1)
v 4

= o ZJ(x, 1) + Si(r, 1) 2

where ¢(r, Q, t) is the time dependent angular flux, as a func-
tion of space r and neutron direction of motion Q, O(r, 1) =
Sy 0(r, Q, 1)d<Q is zero moment of the angular flux represents
the neutron density, whereas the first moment of the angular
flux J(r, 1) = fh fZga(r, Q. 0dQ represents the neutron current
density, v is the neutron speed, T, is thg total cross section, X

is the scattering cross section, fip = (€Q.€) is the average scatter-
ing angle cosine, S(r, t) = f4ﬂ S(r, 2, )dQ is the neutron source
term and S, (r,7) = f4n QS(r, 2, 1)d$ is first moment of the
neutron source.

Assume that the angular flux is only linearly anisotropic and
the neutron source is isotropic, that is V. [, QQor, Q, 1)d$ =
lV<I>(r t) and S;(r, ) = 0. The system of Eqs. (1) and (2) take
the following form

10d(r, ¢t

2 ;; ) VIt 4 5,001 = S 1) 3)
v
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v ot 3

where ¥, = ¥, — % is the time dependent absorption cross sec-

tion, X, is the total cross section, X, is the scattering cross sec-
tion, ¥,, = X, — 1o X is the transport cross section.

Egs. (3) and (4) representing the P, approximation (i.e. the
one-speed approximation). To simplify this system of equations,
Fick’s suggested for Eq. (4) that the time derivative + 2J(r, 1)
can be neglected in comparing with the other terms [14], which
contradicts Cattaneo’s law [15]. Let us divide Eq. (4) by Z,,
and taking the fractional derivative on the first term as follows

[16,17]:
‘[K%J(l‘, t)y+J, t) =—-DVD(r, 1) ®)

where D = é is the neutron diffusion coefficient and 7 =
\,21 3D s the relaxation time.

Substltutlng from Eq. (5) into Eq. (3) yields

tKaK 18<1>(rt)—|—2<l>(rt) S(r, 1) +1ad>(rt)
are | var “an ’ vor

+ 3, 1) — S, t) — DV*P(r, 1) =0 6)
The neutron diffusion equations with delayed neutrons are
obtained by adding the source term of reactor kinetics with 7
groups of delayed neutrons as follow:
K aK
T
at«

1
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where S(r, 1) = (1 — p)vE,P(r, 1) + ZA Ci(r, 1), B = Zﬂl is
=1 i=1

total fraction of delayed neutrons, B; 1s the fraction of i-group
of delayed neutrons, v is the mean number of fission neutrons,
¥ is the fission cress section, 4, is the decay constant of i-group
of delayed neutrons, I is the total number of delayed neutron
groups and Ci(r, t) is the precursor concentrations of i-group of
delayed neutrons which satisfy the following equations

W = BVE (1) — MG D), i=1,2,.... 1. (8
Consider that:
O, 1) =vpt)p(r), Ci(r,t)=ci(t)p(r) ©)

where ¢(r) is the fundamental function, which is obtained from
the diffusion equation:

V2p(r) + Bip(r) =0 (10)

B; is the geometric buckling appropriate for the reactor geome-
try (Table 3.3, page (60), [18]).

Using Eq. (10) in Egs. (7) and (8) leads to the fractional mod-
ified point kinetics equations with multi-group delayed neutrons
as

dp(1) P !
dt" |: dt (X KT a)p(t) - ZA[ci(t)i|

i=1

dp(ty [ p - _
d‘;}ﬁ” = wp(t) —hei(0), i=1,23,....1 (12)

VS —%(14+L%B2)
UE,

= is the diffusion length, A =

where p(7) is the neutron density, p= is the time

dependent reactivity, L> = wE/

is the prompt neutron generatlon time, o = vDBZ,, = ’j\’ and
the initial conditions of this differential equations are p(0) =
po, (0 ="%py, i=1273...1
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The fractional calculus involves different definitions of
the fractional operator as well as the Griinwald-Letnikov
derivative, Riemann-Liouville fractional derivative, and Ca-
puto derivative. Let us introduce the definition of the fractional
derivatives as:

1. The Griinwald-Letnikov definition of fractional derivatives
is defined as

GL nk . —K K _
D[ (1) = lim h Z_(:)me(l mh) (13)
where v = (=Dm(5). v =1 and Vm =

(1= om=1,2,....

m

2. The Riemann-Liouville definition of fractional derivatives
is defined as

1 am t f(s)
C(m—«) ot /(; (t— §)K+l—md$’

m—1<k<m (14)

RLDKf(t) —

where m is a positive integer and I'(m — k) is the gamma
function whose argument is (m — «).
3. The Caputo6s derivative is defined as

1 mE

C nk _
D f(t) - Tm—x) Jo (¢ _S)x+l—m

dE,m—1<k<m

(15)

where [ (£) = L;!ff)

3. Analytical solution of the FMPKE

The solution for the fractional modified point kinetics equa-
tions (FMPKE) can be obtained in several ways, in this paper an
analytical solution of the FMPKE is proposed. Let us assume
that

dp(t) p !
g() = 0= — (5 =+ a)p) = Y ratn) (16)

i=1

with initial value ¢(0) = —apy.
Substituting into Eq. (11), yields

dp(t) _ (p() s dq(t)
7 (T—M>P(f)+2)»ftf(f)—f I (17)

i=1

Let us rewrite Eqgs. (17) and (12) in matrix form as

d B L Adq(t)
EI\V(I)) =N|V(@) -7 ar 1) (18)
where,
p() Low uom M
CIE[; W & 0 .0
co (1 —A -
waoy=| | N=] O 0
Cl(t) W 0 0 _)‘I

o O

1) =

The vector | W(#)) can be represented by a power series of the
relaxation time 7 :

(W) = [Yo (D)) + T (1)) + - - (19)
since T < 107*, then we can neglect the terms of order two
o).

Substituting into Eq. (18) we get

d . d
Elwo(t))+f wal(t))

Ldq(n)

=Nlyo®) + "Ny (1)) — © Ji

1)+ (20)

3.1. Zero order of relaxation time

The zero order of relaxation time, t°, is

d
=; Vo) =Ny (D) 2h

This equation represents the point kinetics model which can
be derived using Fick’s approximation. The analytical solution
of this system is reported in most reactor analysis articles. For
completeness, it is recalled briefly that, with this assumption, the
coeflicient matrix N is independent on time and all eigenvalues
wy, are real which can be determined as:

I
P WL
detN=oh) =0 = (0-2 =0 2
et( wl) = (o A>+;w+ki (22)
This equation is called inhour equation. The eigenvectors |U;)
corresponding to different eigenvalues w; are orthogonal i.e.
VIU)) =8, = { (1)3 5;/; and Y, [U,}(V,| =L
According to the references [20-24], the analytical formula
of the eigenvectors |U;) of coefficient matrix N can be deter-
mined from (N — ;1)|U;) =0 as

1

n1
(wj +Ay)
n2

IUj) = o; (23)

(wj + A2)

K
(wj+Ap)

and the eigenvectors (V;| of the adjoint matrix, the transport
of coefficient matrix, N7 = Nf can be determined by solve the
equation [(N — o;D)|V;)]" = 0 or (V;|(N” — w,;I) = 0 as
A A A
! 2 .. 7l> (24

(wj+ 1) (wj+ 1) (wj+Ap)
By the normalization condition (V;|U;) =1 then o; = (1 +

1 Jiki _1 .
Zi:l (“’H’)hi)z) 2, Vj

(V! =‘7j<1
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The exact analytical solution of Eq. (21) is

1
[Wo(0) = exp(ND[0(0)) = D ™' [U;)(V,;[4(0)) (25)

J=0

where |((0)) is the initial state vector of reactor.

Eq. (25) represents the exact solution of the point kinetics
model or zero order of relaxation time. Generally, in the point
kinetics model, the reactivity p is a time dependent. For this
case, we have an n time intervals, ¢, — t,, = hand t = t, = nh.
Through the time interval [7,,, #,,.1], the reactivity is considered
constant. Then, the solution of the point kinetics model with
time dependent reactivity takes the form

1
[Wo(tmin)) = exp(NI) Yo (1)) = Y e UV, |y (tm))  (26)

j=0
3.2. First order of relaxation time
The first order of relaxation time, ¥, is

dl(
— Njy (1)) — LD

d
— 1 27
dtl%(f)) i (1) (27)
The final term can be calculated from Eqgs. (16) and (21) as
dqty  dp()

dr Y adre 28)

Substituting from Eq. (25) yields

d“p(t) d*
dre — dr~

Ze iV 1%0(0)) (29)

Let us use the Riemann-Liouville fractional derivatives [19]:

1

dl(
PO SN Ey ()0, Y 190(0) (30)
j=0

dr«

where E; |, (w;t) is the Mittag-Leffler function which is defined
as:

oo

E.»(2) = a,b> 0. (31)

P
P I'(al +b)’

The general analytical solution of Eq. (27) takes the form:

d“p&)
dk«

V1) = a exp(ND) f exp(—Ne) T2 ey (32)

where | (0)) = 0.
To calculate the integration, substituting from Eq. (34) we
have:

d“pé)
dEx

t I
I= fo exp(—N§) dg = o;I;{(V;|¥0(0)) (33)
j=0

where

I; 2/ exp(—=NE)ETE| 1_ (w;€)dE
0

I I
= Z.[o €S ETNE L (0;€)dE U (V| = le,ilUi)(Vil
i=0 i=0

(34)

Substituting from Eq. (31) yields:

t 7(4),5
L= f COREVE, | (w)E)dE = Z / eET )

ril—x+1)
—-}E: /ﬂ TU—«+1)

wlésl K

K+1) Z

', y(l—lc—l—l w;t)
o™ -k + 1)
(35)

where y(/ —k + 1, w;t) is lower incomplete gamma function
which is defined as:

o i
A
=2z'T(s)e”” S 36
y(s.2) = 2T (s)e Z;F“+l+l) (36)
Substituting from Egs. (35) and (34) into Eq. (33) we have:
I
oyl —k +1,wit)
iV, 0)) d UV, 37
,Z |%0(0)) 2031203 - g e UVl 6D
Substituting into Eq. (32) yields:
1 1 o)
W) =ay oe™ Y oy
i=0 j=0  I=0
a)ﬁ.y(l —k+ 1, w;it) v, 0 (38
T 4 1)I )V [¥0(0)) )
Let us divide the time ¢ to n intervals as f,.; —t,, = h and

t = t, = nh. Through the small time interval [z,,, ,,.1], the Eq.
(38) becomes:

I I L
~ il

V1 (tmy1)) = o Zcr,«e‘”" Zﬁj Z

i=0 j=0 =0

a)}y(l —«+ 1, wh)
o7 — K+ 1)

|U1) (th/fo(tm)) (39)
Substituting from Egs. (26) and (39) into Eq. (19) we get:

1 L
W (ti1)) = Ze“”lU YVilWo (t)) + T QZUWZGJZ
Jj=0 1=0

wjy(l —k+ 1, wh)
ol — Kk + 1)

|Ut) (Vj|¢0(tm))

4. Results and discussion

The behavior of the fractional modified point kinetics equa-
tions with multi-group of delayed neutrons are presented for
pressurized water reactor (PWR) [14,18]. The delayed neu-
tron parameters of this reactor are: T = 107*(s), A, = 0.0127,
Xy =0.0317, 43 = 0.115, A4 = 0.311, A5 = 1.4, As = 3.87 (s71),
B1 = 0.000266, B, = 0.001491, B3 = 0.001316, B4 = 0.002849,
Bs = 0.000896, Bz =0.000182, B =0.007, A =2.0 x 10‘5 (s)
and « = 2220.0 (s!). The initial conditions are p(0) =
1.0, ¢;(0) = %Wmﬂ“mh, “mho_01_123 6
The neutron den51ty is calculated for three types of redcthlty
step, ramp and sinusoidal reactivities.

Figs. (1)—(4) show the neutron density for a step reactivity
p=—-0.007=-1(8), p =-0.003 =—-0.429(5), p =0.003 =
0.429($) and p = 0.007 = 1($) respectively. As shown in these



670 A.E. Aboanber, A.A. Nahla
10’ ; : : : : ; : : .
1 u u ——PkE

— PKE —— FMPKE(k=0.25)
—— FMPKE(k=0.25) i~ 5 _ ==

09} ——— FMPKE(k=0.5) H — — FMPKE(k=1) Pty
— — FMPKE(k=0.75) e
— — FMPKE(k=1) 2

08 g

Neutron Density
o
-~

012

06F .
05f
0 4 L ' L ' 3 L A L '}
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
Time(s)
Fig.1 Neutron density for negative step reactivity p = —0.007.
1 1 T
—PKE
0.95} — FMPKE(k=0.25)
; —— FMPKE(k=0.5) ||
= = FMPKE(k=0.75)
09k — — FMPKE(k=1) |
=
2 085} y
@
s
§
5 08p 4
o
Z
075} .
07
0 65 A A A A L
0 0.002 0.004 0.006 0.008 0.01 0
Time(s)

Fig. 2 Neutron density for negative step reactivity p = —0.003.
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Fig.5 Neutron density for ramp reactivity p = ft.

figures, the results of fractional modified point kinetics equa-
tions (FMPKE) with fractional order « = 0.25,0.5,0.75 and
1.0 are compared with the results of the point kinetics equations
(PKE). The important fact in the presented Figs. (1)—(3), is that
there is a relaxation in the neutron density of the FMPKE com-
pared with the PKE at the beginning. Figs. (1) and (2) shows
for negative reactivity the FMPKE presents sub diffusive ef-
fects, i.e., greater resistance to movement of the neutron respect
to PKE due to the decreasing of the neutron density with in-
creasing the fractional order, in addition to the negative term
including the relaxation time and the fraction rate of change of
the neutron density. On the other side, when the positive reac-
tivity is applied, apparently showing a super diffusive behavior
due to the increasing of the neutron density with time for PKE
model, in addition to the relaxation time and the fraction rate
of change for FMPKE model as show in Figs. (3) and (4). Ata
large positive reactivity, Fig. (4) shows a good representation for
the relaxation in the neutron density of the FMPKE and PKE,
which confirm that the FMPKE is the best representation for
supercritical reactor.

The effects of the ramp, p = Bt = 1.0($/s), and sinusoidal
reactivity, p = Bsin(*t), on the FMPKE are also included
and shown in Figs. (5) and (6), respectively. The effect of the
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Fig. 6 Neutron density for sinusoidal reactivity p = ﬂsin(%).

relaxation time on the neutron density for time varying reactiv-
ity using FMPKE is also satisfied and clear.

5. Conclusion

Fractional neutron point kinetic model for the FMPKE has
been analyzed for the dynamic behavior of the neutron mo-
tion in which the relaxation time associated with a variation
in the neutron flux involves a fractional order acting as expo-
nent of the relaxation time, to obtain the best operation of a
nuclear reactor dynamics. The numerical stability of the results
for neutron dynamic behavior for subcritical reactivity, super-
critical step and time varying reactivity and for different values
of fractional order are shown and compared with the classic
neutron point kinetic equations (PKE). The fractional model
retains the main dynamic characteristics of the neutron motion
in which the relaxation time associated with a rapid variation
in the neutron flux contains a fractional order, acting as expo-
nent of the relaxation time, to obtain the best representation of
a nuclear reactor dynamics.
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