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Abstract In this paper, an incompressible couple stress fluid flow with magnetic field in a porous 
channel with expanding or contracting walls and slip boundary condition is considered. Lie group 
analysis and group invariant solutions are obtained, the governing equations are reduced to nonlinear 
ordinary differential equations. The resulting equations are solved analytically, also this equations are 
solved by using Adomian method. The graphs for the axial and the normal velocity components and 
the pressure distribution for different values of the physical and geometric parameters are plotted 
and discussed. Finally, the comparison between the analytic and Adomian methods is discussed. It is 
found that for no-slip case φ = 0 the fluid adheres to the walls and axial velocity is maximum at the 
center of the channel, also by increasing the slip parameter the velocity at the channel walls increases. 
However, it decreases at center of the channel by increasing slip parameter. 
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. Introduction 

tudying of a couple stress fluid is an important to understand- 
ng some physical problems, because it have the mechanism to 
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als, colloidal fluids, animal and human blood and lubrication. 
he micro-continuum theory of couple stress fluid proposed by 
tokes [1] , some theoretical studies [2–4] considered the blood 

ouple stress fluid flow as a non-Newtonian fluid flow for its
roperties. Sometimes the couple-stress fluid considered as a 
pecial case of a non-Newtonian fluid which is purposed to 

ake the effect of the particle size into account. Moreover, the
ouple stress fluid model is one of the numerous models that
roposed to show response characteristics of non-Newtonian 

uids. The constitutive equations for couple stress fluid mod- 
ls is very complex and involving number of parameters, also 
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the out coming couple stress equations lead to boundary value
problems with higher order than the Navier–Stokes. Shehawey
and Mekheimer [5] proposed applications of the couple stress
model to biomechanics problems of peristaltic transport and
blood flow in the microcirculation by Mekheimer [6] . Recently
many authors have studied the effect of couple stress on differ-
ent problems (see for example: Samuel et al. [7] and Turkyilma-
zoglu [8] ). 

There are some applications in biophysical flow through
porous channels with expanding or contracting walls, such as
air and blood circulation in the respiratory system, pulsat-
ing diaphragms, artificial dialysis, filtration, blood flow and bi-
nary gas diffusion. For these applications many authors studied
the flow through a porous channels for different models such
as analysis of some magnetohydrodynamic flows of third or-
der fluid [9] , non-Newtonian nanofluids flow through a porous
medium between two coaxial cylinders with heat transfer and
variable viscosity [10] and magnetohydrodynamic flow of wa-
ter/ethylene glycol based nanofluids with natural convection
[11] . An unsteady flows in a semi-infinite contracting or expand-
ing pipe studied firstly by Uchida and Aoki [12] . Also, Ohki
[13] investigated the unsteady flow in a porous, elastic, circu-
lar tube with contracting or expanding walls in an axial direc-
tion. A series solution to an unsteady flow in a contracting or
expanding pipe is discussed by Bujurke et al. [14] . Numerical
and asymptotical solutions for moderate large Reynolds num-
bers obtained by Majdalani and Zhou [15] . Also, Dinarvand
[16] studied viscous flow with low seepage Reynolds number
through slowly expanding or contracting porous walls: a model
for transport of biological fluids through vessels. 

No-slip condition was not have longer valid at the perme-
able surface, Beavers and Joseph [17] reported mass flux exper-
iments and proved that a non-zero tangential (slip) velocity on
a permeable boundary surface has effect. Some experimental
and theoretical studies stated that slip condition could not be
ruled out as an important element to understanding of certain
characteristic flow [18] . Using a statistical approach, Saffman
[19] derived the slip velocity form. Isenberg [20] posited slip con-
dition in his study of blood flow in capillary tubes. Recently,
Zhang and Jia [21] studied the first and second order Navier–
Stokes equations accurate slip boundary conditions for describ-
ing the two-dimensional gaseous steady laminar flow between
two plates. Ramos [22] obtained an asymptotic analytical so-
lution for an incompressible fluid flow in channel with a slip
length that depended on the pressure and/or the axial pressure
gradient. Also some authors studied the effect of slip condition
on some difference problems such that peristaltic flow of Jeffrey
fluid model in a three dimensional rectangular duct [23] , flow of
non-Newtonian fluid with variable viscosity through a porous
medium in an inclined channel [24] and non-Newtonian MHD
fluid in porous space [25] . 

Lie group analysis (Lie point symmetries) method is an im-
portant method for find exact solutions of ordinary and par-
tial differential equations by using transformations groups (sim-
ilarity transformations) which introduced firstly by Sophus Lie
[26] . The groups of continuous transformations that leave a
given family of invariant equations are defined as the symme-
tries (isovector fields). The symmetry transformation is reduced
the independent variables from n to n − 1 variables [27] . Many
authors have been obtained the exact solutions for some prob-
lems in fluid mechanics by using Lie group analysis method.
Boutros et al. [28] studied Lie-group method solution for two-
dimensional viscous flow for an expanding or contracting walls
with weak permeability. Mekheimer et al. obtained the exact so-
lutions for a couple stress fluid with heat transfer, an electrically
conducting Jeffrey fluid, micro-polar fluid through a porous
medium and hydro-magnetic Maxwell fluid through a porous
medium [29–32] , also Shahzad et al. [33] use this method to find
the analytical solution of a micro-polar fluid. 

The main goal of this paper is to find the analytical and ap-
proximate solutions for a magneto couple stress fluid flow in a
porous channel with expanding and contracting walls using du-
ple perturbation and Adomian methods. In Section 3 , the basic
roles of the Lie group analysis method are given and used to
calculate the isovector field of our equations. The analytical so-
lution (duple perturbation) corresponding to the nonlinear or-
dinary differential equation obtained in Section 4 . Adomian de-
composition method is used to obtain the solution of our ODE
in Section 5 . Finally, the graphs for velocity components and
the pressure distribution presented for different values of the
physical and geometric parameters are plotted and discussed. 

2. Equations of motion 

Consider an unsteady two-dimensional motion of an incom-
pressible magneto couple stress fluid in a porous semi-infinite
channel with expanding or contracting walls. 

The distance 2 a ( t ) between channel’s walls is very small with
respect to the width and length of the channel. The channel is
closed from one end by a complicated solid membrane. Walls
have equal permeability V w and expand or contract uniformly
at a time-dependent rate ˙ a (t) , as shown in Fig. 1 . We take x̂
and ̂

 y to be co-ordinate axes parallel and perpendicular to the
channel walls and assume ̂  u and ̂

 v to be the velocity components
in the ̂  x and ̂

 y directions respectively. The governing equations
are expressed as follows, 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∂ ̂  u 
∂ ̂  x 

+ 

∂ ̂  v 
∂ ̂  y 

= 0 , 

ρ
(∂ ̂  u 

∂t 
+ ̂

 u 
∂ ̂  u 
∂ ̂  x 

+ ̂

 v 
∂ ̂  u 
∂ ̂  y 

)
= −∂ ̂  p 

∂ ̂  x 

+ μ∇ 

2 ̂ u − η∇ 

4 ̂ u − σB 

2 
0 ̂  u , 

ρ
(∂ ̂  u 

∂t 
+ ̂

 v 
∂ ̂  v 
∂ ̂  x 

+ ̂

 v 
∂ ̂  v 
∂ ̂  y 

)
= −∂ ̂  p 

∂ ̂  y 
+ μ∇ 

2 ̂ v − η∇ 

4 ̂ v , 

(1)

where ∇ 

2 = 

∂ 2 

∂ ̂  x 

2 
+ 

∂ 2 

∂ ̂  y 2 
, ∇ 

4 = ∇ 

2 (∇ 

2 ) , and ̂

 p ( ̂  x , ̂  y ) is the pres-

sure distribution. Here ρ, μ, σ , B 0 and η are mass density, coef-
ficient of viscosity, electrical conductivity of the fluid, magnetic
field and couple-stress parameter. 

The boundary conditions of our problem will be 

(i) 
∂ 2 ̂ u 
∂ ̂  y 2 

= 0 , ̂ u = −
√ 

k 

ι

∂ ̂  u 
∂ ̂  y 

, ̂ v = −V w = −A ˙ a , at ̂ y = a (t) , 

(i i ) 
∂ 3 ̂ u 
∂ ̂  y 3 

= 0 , 
∂ ̂  u 
∂ ̂  y 

= 0 , ̂ v = 0 , at ̂ y = 0 , 

(i i i ) ̂ u = 0 , at ̂ x = 0 , 

(2)

where ι is a dimensionless constant which depends on the pore
size of the permeable material, k is the specific permeability of
the porous medium. Take the stream function 

̂ ψ ( ̂  x , ̂  y , t) such
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Fig. 1 Geometry of the problem. 
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 = 

∂ ̂  ψ 

∂ ̂  y 
, ̂ v = −∂ ̂  ψ 

∂ ̂  x 

, (3) 

hich satisfies the continuity equation identically. 
If we introduce the dimensionless perpendicular coordinate 

 = 

̂ y 
a (t) 

, Eq. (3) becomes 

 

 = 

1 
a 

∂ ̂  ψ 

∂y 
, ̂ v = −∂ ̂  ψ 

∂ ̂  x 

. (4) 

ubstitute from (4) into (1) , then we have: 

 

2 ̂ ψ yt − a ˙ a y ̂  ψ yy − a ˙ a ̂  ψ y + a ̂  ψ y ̂  ψ ̂ x y − a ̂  ψ ̂ x ̂  ψ yy + 

a 3 

ρ
̂ p ̂ x 

−ν(a 2 ̂ ψ ̂ x ̂  x y + 

̂ ψ yyy ) + 

η

a 2 ρ
(a 4 ̂ ψ ̂ x ̂  x ̂  x ̂  x y + 

̂ ψ yyyyy ) 

− 1 
ρ

σB 

2 
0 a 

2 ̂ ψ y = 0 , 

−a 2 ̂ ψ ̂ x t + a ˙ a y ̂  ψ ̂ x y − a ̂  ψ y ̂  ψ ̂ x ̂  x + a ̂  ψ ̂ x ̂  ψ ̂ x y + 

a 
ρ

̂ p y 

+ ν(a 2 ̂ ψ ̂ x ̂  x ̂  x + 

̂ ψ ̂ x yy ) 

− η

a 2 ρ
(a 4 ̂ ψ ̂ x ̂  x ̂  x ̂  x ̂  x + 

̂ ψ ̂ x yyyy ) = 0 . (5) 

y using the following dimensionless parameters 

u = 

̂ u 
V w 

, v = 

̂ v 
V w 

, x = 

̂ x 

a (t) 
, ̂ t = 

tV w 

a 
, ψ = 

̂ ψ 

aV w 
, 

p = 

̂ p 
ρV 

2 
w 

, α = 

a ̇  a 
ν

, (6) 

he system (5) becomes 

 1 = ψ y ̂ t + ψ y ψ xy − ψ x ψ yy + p x − 1 
R e 

((α − M 

2 ) ψ y 

+ αyψ yy + ψ xxy + ψ yyy ) 

+ 

1 
γ 2 R e 

(ψ xxxxy + ψ yyyyy ) = 0 , 

 2 = ψ x ̂ t + ψ y ψ xx − ψ x ψ xy − p y − 1 
R e 

(αyψ xy + ψ xxx + ψ xyy ) 

+ 

1 
γ 2 R e 

(ψ xxxxx + ψ xyyyy ) = 0 , (7) 
here R e = 

a V w 

ν
is the permeation Reynolds number, M 

2 = 

σB 2 0 a 
2 

μ
is the Hartman number and γ 2 = 

μa 2 

η
is the dimension- 

ess couple stress parameter. 
The wall permeance or injection coefficient A is defined as 

 = 

Re 
a 

, it is a measure of wall permeability. 

From (4) and (6) , we can write 

 = 

∂ψ 

∂y 
, v = −∂ψ 

∂x 

. (8) 

he boundary conditions (2) will be 

(i) ψ yyy = 0 , ψ y = −φψ yy , ψ x = 1 at y = 1 , 
(i i ) ψ yyyy = 0 , ψ yy = 0 , ψ x = 0 at y = 0 , 
(i i i ) ψ y = 0 , at x = 0 . 

(9) 

here φ = 

√ 

k 

ιa 
is the slip coefficient. From a physical stand- 

oint, the idealization is based on a decelerating wall dilation 

ate that follows a plausible model according to which 

 ˙ a = const ant . (10) 

o, the rate of dilation decreases as the channel height increases.

Since α = 

a ̇  a 
ν

, then, integration of (10) yields 

a 
a 0 

= 

√ 

1 + 

2 ανt 
a 2 0 

, (11) 

here a 0 is the initial value of the channel height. 

. Lie group analysis and isovector fields 

o obtain the analytical solution, we apply Lie group analysis 
ethod on equations of the system (7) . For this we write 

 

x 

∗
i = x i + ε ξi (x j , u β ) + o (ε2 ) , 

u ∗α = u α + ε ηα(x j , u β ) + o (ε2 ) , 
i, j = 1 , 2 , 3 , α, β = 1 , 2 , 

(12) 
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Table 1 Table of commutators of the basis operators. 

X 1 X 2 X 3 X 4 (a 4 ) X 5 (a 5 ) 

X 1 0 0 0 0 0 
X 2 0 0 − α

R e 
X 3 X 4 (a 

′ 
4 ) X 5 (a 

′ 
5 ) 

X 3 0 α
R e 

X 3 0 0 0 

X 4 ( a 4 ) 0 −X 4 (a 
′ 
4 ) 0 0 0 

X 5 ( a 5 ) 0 −X 5 (a 
′ 
5 ) 0 0 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

as the infinitesimal Lie point transformations. We have assumed
that the system in Eq. (7) is invariant under the transformations
given in Eq. (12) . The corresponding infinitesimal generator of
Lie groups is given by 

X = ξi 
∂ 

∂x i 
+ ηα

∂ 

∂u α
, (13)

with summation convention over the repeated index and x 1 ≡
x , x 2 ≡ y , x 3 ≡̂ t , u 1 ≡ ψ , u 2 ≡ p . The coefficients ξ 1 , ξ 2 , ξ 3 ,
η1 and η2 are the functions of all independent and dependent
variables. There coefficients are the components of the infinites-
imals symmetries corresponding to x , y , ̂  t , ψ and p , respectively
to be determined from the invariance conditions: 

Pr (5) X (E a ) | E a =0 = 0 , a = 1 , 2 , (14)

where E a = 0 , i = 1 , 2 represent the system of Eq. (7) and Pr (5)

is the fifth prolongation of the isovector field X . 
Since the system (7) is of order five, then our prolongation

will be in the form 

Pr (1) X = X + ηαi 
∂ 

∂u α,i 
, 

Pr (2) X = Pr (1) X + ηαi j 
∂ 

∂u α,i j 
, 

Pr (3) X = Pr (2) X + ηαi jk 
∂ 

∂u α,i jk 
, 

Pr (4) X = Pr (3) X + ηαi jkl 
∂ 

∂u α,i jkl 
, 

Pr (5) X = Pr (4) X + ηαi jklm 

∂ 

∂u α,i jklm 

, 

(15)

where 

ηαi = D i [ ηα − ξ j u α, j ] + ξ j u α, ji , 

ηαi j = D i j [ ηα − ξk u α,k ] + ξk u α,ki j , 

ηαi jk = D i jk [ ηα − ξl u α,l ] + ξl u α,l i jk , 

ηαi jkl = D i jkl [ ηα − ξm 

u α,m 

] + ξm 

u α,mi jkl , 

ηαi jklm 

= D i jklm 

[ ηα − ξn u α,n ] + ξn u α,ni jklm 

, 

(16)

and the operator D i 1 i 2 ... i s is called the total derivative ( Hash op-
erator ) and have the following form: 

D i = 

∂ 

∂x i 
+ u α,i 

∂ 

∂u α
+ u α,i j 

∂ 

∂u α, j 
+ u α,i jk 

∂ 

∂u α, jk 
+ u α,i jkl 

∂ 

∂u α, jkl 

+ u α,i jklm 

∂ 

∂u α, jklm 

+ u α,i jklmn 
∂ 

∂u α, jklmn 
, 

(17)

where D i j = D i (D j ) = D j (D i ) = D ji and u α,i = 

∂u α
∂x i 

. 
Expanding the system of Eq. (14) with the aid of Mathe-

matica programm , along with the original system of Eq. (7) to
eliminate p x , p y and setting the coefficients involving ψ y , ψ x ,
ψ ̂ t , ψ yy , ψ xx , ψ xy , ψ x ̂ t , ψ y ̂ t , ψ yyy , ψ xyy , ψ xxy , ψ xxx , ψ yyyy , ψ xyyy ,
ψ xxyy , ψ xxxy , ψ xxxx , ψ yyyyy , ψ xyyyy , ψ xxyyy , ψ xxxyy , ψ xxxxy , ψ xxxxx

and various products to zero give rise the essential set of over-
determined equations. Solving these set of determining equa-
tions we obtain the required components of isovector field
as follows: 

ξ1 = a 1 ( ̂  t ) , ξ2 = a 2 e 
− α̂  t 

R e , ξ3 = a 3 , 

η1 = a 4 ( ̂  t ) + y a ′ 1 ( ̂  t ) , η2 = a 5 ( ̂  t ) + x 

(
1 

R e 
a ′ 1 ( ̂  t ) − a ′′ 1 ( ̂  t ) 

)
. 

(18)

If we take a 1 ( ̂  t ) = a 1 we get 

ξ1 = a 1 , ξ2 = a 2 e 
− α̂  t 

R e , ξ3 = a 3 , η1 = a 4 ( ̂  t ) , 
η2 = a 5 ( ̂  t ) , 

(19)

where a i , i = 1 , 2 , 3 are arbitrary constants and a 4 ( ̂  t ) , a 5 ( ̂  t )
are arbitrary functions of the variable ̂  t only. Therefore, the
equations admit a fiv e parameters Lie group of transformations
corresponding to the arbitrary constants a 1 , a 2 a 3 and arbitrary
functions a 4 , a 5 . The infinitesimal generator of Lie groups can
be written in the form of Lie algebra as the following: 

X = 

5 ∑ 

i=1 

a i X i , (20)

where 

X 1 = 

∂ 

∂x 

, X 2 = 

∂ 

∂ ̂  t 
, X 3 = e −

α
R e ̂

 t ∂ 

∂y 
, X 4 = a 4 ( ̂  t ) 

∂ 

∂ψ 

, 

X 5 = a 5 ( ̂  t ) 
∂ 

∂ p 
. (21)

The one-parameter group generated by X 1 and X 2 consists
of translations, whereas other symmetries are non-trivial. The
commutator table of the symmetries is given below, where the
entry in the i th row and j th column is defined as [ X i , X j ] =
X i X j − X j X i , see Table 1 . 

The solutions ψ = ψ(x, y, ̂  t ) and p = p(x, y, ̂  t ) , are invari-
ant under the symmetry (13) if 

φψ = X (ψ − ψ(x, y, ̂  t )) = 0 when ψ = ψ(x, y, ̂  t ) 
φp = X (p − p(x, y, ̂  t )) = 0 when p = p(x, y, ̂  t ) 

(22)

For X 2 , the characteristic has the components φψ = −ψ ̂ t = 0 ,
φp = −p ̂ t = 0 . Therefore, the general solutions of the invariant
surface conditions (22) are 

ψ = h (y ) H ( x, y ) , p = p( x, y ) . (23)
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Substitution from (23) into the first equation in (7) yields 

BR e 

(
d 5 h 
d y 5 

+ 5 
H y 

H 

d 4 h 
d y 4 

)
−

(
1 − 10 BR e 

H yy 

H 

)
d 3 h 
d y 3 

−
(

3 
H y 

H 

+ αy + R e (h H x − 10 B 

H yyy 

H 

) 

)
d 2 h 
d y 2 

−
(

2 αy 
H y 

H 

+ 3 
H yy 

H 

− 5 BR e 
H yyyy 

H 

+ α − M 

2 + 

H xx 

H 

−BR e 
H xxxx 

H 

+ R e h 
H x H y 

H 

− R e h H xy 

)
d h 
d y 

+ R e H x 

(
d h 
d y 

)2 

−
(

(α − M 

2 ) 
H y 

H 

+ αy 
H yy 

H 

+ 

H yyy 

H 

−BR e 
H yyyyy 

H 

+ 

H xxy 

H 

− BR e 
H xxxxy 

H 

)
h 

−R e 

(
H x H yy 

H 

− H y H xy 

H 

)
h 2 + 

R e 

H 

p x = 0 , (24) 

hich can be rewritten as 

BR e ( 
d 5 h 
d y 5 

+ 5 k 2 
d 4 h 
d y 4 

) − (1 − 10 BR e k 6 ) 
d 3 h 
d y 3 

−(3 k 2 − 10 BR e k 10 + αy + R e h k 1 ) 
d 2 h 
d y 2 

−(2 αyk 2 + 3 k 6 − 5 BR e k 11 + α − M 

2 + k 5 − BR e k 12 

+ R e (k 3 − k 4 ) h ) 
d h 
d y 

+ R e k 1 

(
d h 
d y 

)2 

−((α − M 

2 ) k 2 + αyk 6 + k 10 − BR e k 13 + k 9 − BR e k 14 ) h 

−R e (k 7 − k 8 ) h 2 + 

R e 

H 

p x = 0 , (25) 

here 

k 1 = H x , k 2 = 

H y 

H 

, k 3 = 

H x H y 

H 

, k 4 = H xy , k 5 = 

H xx 

H 

, 

k 6 = 

H yy 

H 

, 

k 7 = 

H y H xy 

H 

, k 8 = 

H x H yy 

H 

, k 9 = 

H xxy 

H 

, k 10 = 

H yyy 

H 

, 

 11 = 

H yyyy 

H 

, 

 12 = 

H xxxx 

H 

, k 13 = 

H yyyyy 

H 

, k 14 = 

H xxxxy 

H 

, B = 

1 
γ 2 R e 

(26) 

ince h is a function of y only, whereas H and p are functions
f x and y , thus from Eq. (25) we conclude that each of K i , i =
 , 2 , . . . , 14 must be a constant or function of y only to obtain
n expression in the single variable y . 

Solution of H x = K 1 in (26) gives 

H ( x, y ) = xk 1 (y ) + C 1 (y ) . (27) 

ubstitution from (27) into the first equation of (23) will give 

ψ = (xk 1 (y ) + C 1 (y )) h (y ) . (28) 

y using the boundary conditions (9) we get 

C 1 (y ) h (y ) = C 2 , (29) 

here C 2 is a constant. Substitution from (29) into (28) , gives 

ψ = xG (y ) + C 2 , (30) 
here G (y ) = k 1 (y ) h (y ) , substitution from the second equation
f (23) and (30) into the first equation in (7) , yields 

 e 
∂ p 
∂x 

= x 

(
−BR e 

d 5 G 

d y 5 
+ 

d 3 G 

d y 3 
+ (R e G + α y ) 

d 2 G 

d y 2 

+(α − M 

2 ) 
d G 

d y 
− R e 

(
d G 

d y 

)2 
) 

. (31) 

ubstitution from (27) and (30) into the last term of (25) , yields
 1 = 0 . Then H ( x, y ) = xk 1 (y ) , which satisfies the remaining
 i = 1 , 2 , . . . , 14 . 

And the stream function take the form 

ψ = xG (y ) . (32) 

rom (32) into (8) we get 

u = x 

d G 

d y 
, v = −G. (33) 

ubstitution from (32) into the second equation in (7) and then
ifferentiating with respect to x , yields 

p xy = 0 . (34) 

sing (32) into the first equation in (7) , then differentiating with
espects to y and using (34) , we get 

d 6 G 

d y 6 
− γ 2 d 

4 G 

d y 4 
− α γ 2 (y 

d 3 G 

d y 3 
+ 2 

d 2 G 

d y 2 
) + γ 2 M 

2 d 
2 G 

d y 2 

−R e γ
2 (G 

d 3 G 

d y 3 
− d G 

d y 
d 2 G 

d y 2 
) = 0 . (35) 

he boundary conditions (9) will be 

(i) 
d 3 G 

d y 3 
= 0 , 

d G 

d y 
= −φ

d 2 G 

d y 2 
, G = 1 , at y = 1 

(i i ) 
d 4 G 

d y 4 
= 0 , 

d 2 G 

d y 2 
= 0 , G = 0 at y = 0 . 

(36) 

. Analytical solution 

he non-linear differential equation (35) with the boundary 
onditions (36) will solve analytical by using double perturba- 
ions method. For small R e and α, assume 

G = G 0 + R e G 1 + O (R 

2 
e ) , 

G 0 = G 00 + αG 01 + O (α2 ) , 

G 1 = G 10 + αG 11 + O (α2 ) . 

(37) 

ubstitution from (37) into (35) , 

d 6 G 00 

d y 6 
− γ 2 d 

4 G 00 

d y 4 
+ γ 2 M 

2 d 
2 G 00 

d y 2 
= 0 , 

d 6 G 01 

d y 6 
− γ 2 d 

4 G 01 

d y 4 
+ γ 2 M 

2 d 
2 G 01 

d y 2 
− γ 2 

(
y 

d 3 G 00 

d y 3 
+ 2 

d 2 G 00 

d y 2 

)
= 0 ,

d 6 G 10 

d y 6 
− γ 2 d 

4 G 10 

d y 4 
+ γ 2 M 

2 d 
2 G 10 

d y 2 



Lie point symmetries for a magneto couple stress fluid in a porous channel 661 

) 

 

) 

) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

−γ 2 

(
G 00 

d 3 G 00 

d y 3 
− dG 00 

d y 
d 2 G 00 

d y 2 

)
= 0 , 

d 6 G 11 

d y 6 
− γ 2 d 

4 G 11 

d y 4 
+ γ 2 M 

2 d 
2 G 11 

d y 2 
− γ 2 

(
G 01 

d 3 G 00 

d y 3 
+ G 00 

d 3 G 01 

d y 3 

−dG 00 

d y 
d 2 G 01 

d y 2 
− dG 01 

d y 
d 2 G 00 

d y 2 

)
= 0 , (38

Solutions of (38) with its boundary conditions are 

G 00 (y ) = a 1 sinh [ ry ] + a 2 sinh [ sy ] + a 3 y, 

G 01 (y ) = b 1 sinh [ ry ] + b 2 sinh [ sy ] + b 3 y + 

γ 2 a 1 
4(2 r 2 − γ 2 ) (

y 2 sinh [ ry ] − (6 r 2 − γ 2 ) 

r (2 r 2 − γ 2 ) 
y cosh [ ry ] 

)
+ 

γ 2 a 2 
4(2 s 2 − γ 2 ) 

(y 2 sinh [ sy ] − (6 s 2 − γ 2 ) 

s (2 s 2 − γ 2 ) 
y cosh [ sy ]) , 

G 10 (y ) = (8 rγ 4 (−25 M 

2 + 4 γ 2 )(−2 a 2 a 3 M 

2 γ 2 ((−36 M 

2 

+11 s 2 ) yγ 2 (−4 M 

2 + γ 2 ) cosh [ sy ] 

+ s (54 s 2 γ 2 − 16 M 

4 y 2 γ 2 + γ 4 (7 + y 2 (−2 s 2 )) 

+4 M 

2 (46 s 2 + γ 2 (y 2 (γ 2 + 2 s 2 ) 

−3))) sinh [ sy ]) + 16 s (−4 M 

2 + γ 2 ) 2 (c 3 y 

+ M 

2 γ 2 (c 1 sinh [ ry ] + c 2 sinh [ sy ]))) 

−32 a 1 a 2 M 

2 γ 6 (−4 M 

2 + γ 2 )(9(−r + s ) γ 4 

+13(r + s ) γ 2 
√ 

−4 M 

2 γ 2 + γ 4 

+4 M 

2 (9(r − s ) γ 2 + 5(r + s ) 
√ 

−4 M 

2 γ 2 + γ 4 )) 

sinh [(−r + s ) y ] 

−a 1 (16 a 3 M 

2 sγ 6 (−25 M 

2 + 4 γ 2 )(−2 yγ 2 (−4 M 

2 + γ 2 )

(6 M 

2 (1 + 2 γ ) 

−r 2 (5 + 6 γ )) cosh [ ry ] − r (16 M 

4 y 2 γ 2 

+9 γ 2 (1 + 2 γ ) 
√ 

−4 M 

2 γ 2 + γ 4 

+ γ 5 (12 + y 2 γ ) + γ 4 (8 + y 2 
√ 

−4 M 

2 γ 2 + γ 4 ) 

−4 M 

2 ((5 + 18 γ ) 
√ 

−4 M 

2 γ 2 + γ 4 

+ γ 2 (8 + 12 γ + 2 y 2 γ 2 + y 2 
√ 

−4 M 

2 γ 2 +γ 4 ))) sinh [ ry ]

+16 a 2 M 

2 γ 6 (−4 M 

2 + γ 2 ) 

(9(r + s ) γ 4 + 13(−r + s ) γ 2 
√ 

−4 M 

2 γ 2 + γ 4 

+4 M 

2 (−9(r + s ) γ 2 + 5(−r + s ) √ 

−4 M 

2 γ 2 + γ 4 )) sinh [(r + s ) y ])) 
(
16 r 3 s 3 γ 4 

(−4 M 

2 + γ 2 ) 2 (−25 M 

2 + 4 γ 2 ) 
)−1 

, (39

where r , s , a 1 , a 2 , a 3 , b 1 , b 2 , b 3 , c 1 , c 2 and c 3 are computing from
the boundary conditions in ( 36 ) and showing in Appendix A . 

Then, solution of (35) with the boundary conditions (36) will
be 

G (y ) = G 00 + αG 01 + R e G 10 , (40)

where we neglected the term that containing αR e . 
The velocity components u and v can be obtained from Eq.

(33) . To determine the normal pressure drop, substitute from
(30) into the second equation in (7) , we get 

P y = −(G G y + 

1 
R e 

(G yy + α y G y − 1 
γ 2 

G yyyy )) . (41)
We can determine the normal pressure distribution, if we inte-
grate (41) with the boundary conditions given by Eq. (36) and
let P c be the centerline pressure, hence 

∫ p(y ) 

p c 
d p = −

∫ y 

0 

(
G G y + 

1 
R e 

(G yy + α y G y − 1 
γ 2 

G yyyy ) 
)

d y. 

(42)

The resulting normal pressure drop will be 

�p n = p(y ) − p c 

= 

1 
2 

G 

2 (0) + 

1 
R e 

(G y (0) − 1 
γ 2 

G yyy (0)) 

−
(

1 
2 

G 

2 + 

1 
R e 

(G y + αy G − 1 
γ 2 

G yyy − α

∫ y 

0 
G d y ) 

)
. 

(43)

To determine the axial pressure drop, substitute from (30) into
the first equation in (7) , we get 

P x = x 

(
G (G y + G yy ) + 

1 
R e 

((α − M 

2 ) G y 

+ α y G yy + G yyy − G 

2 
y −

1 
γ 2 

G yyyyy ) 

)
. (44)

The resulting axial pressure will be 

�p a = 

x 

2 

2 

(
G (G y + G yy ) + 

1 
R e 

(
(α − M 

2 ) G y 

+ α y G yy + G yyy − G 

2 
y −

1 
γ 2 

G yyyyy 

))
. (45)

The axial pressure drop behavior, at any value for y , takes a
parabolic profile. 

5. Adomian method solution 

In this section, we use the Adomian method to solve nonlinear
ordinary differential equation (35) with the boundary condition
(36) . The Adomian Decomposition Method has much attention
in recent years in applied mechanics in general, and in particular
the area of series. The method proved to be powerful, effective,
and can easily handle a wide class of linear and nonlinear, ordi-
nary and partial differential equations, and linear or nonlinear
integral equations. The Adomian Decomposition Method was
developed by George Adomian in and is well addressed in the
literature [34,35] . 

For solving Eq. (35) we write it in operator form: 

G = L 

−1 (γ 2 G 

(4) − γ 2 M 

2 G 

′′ + α γ 2 (yG 

(3) + 2 G 

′′ 
)) 

+ R e γ
2 L 

−1 (GG 

(3) − G 

′ 
G 

′′ 
) . (46)

Since L 

−1 (∗) = 

∫ y 

0 
(∗) dy ︸ ︷︷ ︸ 

6 −times 

. 

then the solution can be written as: 

G = L 

−1 (R (G )) + L 

−1 (N(G )) . (47)
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Fig. 2 Shows variation of velocity components and the normal pressure for different values of φ at fixed (γ = 0 . 3 , M = 10 , α = 0 . 5 , R e = 

0 . 2 ). 

Fig. 3 Shows variation of the axial velocity and the normal pressure for different values of M at fixed (γ = 0 . 3 , φ = 0 . 2 , α = 0 . 5 , R e = 

0 . 2 ). 
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here R ( G ) is the linear term and N ( G ) is the nonlinear term
nd we get the nonlinear term from the following expression: 

(u ) = 

∞ ∑ 

n =0 

A n (G 0 , G 1 , G 2 , . . . , G n ) , (48)

ince 

 n = 

1 
n ! 

d n 

dζ n 
(N( 

n ∑ 

i=0 

ζ i G i )) | ζ=0 , n ≥ 0 . (49) 

hen the solution take the form: 

 = 

∞ ∑ 

n =0 

G n = G 0 + L 

−1 (R ( 

∞ ∑ 

n =0 

G n )) + L 

−1 ( 

∞ ∑ 

n =0 

A n )) , (50)

hen we get the following recursive relation: 

G 0 = 

∑ 5 
j=0 m j y j , 

G n +1 = L 

−1 (R (G n )) + L 

−1 (A n ) , n ≥ 0 . 
(51) 

here m j is integral constants for the equation G 

(6) = 0 and
e use the boundary condition (36) to calculate our constants. 
hen the solution of our problem can be written as: 

 = 

∞ ∑ 

n =0 

G n = G 0 + G 1 + G 2 + · · · (52) 
ur solution has a big form for this we cannot write the expres-
ion of our solution. 

. Results and discussion 

n this section we interpret the effect of our different physical

arameters on the velocity components 
u 
x 

, v and the normal 

ressure �p n . 
Fig. 2 shows that effects of slip coefficient φ, we note that

he slip coefficient has obvious influence on the axial velocity 
nd the normal pressure. From Fig. 2 a we observe that the ax-
al velocity is decreasing as φ increasing at the center, which it
ncreasing function of φ near to the wall, this is the same effect
or [23,24] and others. Fig. 2 b shows that the radial velocity is a
ecreasing function of φ. From Fig. 2 c we observe that the slip
oefficient has obvious influence on �p n near to the wall, also
he normal pressure is decreasing as φ increasing. 

When a uniform steady magnetic field acts normal to the 
hannel walls, the structure of the flow changes drastically, as 
hown in Fig. 3 a, also, we show that the effects of the magnetic
eld become more pronounced as the field increases. Even at the
oderate Hartman numbers used in this project, the velocity 

rofile is nearly straight. Hartman numbers for many industrial 
nd laboratory applications can be large ( M = 10 − 10000 ).
he axial velocity is a decreasing function of M , this results
gree with the physical situation such that by increasing Hart- 
an number the Lorentz force increases which opposes the fluid 

otion, this result is consistent with previous results as [4] .
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Fig. 4 Shows variation of the axial velocity and the normal pressure for different values of γ at fixed (M = 10 , φ = 0 . 2 , α = 0 . 5 , R e = 0 . 2 ). 

Table 2 Table shows the variation of the axial velocity for different values of α at fixed (M = 

10 , φ = 0 . 2 , γ = 0 . 3 , R e = 0 . 5 , −0 . 5 ). 

y α = −0 . 5 α = 0 , α = 0 . 5 , α = −0 . 5 , α = 0 , α = 0 . 5 , 
R e = 0 . 5 R e = 0 . 5 R e = 0 . 5 R e = −0 . 5 R e = −0 . 5 R e = −0 . 5 

−1 0 .338435 0 .338379 0 .338322 0 .336771 0 .336714 0 .336658 
−0.8 0 .668876 0 .668781 0 .668687 0 .666133 0 .666038 0 .665943 
−0.6 0 .957788 0 .957723 0 .957658 0 .956015 0 .95595 0 .955885 
−0.4 1 .17855 1 .17857 1 .17859 1 .17919 1 .1792 1 .17922 
−0.2 1 .31601 1 .31611 1 .31621 1 .31894 1 .31904 1 .31915 
0 1 .36258 1 .36272 1 .36286 1 .36644 1 .36657 1 .36671 
0.2 1 .31601 1 .31611 1 .31621 1 .31894 1 .31904 1 .31915 
0.4 1 .17855 1 .17857 1 .17859 1 .17919 1 .1792 1 .17922 
0.6 0 .957788 0 .957723 0 .957658 0 .956015 0 .95595 0 .955885 
0.8 0 .668876 0 .668781 0 .668687 0 .666133 0 .666038 0 .665943 
1 0 .338435 0 .338379 0 .338322 0 .336771 0 .336714 0 .336658 

Table 3 Table shows the axial velocity for analytic and Adomian methods for different values of α
and R e at fixed (M = 10 , φ = 0 . 2 , γ = 0 . 3 ). 

y α = 0 . 1 , R e = 0 . 2 α = 0 . 1 , R e = 0 . 2 α = 0 . 6 , R e = 0 . 8 α = 0 . 6 , R e = 0 . 8 
analytic adomian analytic adomian 

−1 0 .337867 0 .337531 0 .338809 0 .337476 
−0.8 0 .667938 0 .667384 0 .669489 0 .667292 
−0.6 0 .957177 0 .956819 0 .958176 0 .956755 
−0.4 1 .17876 1 .17889 1 .1784 1 .17891 
−0.2 1 .31701 1 .3176 1 .31535 1 .3177 
0 1 .3639 1 .36468 1 .36173 1 .36482 
0.2 1 .31701 1 .3176 1 .31535 1 .3177 
0.4 1 .17876 1 .17889 1 .1784 1 .17891 
0.6 0 .957177 0 .956819 0 .958176 0 .956755 
0.8 0 .667938 0 .667384 0 .669489 0 .667292 
1 0 .337867 0 .337531 0 .338809 0 .337476 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 b clear that Hartman number has obvious effect on the
normal pressure and �p n decreases as M increases. 

The effect of the dimensionless couple stress parameter γ on
axial velocity has been presented in Fig. 4 a. It can be observed
that the axial velocity decreases near to the central plane as the
value of γ increases. However, this trend is reversed near walls.
We also note that the effect of couple stresses is obvious on
�p n and it decreases the normal pressure, as shown in Fig. 4 b.
Table 2 illustrates the behavior of the axial velocity for perme-
ation Reynolds number R = 0 . 5 , over a range of dimension-
e 
less wall dilation rate α. Table 2 describes the case of contract-
ing and expanding wall (−1 < α < 1) together with injection
( R e = 0 . 5 ). In case of expanding wall ( α > 0), the greater a , that
is, the expansion ratio of the wall is, the higher shall be the ax-
ial velocity near the center, and the lower near the wall. That is
because the flow toward the center become greater to make up
for the space caused by the expansion of the wall and as a result
the axial velocity also become greater near the center. In case
of contracting wall ( α < 0), increasing contraction ratio leads
to lower axial velocity near to the center, and the higher near to
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he wall because the flow toward the wall become greater and as
 result the axial velocity near to the wall become greater. The
ame discussion for the suction case R e = −0 . 5 . 

Finally Table 3 shows that the difference between adomian 

nd analytical methods for solving this problem, from this table 
e note that the error is order of 10 −4 for first two columns
 α = 0 . 1 , R e = 0 . 2 ) and order of 10 −3 for others columns ( α =
 . 6 , R e = 0 . 8 ). 

. Conclusion 

 MHD for a couple stress fluid in a porous channel with ex-
anding or contracting walls and slip boundary condition are 
tudied in this work. The solutions for the limiting case as a
−→ ∞ , M −→ and φ −→ 0 (as couple stresses, magnetic

eld and slip coefficient approaches to zero) are obtained by 
outros et al. [28] . It is interesting to note that these limiting

olutions are well in agreement with the solutions of respec- 
ive problems of Newtonian uid. The most important results 
btained as the following: 

• For no-slip case φ = 0 the fluid adheres to the walls and ax-
ial velocity is maximum at the center of the channel. By in-
creasing the slip parameter the velocity at the channel walls 
increases. However, it decreases at center of the channel by 
increasing slip parameter. 

• The axial velocity is a decreasing function of Hartman num- 
ber M , these results clearly establish the fact that the fluid
motion is retarded due to imposition of the transverse mag- 
netic field. 

• We also note that the effect of couple stresses is obvious for
small values of γ and become a constant as γ increases (i.e. 
we move from a couple stress fluid to Newtonian fluid). 

• In case of expanding wall ( α > 0), the axial velocity be max-
imum near the center. That is because the flow toward the 
center become greater to make up for the space caused by 
the expansion of the wall and as a result the axial velocity
also become greater near the center. 

• In case of contracting wall ( α < 0), increasing contraction 

ratio leads to lower axial velocity near to the center, and the
higher near to the wall because the flow toward the wall be-
come greater and as a result the axial velocity near to the
wall become greater. 
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ppendix A 

s = 

√ 

γ 2 −
√ 

−4 M 

2 γ 2 + γ 4 

2 
, r = 

√ 

γ 2 + 

√ 

−4 M 

2 γ 2 + γ 4 

2 
, 

 1 = 

s 3 cosh [ s ] 
s 3 cosh [ s ] f 1 − r 3 cosh [ r ] f 2 

, 

 2 = − r 3 cosh [ r ] 
s 3 cosh [ s ] f 1 − r 3 cosh [ r ] f 2 

, 
 3 = 1 − s 3 cosh [ s ] sinh [ r ] 
s 3 cosh [ s ] f 1 −r 3 cosh [ r ] f 2 

+ 

r 3 cosh [ r ] sinh [ s ] 
s 3 cosh [ s ] f 1 −r 3 cosh [ r ] f 2 

 1 = 

s 3 cosh [ s ] f 3 + f 4 f 2 
s 3 cosh [ s ] f 1 − r 3 cosh [ r ] f 2 

, 

 2 = − r 3 cosh [ r ] f 3 + f 4 f 1 
s 3 cosh [ s ] f 1 − r 3 cosh [ r ] f 2 

, 

 3 = − (s 3 cosh [ s ] f 3 + f 4 f 2 ) sinh [ r ] 
s 3 cosh [ s ] f 1 − r 3 cosh [ r ] f 2 

+ 

(r 3 cosh [ r ] f 3 + f 4 f 1 ) sinh [ s ] 
s 3 cosh [ s ] f 1 − r 3 cosh [ r ] f 2 

− f 5 , 

f 1 = (1 − r 2 φ) sinh [ r ] − r cosh [ r ] , f 2 = (1 − s 2 φ) sinh [ s ] 

−s cosh [ s ] , 

f 3 = 

γ 2 a 1 
4(2 r 2 − γ 2 ) 

((1 + (2 + r 2 ) φ) sinh [ r ] 

+ r (1 + 4 φ) cosh [ r ] 

− (6 r 2 − γ 2 ) 

r (2 r 2 − γ 2 ) 
(r (1 + 2 φ) sinh [ r ] 

+ r 2 φ cosh [ r ])) + 

γ 2 a 2 
4(2 s 2 − γ 2 ) 

((1 + (2 + s 2 ) φ) sinh [ s ] 

+ s (1 + 4 φ) cosh [ s ] 

− (6 s 2 − γ 2 ) 

s (2 s 2 − γ 2 ) 
(s (1 + 2 φ) sinh [ s ] + s 2 φ cosh [ s ])) , 

f 4 = 

γ 2 a 1 
4(2 r 2 − γ 2 ) 

(r (6 + r 2 ) cosh [ r ] + 6 r 2 sinh [ r ] 

− (6 r 2 − γ 2 ) 

r (2 r 2 − γ 2 ) 
(r 3 sinh [ r ] + 3 r 2 cosh [ r ])) 

+ 

γ 2 a 2 
4(2 s 2 − γ 2 ) 

(s (6 + s 2 ) cosh [ s ] + 6 s 2 sinh [ s ] 

− (6 s 2 − γ 2 ) 

s (2 s 2 − γ 2 ) 
(s 3 sinh [ s ] + 3 s 2 cosh [ s ])) , 

f 5 = 

γ 2 a 1 
4(2 r 2 − γ 2 ) 

( sinh [ r ] − (6 r 2 − γ 2 ) 

r (2 r 2 − γ 2 ) 
cosh [ r ]) 

+ 

γ 2 a 2 
4(2 s 2 − γ 2 ) 

( sinh [ s ] − (6 s 2 − γ 2 ) 

s (2 s 2 − γ 2 ) 
cosh [ s ]) 

here the other constants is very large, so we cannot write it
ere. 
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