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Abstract The unsteady boundary layer flow of a nanofluid past a stretching/shrinking sheet with a 
convective surface boundary condition is studied. The effects of the unsteadiness parameter, stretch- 
ing/shrinking parameter, convective parameter, Brownian motion parameter and thermophoresis 
parameter on the local Nusselt number are investigated. Numerical solutions to the governing equa- 
tions are obtained using a shooting method. The results for the local Nusselt number are presented 
for different values of the governing parameters. The local Nusselt number decreases as the stretch- 
ing/shrinking parameter increases. The local Nusselt number is consistently higher for higher values 
of the convective parameter but lower for higher values of the unsteadiness parameter, Brownian 
motion parameter and thermophoresis parameter. 
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. Introduction 

he term “nanofluid” which was first used by Choi and East- 
an [1] refers to the dispersions of nanometer-sized particles in 

 base fluid such as water, ethylene glycol and propylene gly-
ol, to increase their thermal conductivities. Nanofluids have 
ttracted much attention as a new generation of coolants for 
arious industrial and automotive applications. As a result, 
duction and hosting by Elsevier B.V. This is an open access article 
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many papers on nanofluids have been published, such as the pa-
pers by Xuan and Li [2] , Xuan and Roetzel [3] , Eastman et al.
[4] , Tiwari and Das [5] and Buongiorno [6] . In his paper, Buon-
giorno [6] developed an analytical model for convective trans-
port in nanofluids which takes into account the Brownian diffu-
sion and thermophoresis effects. Buongiorno model was used in
many recent papers, e.g. Neild and Kuznetsov [ 7 – 9 ] and Bachok
et al. [10, 11] , among others. 

The boundary layer flow over a stretching sheet is important
in applications such as extrusion, wire drawing, metal spinning,
hot rolling, etc. [12] . The flow over a stretching sheet was first
studied by Crane [13] who presented an exact analytical solution
for the steady two-dimensional flow over a stretching plate in a
quiescent fluid. However, recently, the study on the flow over a
shrinking sheet has garnered considerable attention. Miklav ̌ci ̌c
and Wang [14] initiated the study of flow over a shrinking sheet.
They found that the vorticity is not confined within a bound-
ary layer and a steady flow cannot exist without exerting ad-
equate suction at the boundary. Ever since, numerous studies
emerge, investigating different aspects of this problem such as
those studied by Wang [15] , Fang [16] , and Zaimi and Ishak
[17] , to name just a few. 

In the boundary layer flow and heat transfer analysis, it
is customary for the flow to be assumed as steady. Neverthe-
less, in many engineering applications, unsteadiness becomes
an integral part of the problem where the flow becomes time-
dependent [11, 18, 19] . Thus, motivated by this, we extend the
study of Bachok et al. [11] to the case of convective surface
boundary condition. For a long time, constant surface temper-
ature and heat flux are customarily used. However, there are
times when heat transfer at the surface relies on the surface
temperature, as what mostly occurs in heat exchangers. In this
situation, convective boundary condition is used to replace the
condition of prescribed surface temperature. Aziz [20] employed
the convective boundary condition in his research to study the
heat transfer characteristics for the Blasius flow. Ishak [21] in-
troduced the effects of suction and injection at the boundary.
Makinde and Aziz [22] investigated the boundary layer flow
of a nanofluid past a stretching sheet with a convective sur-
face boundary condition. The dependency of the local Nusselt
number on fiv e parameters, namely the stretching/shrinking,
unsteadiness, convective, Brownian motion and thermophore-
sis parameters is the main focus of the present investigation.
Numerical solutions are presented graphically and in tabular
forms to show the effects of these parameters on the local Nus-
selt number. 

2. Mathematical formulation 

Consider an unsteady, two-dimensional ( x , y ) boundary layer
flow of a viscous and incompressible fluid over a stretch-
ing/shrinking sheet immersed in a nanofluid. It is assumed that
at time t = 0, the velocity of the sheet is U w ( x, t ) = 0 . The un-
steadiness in the flow field is caused by the time-dependent
velocity of the stretching sheet, which is given by U w = Ax / t
where A > 0, t > 0 [11, 23–25] . It is also assumed that the con-
stant mass flux velocity is v 0 ( x, t ) with v 0 ( x, t ) < 0 for suction
and v 0 ( x, t ) > 0 for injection or withdrawal of the fluid. The
nanofluid is confined to y > 0, where y is the coordinate mea-
sured normal to the stretching/shrinking surface as shown in
Fig. 1 . It is further assumed that the bottom surface of the sheet
is heated by convection from a hot fluid at temperature T f which
provides a heat transfer coefficient h . The surface temperature
T w is the result of a convective heating process characterized by
the hot fluid. 

The governing equations for the steady conservation of mass,
momentum, thermal energy and nanoparticle volume fraction
equations can be written as [14] 

∂u 
∂x 

+ 

∂v 
∂y 

= 0 (1)

∂u 
∂t 

+ u 
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)
(5)

where u and v are the velocity components along the x - and y -
axis, respectively, P is the fluid pressure, T is the fluid tempera-
ture, α is the thermal diffusivity, ω is the kinematic viscosity, D B

is the Brownian diffusion coefficient, D T is the thermophore-
sis diffusion coefficient and ϕ is the nanoparticle volume frac-
tion. Furthermore, τ = ( ρc ) p / ( ρc ) f is the ratio of the effective
heat capacity of the particles to that of the fluid with ρ and c
being the density and the specific heat at constant pressure, re-
spectively. The subscript ∞ represents the values at large values
of y (outside the boundary layer). Details of the derivation of
Eqs. (4) and ( 5 ) are given in the papers by Buongiorno [6] and
Nield and Kuznetsov [8] . 

Eqs. ( 1 )–( 5 ) are subjected to the following boundary condi-
tions [11,20] : 

t = 0 : v ( x, y, t ) = 0 , u ( x, y, t ) = 0 , T ( x, y, t ) = T w , 

ϕ ( x, y, t ) = ϕ w 

t > 0 : 

{ 

v ( x, t ) = v 0 ( x, t ) , u ( x, t ) = σU w ( x, t ) , 
−k 

∂T 
∂y = h 

(
T f − T w 

)
, ϕ (x, t ) = ϕ w at y = 0 

(6)

u ( x, y, t ) → 0 , v ( x, y, t ) → 0 , T ( x, y, t ) → T ∞ 

, 

ϕ ( x, y, t ) → ϕ ∞ 

as y → ∞ (7)

where σ is the stretching/shrinking velocity with σ > 0 for a
stretching sheet and σ < 0 for a shrinking sheet and k is the
thermal conductivity of the base fluid. The subscript w denotes
the values at the solid surface. The governing Eqs. ( 1 )–( 5 ) sub-
jected to the boundary conditions ( 6 ) and ( 7 ) can be expressed
in a simpler form by introducing the following transformation: 

ψ = Ax ( ω/t ) 1 / 2 f ( η) , η = ( ωt ) −1 / 2 y, 

θ ( η) = 

T − T ∞ 

T f − T ∞ 

, β( η) = 

ϕ − ϕ ∞ 

ϕ w − ϕ ∞ 

(8)

where η is the similarity variable and ψ is the stream function
defined as u = ∂ψ / ∂y and v = −∂ψ / ∂x , which identically sat-
isfies Eq. (1) . By employing the boundary layer approximations
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Fig. 1 Geometry of the problem for (a) stretching and (b) shrinking sheets. 
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Table 1 Values of σ c for different A and S . 

A S σ c 

1.0 2 −0.925998 
1.1 −1.027556 
1.2 −1.129323 
1.0 3 −2.152694 

4 −3.888846 
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nd the similarity variables ( 8 ), Eqs. ( 2 )–( 5 ) reduce to the fol-
owing nonlinear ordinary differential equations: 

f ′′′ + A 

(
f f ′′ − f ′ 2 

)
+ f ′ + 

η

2 
f ′′ = 0 (9) 

1 
Pr 

θ ′′ + 

(
A f + 

η

2 

)
θ ′ + Nbβ ′ θ ′ + Nt θ ′ 2 = 0 (10) 

′′ + 

Nt 
Nb 

θ ′′ + Le 
(

A f + 

η

2 

)
β ′ = 0 (11) 

nd the boundary conditions ( 6 ) and ( 7 ) become 

f (0) = S, f ′ (0) = σ , θ ′ (0) = −γ [ 1 − θ ( 0 ) ] , β(0) = 1 

(12) 

f ′ = 0 , θ = 0 , β = 0 as η → ∞ (13)

here primes denote differentiation with respect to η. Further, 
r is the Prandtl number, Nb is the Brownian motion parameter, 
t is the thermophoresis parameter, Le is the Lewis number, 
 is the mass flux parameter with S > 0 for suction and S < 0

or injection and γ is the Biot number (convective parameter), 
hich are defined as 

Pr = 

ω 

α
, Nb = 

τD B ( ϕ w − ϕ ∞ 

) 

ω 

, Nt = 

τD T ( T f − T ∞ 

) 

ω T ∞ 

e = 

ω 

D B 
, S = − v 0 (x, t) 

A 

√ 

ω/t 
, γ = c 

√ 

ω /k (14) 

here we take h = c/ 
√ 

t , to obtain similarity solution. When
 b = N t = 0 , the present problem reduces to a regular vis-

ous fluid, and the nanoparticle volume fraction Eq. (11) be- 
omes ill-posed and is of no physical significance. Furthermore, 
q. (9) for A = 1 becomes identical with Eq. (6) found by Fang
t al. [19] for the unsteady two-dimensional shrinking sheet 
hen their unsteadiness parameter β = −1. 

The physical quantities of interest are the skin friction coef- 
cient C f and the local Nusselt number N u x which are defined as 

 f = 

τw 

ρ U 

2 
w 

, N u x = 

x q w 
k ( T f − T ∞ 

) 
(15) 

here τw and q w are the surface shear stress and heat flux, re-
pectively, which are given by [20] 

w = μ

(
∂u 
∂y 

)
y =0 

, q w = −k 

(
∂T 

∂y 

)
y =0 

(16) 

Using the similarity variables ( 8 ), we obtain 

 f R e x 1 / 2 = A 

−1 / 2 f ′′ (0) , N u x R e x −1 / 2 = −A 

−1 / 2 θ ′ (0) (17) 

here R e x = U w x/ω is the local Reynolds number. 
. Results and discussions 

he set of ordinary differential Eqs. ( 9 )–( 11 ) with the bound-
ry conditions ( 12 ) and ( 13 ) were solved numerically using a
hooting method. In this method, the dual solutions are ob- 
ained by setting different initial guesses for the values of f ́́(0),
θ ʹ(0) and −β ʹ(0), where all profiles satisfy the far field bound-

ry conditions ( 13 ) asymptotically but with different boundary 
ayer thicknesses. The problem for a regular (viscous) fluid in- 
olves five parameters: Prandtl number, stretching/shrinking, 
uction/injection, unsteadiness and convective parameters. The 
symptotic boundary conditions ( 13 ) at η= ∞ are replaced by
= 15 as customary in the boundary layer analysis. This choice

s adequate for the velocity and temperature profiles to reach 

he far field boundary conditions asymptotically. 
Variation of the skin friction coefficients and local Nusselt 

umber ( C f Re x 1/2 and Nu x Re x −1/2 respectively) with σ for S = 2,
e = 2, Nt = Nb = 0.5, Pr = 6.8 and different values of the accel-
ration parameter A and the convective parameter γ are shown 

n Figs. 2–4 . As can be seen in these figures, there are more than
ne solution obtained for a fixed value of σ . When σ is equal
o a certain value σ = σ c where σ c ( < 0) is the critical value of
, there is only one solution, and when σ < σ c , there is no solu-

ion. Based on our computations, the values of σ c are computed 

n Table 1 . Furthermore, the values of σ c for S = 3 and S = 4 are
lso included in Table 1 for future reference. It is noted that the
nsteadiness and mass suction parameters widen the range of 
for which the solution exists. However, it is also seen that the

alues of σ c remain constant for different values of γ . This is
lear from Eqs. ( 9 )–( 13 ) where the thermal field does not affect
he flow field. 

From Figs. 2 – 4 , the skin friction coefficient and the local
usselt number (surface heat transfer rate) change with the 

ariations of σ , A and γ . The skin friction coefficient and the
ocal Nusselt number generally decrease as σ increases. The lo- 
al Nusselt number is also consistently higher for a nanofluid 
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Fig. 2 Variation of the skin friction coefficient with σ for different values of A when S = 2. 

Fig. 3 Variation of the local Nusselt number with σ for different values of A when S = 2 , Pr = 6.8 , γ = 1 , Le = 2, Nb = Nt = 0.5. 

Fig. 4 Variation of the local Nusselt number with σ for different values of γ when A = 1 , Pr = 6.8 , S = 2 , Le = 2 , Nb = Nt = 0.5. 
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Table 2 Variations of the local Nusselt number Nu x Re x −1/2 for 
different values of Nb and Nt when Pr = 6.8, S = 2, σ = −0.1, 
γ = 0.1, Le = 2 and A = 1. 

Nb Nt Nu x Re x −1/2 

0.1 0.2 0.099150 
0.3 0.098751 
0.5 0.098012 
0.2 0.1 0.098980 

0.3 0.098978 
0.5 0.098976 
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ith higher values of γ . This phenomenon can be explained 

y expression ( 14 ) where γ is directly proportional to the heat
ransfer coefficient h where it is implied that the former is in-
ersely proportional to thermal resistance. Hence, the thermal 
esistance becomes weaker as the convective parameter intensi- 
es which results in higher surface heat transfer rate. 

In this study, two parameters are added, namely the Brown- 
an motion Nb and thermophoresis parameters Nt . The effects 
f these parameters on the local Nusselt number are portrayed 

n Table 2 . The local Nusselt number is consistently lower for
igher values of Nb and Nt. This observation agrees with the 
ndings of Nield and Kuznetsov [ 7 – 9 ]. The local Nusselt num-
er decreases due to the thickening of thermal boundary layer 
s the Brownian motion parameter and thermophoresis param- 
ter increase. 

To support the validity of the numerical results obtained, 
elocity profiles are shown in Fig. 5 at different values of A .
hese profiles satisfy the far field boundary conditions ( 13 ), as
ell as supporting the existence of the dual solutions shown in 

igs. 2 – 4 . For a similar problem where dual solutions exist,
erkin [26] , Weidman et al. [27] and Postelnicu and Pop [28] 

ave shown that the first solution is linearly stable, while the sec-
nd solution is not. Thus for the present problem, it is expected 

hat only the first solution is stable and physically realizable. 
Fig. 5 Velocity profiles for different val
. Conclusions 

he unsteady boundary layer flow of a nanofluid past a stretch-
ng/shrinking sheet with a convective boundary condition was 
tudied. The effects of the acceleration parameter, stretch- 
ng/shrinking parameter, convective parameter, Brownian mo- 
ion parameter and thermophoresis parameter on the local 
usselt number were studied. Numerical solutions to the gov- 

rning equations were obtained using a shooting method. The 
esults for the local Nusselt number are presented for different 
alues of the governing parameters. The local Nusselt number 
ecreases as the stretching/shrinking parameter increases. It is 
lso consistently higher for higher values of the convective pa- 
ameter but lower for higher values of the unsteadiness param- 
ter, Brownian motion parameter and thermophoresis parame- 
er. The results also indicate the existence of dual solutions for
oth stretching and shrinking cases. 
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