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Abstract In this paper we investigate the nonlinear matrix equation X + A 

T 
√ 

X 

−1 A = P, for the 
existence of positive definite solutions. Bounds for ‖ X 

−1 
L ‖ and ‖ X 

−1 ‖ are derived where X L is the 
maximal solution and X is any other positive definite solution of this matrix equation. A perturba- 
tion estimate for the maximal solution and an error bound for approximate solutions are derived. A 

numerical example is given to illustrate the reliability of the obtained results. 
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. Introduction 

onsider the nonlinear matrix equation 

 + A 

T 
√ 

X 

−1 A = P, (1.1) 

here A and P are nxn nonsingular and positive definite ma- 
rices respectively. The existence and the uniqueness, the rate of 
onvergence as well as the necessary and sufficient conditions 
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or the existence of positive definite solutions of similar kinds 
f nonlinear matrix equations have been studied by several 
uthors [1–15] . Perturbation analysis for the matrix equations 
 ± A 

∗X 

−n A = Q , X + A 

∗F (X ) A = Q and X + A 

∗X 

−1 A = P
re studied in [16–20] respectively. Throughout this paper we 
se X L to denote the maximal solution of the matrix Eq. (1.1) .
he paper is organized as follows: First, in Section 2 , we in-

roduce some notations and a lemma that will be needed for
eveloping the work. In Section 3 , an iterative method for ob-
aining the maximal positive definite solution of the matrix 
q. (1.1) is proposed. We state and prove a theorem and a

emma for the existence of the maximal solution. We also, put
onditions on the matrix A to derive bounds on the maximal so-
ution X L as well as any other positive definite solution X of the

atrix Eq. (1.1) in terms of the matrix P. In Section 4 , we inves-
igate a perturbation estimate for the maximal solution of the 
atrix Eq. (1.1) and an error bound for approximation of the
 hosting by Elsevier B.V. This is an open access article under the CC 
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The proof of this lemma is straightforward. 
maximal solution is obtained. In Section 5 , numerical example
is given to illustrate the obtained results. 

2. Preliminaries 

The following properties and the lemma stated below will be
needed for developing the work: 

For square nonsingular matrices A, B, we have the following:

(i) If A ≥ B > 0 then 

√ 

A ≥ √ 

B > 0 and A 

−1 ≤ B 

−1 . 
(ii) The spectral norm is monotonic norm, that is if 0 < A 1 ≤

A 2 , then ‖ A 1 ‖ ≤ ‖ A 2 ‖ . 
Lemma 2.1. [ 21 , Theorem 8.5.2, p.263] Let the matrices A, B
and C ∈ P(n ) [the set of all positive definite nxn matrices], be
such that the integral 

∫ ∞ 

0 e At C e Bt dt exists and lim 

t→∞ 

e At C e B t = 0 .

Then the matrix X = − ∫ ∞ 

0 e At C e Bt dt is a solution of the matrix
equation AX + X B = C. 

3. On the existence analysis of the maximal solution of the 
equation X + A 

T 
√ 

X 

−1 A = P 

Now, for solving our problem ( 1.1 ) we consider the following
iterative process. 

X 0 = P 

X k +1 = P − A 

T 
√ 

X 

−1 
k A k = 0 , 1 , 2 , . . . (3.1)

Fact 3.1. If A is nonsingular matrix and the matrix Eq. (1.1) has
a positive definite solution X , then the sequence { X k } derived
from ( 3.1 ), is monotonic decreasing and bounded from below
and hence converges to X L (the maximal solution). 

The statement of this fact and its proof are similar to The-
orem 2.5 and Theorem 2.6 [22] , where V. I. Hasanov consid-
ers the iteration X 0 = γ Q, X s +1 = Q − A 

∗X 

−q 
s A, s = 0 , 1 , 2 , . . .

to solve the matrix equation X + A 

∗X 

−q A = Q . 

Theorem 3.1. If ‖ A ‖ < 

√ 

2 √ 

27 
‖ P 

−1 ‖ − 3 
4 , then the maximal solu-

tion X L of the matrix Eq. (1.1) satisfies ‖ X 

−1 
L ‖ ≤ (1 + η) ‖ P 

−1 ‖ .
Moreover, for any other positive definite solution X we have

‖ X 

−1 ‖ > (5 − η) ‖ P‖ −1 , here η = ‖ A ‖ 2 ‖ P 

−1 ‖ 3 2 ( 1 + η) 
3 
2 < 2 . 

Proof. It is clear that X is a solution of the matrix Eq. (1.1) if
and only if Y = X 

−1 satisfies 

 = P 

−1 + P 

−1 A 

T 
√ 

Y AY . (3.2)

Now consider the sequence of matrices 

Y 0 = O 

Y k = P 

−1 + P 

−1 A 

T √ 

Y k −1 A Y k −1 k = 1 , 2 , . . . 
(3.3)

Using induction, it is easy to verify that: 

‖ Y k ‖ ≤ (1 + ηk ) 
∥∥P 

−1 
∥∥ k = 1 , 2 , · · · (3.4)

where 

η1 = 0 , ηk = ‖ A ‖ 2 ‖ P 

−1 ‖ 3 2 ( 1 + ηk −1 ) 
3 
2 . (3.5)
Also, by induction we get 0 ≤ ηk < ηk +1 < 2 , k = 1 , 2 , . . .
hence there exists a positive number η with 0 < η ≤ 2 such that
lim 

k →∞ 

ηk = η. Thus it follows from ( 3.5 ) 

η = ‖ A ‖ 2 ∥∥P 

−1 
∥∥ 3 

2 ( 1 + η) 
3 
2 < 2 . (3.6)

Then from ( 3.4 ) and ( 3.6 ) we have 

‖ Y k ‖ ≤ (1 + ηk ) ‖ P 

−1 ‖ ≤ (1 + η) ‖ P 

−1 ‖ , k = 1 , 2 , . . . 

which yields: 

‖ Y k +1 − Y k ‖ = ‖ P 

−1 ( A 

T 
√ 

Y k A Y k − A 

T 
√ 

Y k −1 A Y k −1 ) ‖ 

≤ ‖ A ‖‖ P 

−1 ‖‖ √ 

Y k A Y k −
√ 

Y k −1 A Y k −1 ‖ 
= ‖ A ‖‖ P 

−1 ‖‖ √ 

Y k A ( Y k − Y k −1 ) 

+ ( 
√ 

Y k −
√ 

Y k −1 ) A Y k −1 ‖ (3.7)

It is clear that Z = 

√ 

Y k −
√ 

Y k −1 is a positive definite solu-
tion of the matrix equation 

√ 

Y k Z + Z 

√ 

Y k −1 = Y k − Y k −1 . 

According to Lemma 2.1 , we have 

Z = 

∫ ∞ 

0 
e −

√ 

Y k t ( Y k − Y k −1 ) e −
√ 

Y k −1 t dt (3.8)

From ( 3.7 ) and ( 3.8 ), then we get 

‖ Y k +1 − Y k ‖ 
≤ ‖ A ‖ ∥∥P 

−1 
∥∥ ∥∥√ 

Y k A ( Y k − Y k −1 ) 

+ 

(∫ ∞ 

0 
e −

√ 

Y k t ( Y k − Y k −1 ) e −
√ 

Y k −1 t dt 
)

A Y k −1 

∥∥∥∥
≤ ‖ A ‖ 2 ∥∥P 

−1 
∥∥ ‖ Y k − Y k −1 ‖ 

×
{∥∥∥√ 

Y k 

∥∥∥ + 

(∫ ∞ 

0 

∥∥∥e −
√ 

Y k t 
∥∥∥ ∥∥∥e −

√ 

Y k −1 t 
∥∥∥dt 

)
‖ Y k −1 ‖ 

}
≤ ‖ A ‖ 2 ∥∥P 

−1 
∥∥ ‖ Y k − Y k −1 ‖ 

×
⎧ ⎨ 

⎩ 

∥∥√ 

Y k 

∥∥ + 

1 

2 
∥∥P 

−1 
∥∥ 1 

2 (1 + η) 
1 
2 

‖ Y k −1 ‖ 
⎫ ⎬ 

⎭ 

= 

⎧ ⎨ 

⎩ 

‖ A ‖ 2 ∥∥P 

−1 
∥∥ 3 

2 
3(1 + η) 

1 
2 

2 

⎫ ⎬ 

⎭ 

‖ Y k − Y k −1 ‖ ≤ ρk (3.9)

where 

ρ = ‖ A ‖ 2 ∥∥P 

−1 
∥∥ 3 

2 
3(1 + η) 

1 
2 

2 
< 1 , (3.10)

Thus, it follows that the matrix sequence { Y k } is convergent.
Let ˆ Y = lim 

k →∞ 

Y k , then 

ˆ Y is a solution of the matrix Eq. (3.2) and

satisfies ‖ ̂  Y ‖ ≤ (1 + η) ‖ P 

−1 ‖ . 
It is easy to show 

ˆ Y is symmetric positive definite solution of
the matrix Eq. (3.2) . But since ˆ Y must be X 

−1 
L then the proof of

the theorem is completed. 

Lemma 3.2. If ‖ A ‖ < 

√ 

2 √ 

27 
‖ P 

−1 ‖ − 3 
4 , then the maximal solu-

tion X L of the matrix Eq. (1.1) satisfies 1 
3 ‖ P‖ ≤ ‖ X L ‖ ≤ ‖ P‖ . 
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. Perturbation estimate of the maximal solution for the 
quation X + A 

T 
√ 

X 

−1 A = P 

n this section, we investigate a perturbation estimate for the 
aximal solution X L of the matrix Eq. (1.1) using the lemma 

iven in Section 3 , also, we obtain an error bound for approxi-
ation of the maximal solution. 

Consider the perturbed matrix equation 

˜ 
 + 

˜ A 

T 
√ 

˜ X 

−1 ˜ A = 

˜ P , (4.1) 

here ˜ A is nxn nonsingular matrix and 

˜ P is positive definite ma- 
rix. Denote �A = 

˜ A − A, �P = 

˜ P − P. We derive some per-
urbation estimates for �A and �P as follows: 

heorem 4.1. Let 

(i) ε = 

√ 

2 √ 

27 
− ‖ A ‖ ‖ P 

−1 ‖ 3 
4 > 0 . 

(ii) ‖ �A ‖ < ( ( 1 −
√ 

2 √ 

27 
) ε ) ‖ P 

−1 ‖ − 3 
4 

(iii) ‖ �P ‖ ≤ ( 1 − ( 1 − ε) 
4 
3 ) ‖ P 

−1 ‖ −1 

then ‖ ̃  A ‖ ‖ ̃  P 

−1 ‖ 3 4 < 

√ 

2 √ 

27 
and ‖ A ‖ ‖ ̃  P 

−1 ‖ 3 4 < 

√ 

2 √ 

27 
. 

emark. The conditions (i), (ii) and (iii) of this theorem are sim-
lar to: 

(1) the conditions of Theorem 3.1 [ 19 , p.1415] for study- 
ing the matrix equations X 

s + A 

∗X 

−t A = Q and 

˜ X 

s + 

˜ A 

∗ ˜ X 

−t ˜ A = 

˜ Q by putting s = 1 , t = 

1 
2 . 

(2) the conditions of Theorem 10 [18] for studying the matrix 
equations X − A 

∗X 

−n A = Q and 

˜ X − ˜ A 

∗ ˜ X 

−n ˜ A = 

˜ Q 

by putting n = 

1 
2 

roof. Since � P = 

˜ P − P therefore, ˜ P 

−1 = P 

−1 −
 

−1 (� P) ˜ P 

−1 

Taking norm and using condition (iii), we get 

 ̃

 P 

−1 ‖ ≤ ‖ P 

−1 ‖ + ‖ P 

−1 ‖‖ �P ‖‖ ̃  P 

−1 ‖ 
≤ ‖ P 

−1 ‖ + ( 1 − (1 − ε) 
4 
3 ) ‖ ̃  P 

−1 ‖ 

nd so we have, 

 ̃

 P 

−1 ‖ ≤ ‖ P 

−1 ‖ 
(1 − ε) 

4 
3 

herefore, 

 ̃

 P 

−1 ‖ 3 4 ≤ ‖ P 

−1 ‖ 
3 
4 

1 − ε 
(4.2) 

Combining (ii) and ( 4.2 ) we obtain 

 ̃

 A ‖ ‖ ̃  P 

−1 ‖ 3 4 ≤ ( ‖ A ‖ + ‖ ̃  A − A ‖ ) ‖ ̃  P 

−1 ‖ 3 4 

≤ ( ‖ A ‖ + ‖ �A ‖ ) ‖ P 

−1 ‖ 
3 
4 

1 − ε 

< 

( ‖ A ‖ + ( ( 1 −
√ 

2 √ 

27 
) ε ) ‖ P 

−1 ‖ − 3 
4 ) ‖ P 

−1 ‖ 
3 
4 

1 − ε 
= 

( ‖ A ‖ ‖ P 

−1 ‖ 
3 
4 + ( ( 1 −

√ 

2 √ 

27 
) ε ) ) 

1 − ε 

= 

√ 

2 √ 

27 
. (4.3) 

From condition (i) and inequality ( 4.2 ) it is easy to verify: 

 A ‖ ‖ ̃  P 

−1 ‖ 3 4 ≤ ‖ A ‖ ‖ P 

−1 ‖ 
3 
4 

( 1 −
√ 

2 √ 

27 
+ ‖ A ‖ ‖ P 

−1 ‖ 
3 
4 ) 

< 

√ 

2 √ 

27 

hich completes the proof of the theorem. 

heorem 4.2. Consider the two matrix equations X + 

 

T 
√ 

X 

−1 A = P, ˜ X + 

˜ A 

T 
√ ˜ X 

−1 ˜ A = 

˜ P 

ith 

 ̃

 A ‖ ‖ ̃  P 

−1 ‖ 3 4 < 

√ 

2 √ 

27 
and ‖ A ‖ ‖ ̃  P 

−1 ‖ 3 4 < 

√ 

2 √ 

27 
(4.4) 

hen the maximal solutions X L and ˜ X L of these two equations exist 
nd satisfy 

‖ � X L ‖ 
‖ X L ‖ ≤ 1 

δ

(
3 ‖ � P ‖ 

‖ P ‖ + 

4 ‖ � A ‖ 
‖ A ‖ 

)
(4.5) 

here δ = 1 −
√ √ 

27 
2 ‖ A ‖ ‖ P 

−1 ‖ 3 
4 > 0 . 

roof. Using the obtained results of Theorem 4.1 where 

 A ‖‖ P 

−1 ‖ 3 4 < 

√ 

2 √ 

27 
that is: ‖ ̃  A ‖ ‖ ̃  P 

−1 ‖ 3 4 < 

√ 

2 √ 

27 
and

 A ‖ ‖ ̃  P 

−1 ‖ 3 4 < 

√ 

2 √ 

27 
hold, then “by setting 0 < η ≤ 2 in

heorem 3.1 ” and from Lemma 3.2 we get that the maximal
olutions X L and 

˜ X L of the two Eqs. (1.1) and ( 4.1 ) exist and
atisfy that 

X 

−1 
L 

∥∥ < 3 ‖ P 

−1 ‖ , ∥∥ ˜ X 

−1 
L 

∥∥ < 3 ‖ ̃  P 

−1 ‖ (4.6) 

nd 

1 
3 
‖ P ‖ ≤ ‖ X L ‖ ≤ ‖ P ‖ , 1 

3 
‖ ̃  P ‖ ≤ ‖ ˜ X L ‖ ≤ ‖ ̃  P ‖ . (4.7) 

It is clear that X L and 

˜ X L satisfy the two matrix equations 

 L + A 

T 
√ 

X 

−1 
L A = P and 

˜ X L + 

˜ A 

T 
√ 

˜ X 

−1 
L 

˜ A = 

˜ P 

Set � A = 

˜ A − A and � X L = 

˜ X L − X L . If we consider the
dentity 

P = 

˜ P − P 

= 

˜ X L − X L + 

˜ A 

T 
√ 

˜ X 

−1 
L 

˜ A − A 

T 
√ 

X 

−1 
L A 

= � X L + (�A 

T + A 

T ) 

√ 

˜ X 

−1 
L (�A + A ) − A 

T 
√ 

X 

−1 
L A 

= �X L − A 

T ( 

√ 

X 

−1 
L −

√ 

˜ X 

−1 
L ) 

A + �A 

T 
√ 

˜ X 

−1 
L 

˜ A + A 

T 
√ 

˜ X 

−1 
L �A 

�X L − A 

T (√ 

X 

−1 
L −

√ 

˜ X 

−1 
L 

)
A 

∥∥
≥ ‖ � X L ‖ −

∥∥A 

T (√ 

X 

−1 
L −

√ 

˜ X 

−1 
L 

)
A 

∥∥
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( 4.14 ) can be verified. 
≥ ‖ � X L ‖ − ‖ A ‖ 2 ∥∥√ 

X 

−1 
L −

√ 

˜ X 

−1 
L 

∥∥
≥ ‖ � X L ‖ − ‖ A ‖ 2 ∥∥√ 

˜ X 

−1 
L 

(√ 

˜ X L −
√ 

X L 

)√ 

X 

−1 
L 

∥∥
≥ ‖ � X L ‖ − ‖ A ‖ 2 ∥∥√ 

˜ X 

−1 
L 

∥∥∥∥√ 

X 

−1 
L 

∥∥∥∥ √ 

˜ X L −
√ 

X L 

∥∥ (4.8)

It is clear that Z = 

√ ˜ X L −
√ 

X L is a positive definite solution
of the matrix equation 

√ ˜ X L Z + Z 

√ 

X L = 

˜ X L − X L . 
According to Lemma 2.1 , we have 

Z = 

∫ ∞ 

0 
e −

√ 

˜ X L t ( ˜ X L − X L ) e −
√ 

X L t dt (4.9)

Note that, 
√ ˜ X L and 

√ 

X L are positive definite

and hence 
∫ ∞ 

0 e −
√ 

˜ X L t ( ˜ X L − X L ) e −
√ 

X L t dt exists and

e −
√ 

˜ X L t ( ˜ X L − X L ) e −
√ 

X L t → 0 as t → ∞ . 
From (4.8) and (4.9) we get 

∥∥� X L − A 

T (√ 

X 

−1 
L −

√ 

˜ X 

−1 
L 

)
A 

∥∥
≥ ‖ � X L ‖ − ‖ A ‖ 2 ∥∥√ 

˜ X 

−1 
L 

∥∥∥∥√ 

X 

−1 
L 

∥∥
×

∥∥∥∥
∫ ∞ 

0 
e −

√ 

˜ X L t ( ˜ X L − X L ) e −
√ 

X L t dt 
∥∥∥∥

≥ ‖ � X L ‖ − ‖ A ‖ 2 ∥∥√ 

˜ X 

−1 
L 

∥∥∥∥√ 

X 

−1 
L 

∥∥‖ ˜ X L − X L ‖ 

×
(∫ ∞ 

0 

∥∥∥e −
√ 

˜ X L t 
∥∥∥∥∥∥e −

√ 

X L t 
∥∥∥dt 

)

≥ ‖ �X L ‖ 
{ 

1 −
√ 

3 
2 

‖ A ‖ 2 
∥∥∥∥
√ 

˜ X 

−1 
L 

∥∥∥∥
∥∥∥∥
√ 

X 

−1 
L 

∥∥∥∥ ∥∥P 

−1 
∥∥ 1 

2 

} 

From ( 4.6 ) we get ∥∥∥∥� X L − A 

T 
(√ 

X 

−1 
L −

√ 

˜ X 

−1 
L 

)
A 

∥∥∥∥
≥ ‖ � X L ‖ 

⎧ ⎨ 

⎩ 

1 −
√ √ 

27 
2 

‖ A ‖ ∥∥ P 

−1 
∥∥ 3 

4 

⎫ ⎬ 

⎭ 

= δ ‖ � X L ‖ 

where δ = 1 −
√ √ 

27 
2 ‖ A ‖ ‖ P 

−1 ‖ 3 
4 > 0 

So we have 

δ‖ � X L ‖ ≤
∥∥� X L − A 

T (√ 

X 

−1 
L −

√ 

˜ X 

−1 
L 

)
A 

∥∥
= 

∥∥� P − � A 

T 
√ 

˜ X 

−1 
L 

˜ A − A 

T 
√ 

˜ X 

−1 
L � A 

∥∥
≤ ∥∥� P + � A 

T 
√ 

˜ X 

−1 
L 

˜ A + A 

T 
√ 

˜ X 

−1 
L � A 

∥∥
≤ ‖ � P ‖ + ‖ A ‖ ∥∥√ 

˜ X 

−1 
L 

∥∥‖ � A ‖ 

+ ‖ � A ‖ ∥∥√ 

˜ X 

−1 
L 

∥∥‖ ̃  A ‖ (4.10)

From ( 4.6 ) we get 

δ‖ � X L ‖ ≤ ‖ � P ‖ + 

√ 

3 ‖ A ‖ ‖ ̃  P 

−1 ‖ 1 2 ‖ � A ‖ 
+ 

√ 

3 ‖ � A ‖‖ ˜ A ‖ ‖ ̃  P 

−1 ‖ 1 2 

≤ ‖ � P ‖ + 

√ 

3 ‖ � A ‖ 
× ( ‖ A ‖ ‖ ̃  P 

−1 ‖ 
3 
4 + ‖ ̃  A ‖ ‖ ̃  P 

−1 ‖ 
3 
4 ) 
From ( 4.4 ) we get 

δ ‖ � X L ‖ ≤ ‖ � P ‖ + 2 
√ 

3 

√ 

2 √ 

27 
‖ � A ‖ (4.11)

Therefore, ‖ � X L ‖ ≤ 1 
δ

( ‖ � P ‖ + 2 
√ 

2 √ 

3 
‖ � A ‖ ) 

‖ � X L ‖ 
‖ X L ‖ ≤ 1 

δ

( 

‖ � P ‖ 
‖ X L ‖ + 2 

√ 

2 √ 

3 

‖ � A ‖ 
‖ X L ‖ 

) 

= 

1 
δ

( 

‖ � P ‖ 
‖ P ‖ 

‖ P ‖ 
‖ X L ‖ + 2 

√ 

2 √ 

3 

‖ � A ‖ 
‖ A ‖ 

‖ A ‖ 
‖ X L ‖ 

) 

(4.12)

But since ‖ X L ‖ ≥ 1 
3 ‖ P ‖ ≥ 1 

3 ‖ P 

−1 ‖ −3 
4 > 

√ √ 

3 
6 ‖ A ‖ . 

Then we have ‖ P‖ 
‖ X L ‖ ≤ 3 and 

‖ A ‖ 
‖ X L ‖ < 

√ 

6 √ 

3 
. 

Substituting with this result in ( 4.12 ) yields that 

‖ � X L ‖ 
‖ X L ‖ ≤ 1 

δ

(
3 ‖ � P ‖ 

‖ P ‖ + 

4 ‖ � A ‖ 
‖ A ‖ 

)

which ends the proof of the theorem. 

Remark. From the above theorem we can see that the condi-
tion number of the matrix Eq. (1.1) at its maximal solution
X L is equal to 

1 
δ

= 

1 

( 1 −
√ √ 

27 
2 ‖ A ‖ ‖ p −1 ‖ 

3 
4 ) 

and is denoted by

k (A, P) which is not too large, especially for the case 0 <

‖ A ‖ ‖ P 

−1 ‖ 3 4 < 

1 
3 

√ 

2 √ 

27 
and the condition number in this

case is such that 1 < k (A, P) < 

3 
2 . Putting P = I in the matrix

Eq. (1.1) we get the matrix equation: 

X + A 

T 
√ 

X 

−1 A = I (4.13)

and applying Theorems 4.1 and 4.2 once again to the matrix
Eq. (4.13) yields that 

‖ � X L ‖ 
‖ X L ‖ ≤ 4 

( 1 −
√ √ 

27 
2 ‖ A ‖ ) 

‖ � A ‖ 
‖ A ‖ . 

To derive an error bound of ˜ X we consider the following
theorem. 

Theorem 4.3. Let ˜ X approximate the maximal so-
lution X L of the matrix Eq. (1.1) . If the follow-

ing conditions: (1) ‖ A ‖ ‖ P 

−1 ‖ 3 
4 < 

√ 

2 √ 

27 
and (2)

‖ ˜ X 

−1 ‖ ≤ 3 ‖ ( ˜ X + A 

T 
√ ˜ X 

−1 A ) 
−1 

‖ hold and if the resid-
ual R ( ˜ X ) ≡ ˜ X + A 

T 
√ ˜ X 

−1 A − P satisfies that ‖ R ( ˜ X ) ‖ ≤

( 1 − ( 1 −
√ 

2 √ 

27 
+ ‖ A ‖ ‖ P 

−1 ‖ 
3 
4 ) 

4 
3 
) ‖ P 

−1 ‖ −1 then 

‖ ˜ X − X L ‖ 
‖ X L ‖ ≤ 3 

δ

‖ R ( ˜ X ) ‖ 
‖ P‖ (4.14)

Proof. It is clear that ˜ X is a solution of the matrix equation
X + A 

T 
√ 

X 

−1 A = 

˜ P , where ˜ P = P + R ( ˜ X ) and satisfies that

‖ ˜ X 

−1 ‖ ≤ 3 ‖ ( ˜ X + A 

T 
√ ˜ X 

−1 A ) 
−1 

‖ = 3 ‖ ˜ P 

−1 ‖ . 
Applying once again the same proof of ( 4.5 ), inequality
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Table 1 The numerical results for q 1 , q 2 , ‖ ̃  A − A ‖ and 
‖ ̃  P − P ‖ . 
α q 1 q 2 ‖ ̃  A − A ‖ ‖ ̃  P − P ‖ 
1.0000 e-08 2.1762 e-09 9.2675 e-07 1.0000 e-08 6.6000 e-09 
3.0000 e-08 6.5286 e-09 2.7803 e-06 3.0000 e-08 1.9800 e-08 
5.0000 e-08 1.0881 e-08 4.6338 e-06 5.0000 e-08 3.3000 e-08 
7.0000 e-08 1.5233 e-08 6.4873 e-06 7.0000 e-08 4.6200 e-08 
9.0000 e-08 1.9586 e-08 8.3408 e-06 9.0000 e-08 5.9400 e-08 
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. Numerical example 

n this section, we report a numerical example for different val- 
es of α to illustrate the results derived in Section 4 , namely 
heorem 4.2 for the matrix Eq. (1.1) . We implemented the pro-
ess ( 3.1 ) in MATLAB (writing our own program) and run the
rogram on a PC Pentium IV. For the stopping condition we 
ake ε < 1 . 0 e − 5 . 

Consider the matrix Eq. (1.1) with the matrices A and P as 
ollows: 

 = 

⎛ 

⎜ ⎜ ⎝ 

0 . 0050 −0 . 0025 0 . 0075 0 . 0100 
0 . 0175 0 . 0150 −0 . 0125 0 . 0225 
0 . 0100 0 . 0200 0 . 0250 0 . 0150 

−0 . 0075 0 . 0125 0 . 0050 0 . 0200 

⎞ 

⎟ ⎟ ⎠ 

, 

P = 

⎛ 

⎜ ⎜ ⎝ 

1 . 0 0 . 3 0 . 0 0 . 0 
0 . 3 3 . 0 0 . 1 0 . 0 
0 . 0 0 . 1 2 . 0 0 . 2 
0 . 0 0 . 0 0 . 2 1 . 0 

⎞ 

⎟ ⎟ ⎠ 

. 

The matrices A and P satisfy the condition ‖ A ‖ ‖ P 

−1 ‖ 3 
4 <

 

2 √ 

27 
where ‖ A ‖ ‖ P 

−1 ‖ 3 
4 = 0 . 0489 < 

√ 

2 √ 

27 
and the con-

ition number 1 < k (A, P) = 1 . 0855 < 

3 
2 which is not

oo large. The maximal solution obtained by the algo- 
ithm for the matrix Eq. (1.1) is found to be X L = 

 

 

0 . 9997 0 . 2998 −0 . 0001 −0 . 0002 
0 . 2998 2 . 9995 0 . 0997 −0 . 0006 

−0 . 0001 0 . 0997 1 . 9994 0 . 1998 
−0 . 0002 −0 . 0006 0 . 1998 0 . 9991 

⎞ 

⎠ . Applying the iterative 

rocess ( 3.1 ) for Eq. (4.1) where ˜ A = (α I ) + A and 

˜ P =
0 . 66 α) I + P. 

The obtained results are summarized in the table below: 

 1 = 

‖ �X L ‖ 
‖ X L ‖ and 

 2 = 

1 

( 1 −
√ √ 

27 
2 ‖ A ‖ ∥∥P 

−1 
∥∥ 3 

4 ) 

(
3 ‖ � P ‖ 

‖ P ‖ + 

4 ‖ � A ‖ 
‖ A ‖ 

)

emarks. 

(1) The first column of Table 1 shows different values of the 
real number α. 

q 1 in the second column refers to 

‖ �X L ‖ 
‖ X L ‖ while 

q 2 in the third column refers to 

1 

( 1 −
√ √ 

27 
2 ‖ A ‖ ‖ p −1 ‖ 

3 
4 ) 

( 3 ‖ � P ‖ 
‖ P‖ + 

4 ‖ � A ‖ 
‖ A ‖ ) . For dif- 

ferent values of the real number α and applying the 
iterative process ( 3.1 ) for Eq. (4.1) , where the perturbed
matrix ˜ A = (α I ) + A and the corresponding per- 
turbed matrix ˜ P = (0 . 66 α) I + P, it is clear that the
second and third columns show that inequality ( 4.5 ) in
Theorem 4.2 is satisfied. From Table 1 we see that , the
values of q 1 and q 2 increase as the value of α increases. 

(2) The fourth and the fifth columns of Table 1 show the
values of ‖ ˜ A − A ‖ and ‖ ˜ P − P ‖ respectively. It is 
noted that ‖ ˜ A − A ‖ ≤ θ and ‖ ˜ P − P ‖ ≤ θ , where 
θ ≤ 10 −7 . 

. Conclusion 

n this paper we are concerned with the nonlinear matrix equa-
ion X + A 

T 
√ 

X 

−1 A = P. An elegant property of the maximal
olution of this matrix equation is presented. Also, a perturba- 
ion estimate for the maximal solution X L of this matrix equa- 
ion and an error bound for approximate solutions are given. 
umerical example is given to illustrate the results, where the 

btained numerical results show that the method is reliable. 

cknowledgments 

he author thanks the anonymous referees for providing valu- 
ble comments and suggestions which improved this paper. 

eferences 

[1] S.F. Xu , On the maximal solution of the matrix equation
X + A 

T X 

−1 A = I , Acta Sci. Natur. Univ. Pekinensis 36 (2000)
29–38 . 

[2] J. Cai , G. Chen , Some investigation on hermitian positive definite
solutions of the matrix equation X 

s + A 

∗X 

−t A = Q , Linear Alge-
bra Appl 430 (2009) 2448–2456 . 

[3] X. Duan , A. Liao , On the existence of Hermitian positive definite
solutions of the matrix equation X 

s + A 

∗X 

−t A = Q , Linear Alge-
bra Appl 429 (2008) 673–687 . 

[4] X. Duan , A. Liao , On the nonlinear matrix equation
X + A 

∗X 

−q A = Q, (q ≥ 1) , Math. Comput. Modell. 49 (2009)
936–945 . 

[5] X. Duan , A. Liao , B. Tang , On the nonlinear matrix equa-
tion X − ∑ m 

i=1 A 

∗
i X 

δi A i = Q , Linear Algebra Appl 429 (2008)
110–121 . 

[6] S.M. El- Sayed , M.A. Ramadan , On the existence of a positive def-
inite solution of the matrix equation X − A 

∗ 2 m √ 

X 

−1 A = I , Int. J.
Comput. Math. 76 (2001) 331–338 . 

[7] S.M. El- Sayed , A.C.M. Ran , On an iteration method for solving a
class of nonlinear matrix equation, SIAM J. Matrix Anal. Appl. 23
(2001) 632–645 . 

[8] Y. Lim , Solving the nonlinear matrix equation 
X = Q + 

∑ m 

i=1 M i X 

δi M 

∗
i via a contraction principle, Linear 

Algebra Appl 430 (2009) 1380–1383 . 
[9] Z.Y. Peng , S.M. El- Sayed , X.L. Zhang , Iterative methods for

the extremal positive definite solution of the matrix equation 
X + A 

∗X 

−αA = Q , Appl. Math. Comp. 200 (2007) 520–527 . 
10] M.A. Ramadan , On the existence of extremal positive definite so- 

lutions of a kind of matrix, Int. J. of Nonlinear Sci. Numer. Simul.
6 (2005) 115–126 . 

11] M.A. Ramadan , Necessary and sufficient conditions to the ex- 
istence of positive definite solution of the matrix equation 
X + A 

T X 

−2 A = I , Int. J. Comput. Math. 82 (2005) 865–870 . 
12] M.A. Ramadan , Naglaa M. El-Shazly , On the matrix equa-

tion X + A 

∗ 2 m √ 

X 

−1 A = I , Appl. Math. Comp. 173 (2006) 992–

http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0001
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0001
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0002
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0002
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0002
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0003
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0003
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0003
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0004
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0004
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0004
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0005
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0005
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0005
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0005
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0006
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0006
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0006
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0007
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0007
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0007
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0008
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0008
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0009
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0009
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0009
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0009
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0010
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0010
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0011
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0011
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0012
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0012
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0012


On the perturbation estimates of the maximal solution for the matrix equation X + A 

T 
√ 

X 

−1 A = P 649 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[13] A.M. Sarhan , N.M. El-Shazly , E.M. Shehata , On the existence of
extremal positive definite solutions of the nonlinear matrix equa-
tion X 

r + 

∑ m 

i=1 A 

∗
i X 

δi A i = I , Math. Comput. Modell. 51 (2010)
1107–1117 . 

[14] Y. Yueting , The iterative method for solving nonlinear matrix equa-
tion X 

s + A 

∗X 

−t A = Q , Appl. Math. Comput. 188 (2007) 46–53 . 
[15] X. Zhan , Computing the extremal positive definite solutions of a

matrix equation, SIAM J. Sci. Comput. 17 (1996) 1167–1174 . 
[16] S.F. Xu , Perturbation analysis of the maximal solution of the

matrix equation X + A 

∗X 

−1 A = P, Linear Algebra Appl 336
(2001) 61–70 . 

[17] A.C.M. Ran , M.C.B. Reurings , On the nonlinear matrix equa-
tion X + A 

∗F (X ) A = Q : solution and perturbation theory, Lin-
ear Algebra Appl 346 (2002) 15–26 . 
[18] V.I. Hasanov , I.G. Ivanov , Solutions and perturbation estimates
for the matrix equation X ± A 

∗X 

−n A = Q , Appl. Math. Com-
put. 156 (2004) 513–525 . 

[19] X. Yin , S. Liu , L. Fang , Solutions and perturbation estimates for
the matrix equation X 

s + A 

∗X 

−t A = Q , Linear Algebra Appl
431 (2009) 1409–1421 . 

[20] V.I. Hasanov , Notes on two perturbation estimates of the extreme
solutions to the equations X ± A 

∗X 

−1 A = Q , Appl. Math. Com-
put. 216 (2010) 1355–1362 . 

[21] P. Lancaster , Theory of Matrices, Academic Press, New York,
1969 . 

[22] V.I. Hasanov , Positive definite solutions of the matrix equations
X ± A 

∗X 

−q A = Q , Linear Algebra Appl 404 (2005) 166–182 . 

http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0013
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0013
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0013
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0013
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0014
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0014
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0015
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0015
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0016
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0016
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0017
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0017
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0017
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0018
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0018
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0018
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0019
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0019
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0019
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0019
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0020
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0020
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0021
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0021
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0022
http://refhub.elsevier.com/S1110-256X(16)30026-8/sbref0022

	On the perturbation estimates of the maximal solution for the matrix equation  
	1 Introduction
	2 Preliminaries
	3 On the existence analysis of the maximal solution of the equation  
	4 Perturbation estimate of the maximal solution for the equation  
	5 Numerical example
	6 Conclusion
	 Acknowledgments
	 References


