Journal of the Egyptian Mathematical Society (2016) 24, 644-649

Egyptian Mathematical Society
Journal of the Egyptian Mathematical Society

WWW.etms-eg.org
www.elsevier.com/locate/joems

Original article

On the perturbation estimates of the maximal

@ CrossMark

solution for the matrix equation

X+A'V/X14=P

Naglaa M. El-Shazly*

Department of Mathematics, Faculty of Science, Menoufia University, Shebin El-Koom, Egypt

Received 12 November 2015; revised 12 April 2016; accepted 18 April 2016

Available online 11 June 2016

Keywords
v Abstract

Nonlinear matrix equa-

In this paper we investigate the nonlinear matrix equation X + A"/ X~-14 = P, for the
existence of positive definite solutions. Bounds for ||.X, ' and || X ~!|| are derived where X, is the

tion; maximal solution and X is any other positive definite solution of this matrix equation. A perturba-
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tion estimate for the maximal solution and an error bound for approximate solutions are derived. A
numerical example is given to illustrate the reliability of the obtained results.
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1. Introduction

Consider the nonlinear matrix equation
X+4"VX-'4=P (1.1)

where A and P are nxn nonsingular and positive definite ma-
trices respectively. The existence and the uniqueness, the rate of
convergence as well as the necessary and sufficient conditions
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for the existence of positive definite solutions of similar kinds
of nonlinear matrix equations have been studied by several
authors [1-15]. Perturbation analysis for the matrix equations
X+A4X"4A=0,X+AFX)A=Qand X + A*X'4=P
are studied in [16-20] respectively. Throughout this paper we
use X, to denote the maximal solution of the matrix Eq. (1.1).
The paper is organized as follows: First, in Section 2, we in-
troduce some notations and a lemma that will be needed for
developing the work. In Section 3, an iterative method for ob-
taining the maximal positive definite solution of the matrix
Eq. (1.1) is proposed. We state and prove a theorem and a
lemma for the existence of the maximal solution. We also, put
conditions on the matrix 4 to derive bounds on the maximal so-
lution X} as well as any other positive definite solution X of the
matrix Eq. (1.1) in terms of the matrix P. In Section 4, we inves-
tigate a perturbation estimate for the maximal solution of the
matrix Eq. (1.1) and an error bound for approximation of the
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maximal solution is obtained. In Section 5, numerical example
is given to illustrate the obtained results.

2. Preliminaries

The following properties and the lemma stated below will be
needed for developing the work:
For square nonsingular matrices 4, B, we have the following:

(i) IfA>B>0then+vA4>+B>0and A" < B!
(if) The spectral norm is monotonic norm, thatisif 0 < 4, <
Ay, then [[A;]| < [|42].

Lemma 2.1. [21, Theorem 8.5.2, p.263] Let the matrices A, B
and C € P(n)[the set of all positive definite nxn matrices], be
such that the integral [;° e*'CeP'dt exists and lim %' CeP' = 0.

—>00
Then the matrix X = — [~ e Ce®'dt is a solution of the matrix
equation AX + XB = C.

3. On the existence analysis of the maximal solution of the
equation X + AT/ X-14 =P

Now, for solving our problem (1.1) we consider the following
iterative process.

Xo=P
Xepn=P—A"/X'4 k=0,1,2,...

Fact 3.1. If 4 is nonsingular matrix and the matrix Eq. (1.1) has
a positive definite solution X, then the sequence {X}} derived
from (3.1), is monotonic decreasing and bounded from below
and hence converges to X, (the maximal solution).

3.1)

The statement of this fact and its proof are similar to The-
orem 2.5 and Theorem 2.6 [22], where V. I. Hasanov consid-
ers the iteration Xy = yQ, Xy = Q0 — A*X; 4,5=0,1,2, ...
to solve the matrix equation X + A*X 74 = Q.

3
Theorem 3.1. If|| 4] < /\%277 1P~ ~ 4, then the maximal solu-
tion X of the matrix Eq. (1.1) satisfies || X, | < (1+n) [P7".
Moreover, for any other positive definite solution X we have
3 3
IX~H > (5 =) IPI7", heren = |IAIP P72 (1 41n) 2 < 2.

Proof. It is clear that X is a solution of the matrix Eq. (1.1) if
and only if Y = X ! satisfies

Y =P '+ PATVY AY. (3.2)
Now consider the sequence of matrices
Yo=0
| Lo (3.3)
Yo=P '+ P A4 1/Yk_]AYk,l k=1,2,...
Using induction, it is easy to verify that:
1Yl < A 40 [P k=1,2,-- (34

where

3 3
m=0, m=[AIPIPI2 A+m) 2. (3.5)

Also, by induction we get 0 < nr < mpy1 <2,k=1,2,...
hence there exists a positive number n with 0 < n < 2 such that
klim nx = n. Thus it follows from (3.5)

(—> 00

3 3
n= 141> |[P> 1+ <2. (3.6)

Then from (3.4) and (3.6) we have

1Yl < A+ n0llPH < A+ P, k=1,2,...

which yields:
1Yigr = Yill = 1P (AT /Y, AY, — AT Y, AV, )]

< NP /Y AY; —
= AP Y AYy — Yiy)
+ VY, = VYD AY |

It is clear that Z = /Y, — /Y is a positive definite solu-
tion of the matrix equation /Y, Z + Z/Y_1 = Y — Yi_;.
According to Lemma 2.1, we have

Y, 1 AYill

3.7)

Z = / e NI (Y — Yo e VY1 (3.8)
0

From (3.7) and (3.8), then we get

| ¥isr = Yil
= [P VY A% = Yen

+ (/ e VI (Y — Yio)e v Yk"tdl> A Y
0

AP [P~ 1Y = Yl

IA

WAL ([ v e |
0
< IA4I° | P~ 1Y% = Yiull
<V IVE + T = [ Y
2| P2 +m) 2
1
331402
= g oz 20 ] I1Ye = Yiall <" (39)
where
33(1 3
3 +n)2
p =4l | P> % <1, (3.10)

Thus, it follows that the matrix sequence {Y;} is convergent.
LetY = klim Y, then Y is a solution of the matrix Eq. (3.2) and
—00

satisfies | Y] < (1 +7) |IP7'.
It is easy to show Y is symmetric positive definite solution of

the matrix Eq. (3.2). But since ¥ must be X’ ! then the proof of
the theorem is completed.

3
Lemma 3.2. If | 4] < /J%ﬁ |\P~Y|| ~ 4, then the maximal solu-

tion Xy of the matrix Eq. (1.1) satisfies % 1Pl < N1Xcl < IPI.
The proof of this lemma is straightforward.
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4. Perturbation estimate of the maximal solution for the
equation X + AT/ X-14=P

In this section, we investigate a perturbation estimate for the
maximal solution X, of the matrix Eq. (1.1) using the lemma
given in Section 3, also, we obtain an error bound for approxi-
mation of the maximal solution.

Consider the perturbed matrix equation

X+A"™VX-14=P, 4.1)

where A is nxn nonsingular matrix and P is positive definite ma-
trix. Denote A4 =A — A, AP = P — P. We derive some per-
turbation estimates for A4 and AP as follows:

Theorem 4.1. Let

3
he= /7% —I411P"| % > O

3
(i) 1a4] < ((1—,/\/% ) )P4
4
(iii) APl < (A= (1=@&)3 )P

- - 3 5 3
then | A|| |1 P13 < \/%and Al 12713 < /% .

Remark. The conditions (i), (ii) and (iii) of this theorem are sim-
ilar to:

(1) the conditions of Theorem 3.1 [19, p.1415] for study-
ing the matrix equations X* + 4*X 4 = Qand X* +
A*X 4 = Qbyputtings = 1, 1 = %

(2) the conditions of Theorem 10 [18] for studying the matrix
equations X — A*X 4 = Qand X — A*X 4 = Q

by puttingn = 3

Proof. Since AP=P—P therefore, pl=p1_

Pl (AP) P!
Taking norm and using condition (iii), we get
1P~ < 1P I+ 1P AP P
4 .
<IP+A-A—-e))|P|

and so we have,

= 1P~
1P < ———
(1—-¢)3
Therefore,
3
_ 3 1Pt
s < 12 42)
1—¢

Combining (ii) and (4.2) we obtain

3 - _ 3
[P % < (Al + 114 — AP+

A

3
(141 + 1 AAIDIPH4
1—¢

3 3
A4l + (1 - ‘/J%)s)llP’lll‘i)llP’lll“

1—¢

3
(1Al 1P~ 4+ (1 = ,/\/%)8))
1—¢

=/% 4.3)

From condition (i) and inequality (4.2) it is easy to verify:

3
AP~ 4 2
3SVTT
(1—,/\/%+||AI|IIP"II“)

which completes the proof of the theorem.

Theorem 4.2. Consider the two matrix equations X +
ATVXT4=P X +ATVX'4="P

with

L3
AN 4 <

~ 3
and [AIIP% </ % (4.4)

~ 3
p—13 2
ANEE < /& 2

V271

then the maximal solutions X7 and Xy, of these two equations exist
and satisfy

A X, L/3)AaP
A Xl _ 7<3II I (4.5)

411A AII)
Ixc = é

Pl 4]

3
wheres =1— /Y2 A P77 > 0.
Proof. Using the obtained results of Theorem 4.1 where
3 ‘ L3
AP < /5 that ist AJIP')% < /& and
.3
AP~ < /J% hold, then “by setting 0 <5 <2 in
Theorem 3.1”7 and from Lemma 3.2 we get that the maximal

solutions X; and X of the two Eqgs. (1.1) and (4.1) exist and
satisfy that

[x2 < 30P7h & < 31e (4.6)
and

1 | - -

IPI < IX < 0P SIPI < IRl < 1P, @.7)

It is clear that X; and X satisfy the two matrix equations

X, + AT /X '"A=P and X, +AT\/X'A=P

Set Ad=A—A and A X; = X; — X;. If we consider the
identity

AP=P—P

=X - X+ AT\/EA - AT\/;A
=A X, + (AAT +AT)\/§(AA +4)— AT\/;A
=AX, —AT(\/;—\/E)
A+AAT\/E/~1+AT\/EAA
ax, - a” (2 = \x)4]
> A X - AT (X = &)
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> A Xl — 14X = X
> A Xl — 4P % (%, - \/YL)\/;H
=18 Xl - AP E YA VE - VRl @s)

Itisclear that Z = v/ X; — /X, isa positive definite solution
of the matrix equation +/ X, Z+ZJX, = X, — X, .
According to Lemma 2.1, we have

o B ~
Z= / e VAL(X, — X )e VAL dy (4.9)
0
Note that, +X; and /X, are positive  definite
and  hence [~ e” (X, — X)e vV idr  exists  and
e VI, — X)e VI 5 0ast — oo.

From (4.8) and (4.9) we get

& X, — A7 (/3 =% )]
SreARPENEI N
/O T VIR, - X))o XL’dzH
> 1A Xel = 1P| E X 1% - X
([ \r dz)
g

/3

> IIAXLII{

. 1
i x| ||2}
From (4.6) we get

o )
|27 3
> [[AX 31 = TIIAIIHP_'H4 =3 A Xl

3
where s = 1 — \/<Z| 4 [P 5 >0

So we have

SIA Xol = A X — AT(Jx; = X))
=|arP-a AT\/EZI —AT\/EA A
<|aP+a AT\/E;I +AT\/EA Al
< 1A Pl + 1 ANYE 14 i

+a A||H\/§H||/in

From (4.6) we get

(4.10)

I
SIA Xoll < 1A P+ 3141172 ]1A A

~ 1
+V3l1A Al AP
< A P|+3]A 4]

33
(AP + 1402~

From (4.4) we get

[ 2
SIA X <IAP|+2V3 |—— ||A 4
A Xl < |l I mll Il

PAAPI+2 /5 1A 4l

A Xl _ 1A Pl 2 |A Al
<< +2 )=
XLl S\ XL V3 XL

1 <||A Pl |IP|

@.11)

Therefore, |A Xz || <

A Al 14] )

1Pl XLl V34l X
(4.12)
;3
Butsince [|X, | >3 [Pl = §P7'| % > \/g A1l
APl 4l 6
Then we have oy = < 3and i < VA

Substituting with this result in (4.12) yields that

41A AII)
121 4l

1A Xzl _ 1( 3A P
XL 8

which ends the proof of the theorem.

Remark. From the above theorem we can see that the condi-
tion number of the matrix Eq (1.1) at its maximal solution

X, is equal to 1 = 5 and is denoted by

8
“‘\/T hAlp=ti4)

k (A, P) which is not too large, especially for the case 0 <

3
-1 3 1 2
141 1P+ < 575

case is such that 1 < k (4, P) < % Putting P = I in the matrix
Eq. (1.1) we get the matrix equation:

X+ATVX-'4=1

and the condition number in this

(4.13)

and applying Theorems 4.1 and 4.2 once again to the matrix
Eq. (4.13) yields that

1A Xl _ 4 A A

”XL” - (1 _ /@“ A ”) ”A“

To derive an error bound of X we consider the following
theorem.

Theorem 4.3. Let X approximate the maximal —so-

lution Xp of the matrix Eq. (1.1). If the follow-
3

ing  conditions: (1) |A|l [P % < %

- - = -1

(X" <31 (X +A"VX14) || hold and if the resid-

ual R(X)

33
(== /7 + IALIP ) ) 1P then

=X+ ATVX 14— P satisfies that |R(X)| <
4

(4.14)

IX = Xill _ 3 IR
X~ |Pl

Proof. It is clear that Xisa solution of the matrix equation
X+ A7V X4 =P, where P= P+ R(X) and satisfies that
~ ~ = -1 -
X <31 (X+4"VX 14 =3P
Applying once again the same proof of (4.5), inequality
(4.14) can be verified.
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i ~ second and third columns show that inequality (4.5) in

Table 1 The numerical results for ¢i, g2, |4 — 4|l and Theorem 4.2 is satisfied. From Table 1 we see that , the
1P — PI. values of ¢, and ¢, increase as the value of « increases.
o q1 92 |4 — A |1P— P
1.0000 e-08 2.1762e-09 9.2675e-07 1.0000 e-08  6.6000 e-09 (2) The fourth and the fifth columns of Table 1 show the
3.0000e-08  6.5286e-09 2.7803¢-06 3.0000e-08 1.9800 e-08 values of | A— A | and || P— P | respectively. It is
5.0000¢-08 1.0881¢c-08 4.6338¢-06 5.0000¢-08 3.3000 e-08 noted that || A—A || <6 and | P—P| <8, where
7.0000 e-08 1.5233 e-08 6.4873 e-06 7.0000 e-08 4.6200 e-08 0 < 1077,
9.0000 e-08 1.9586 ¢-08 8.3408 e-06 9.0000 e-08 5.9400 e-08 -

5. Numerical example

In this section, we report a numerical example for different val-
ues of « to illustrate the results derived in Section 4, namely
Theorem 4.2 for the matrix Eq. (1.1). We implemented the pro-
cess (3.1) in MATLAB (writing our own program) and run the
program on a PC Pentium IV. For the stopping condition we
take ¢ < 1.0e — 5.

Consider the matrix Eq. (1.1) with the matrices 4 and P as
follows:

0.0050  —0.0025 0.0075  0.0100

A= 0.0175 0.0150  —0.0125 0.0225
0.0100  0.0200 0.0250  0.0150 |’
—0.0075  0.0125 0.0050  0.0200
1.0 03 0.0 0.0

P 03 30 0.1 0.0

100 01 20 02

0.0 00 02 1.0

3
The matrices 4 and P satisfy the condition |4 [|P7'] 4 <

3
/\/% where ||A]l |[P7']| 4 =0.0489 < /J% and the con-

dition number 1 < k (4, P) =1.0855 < 3 which is not

too large. The maximal solution obtained by the algo-
rithm for the matrix Eq. (1.1) is found to be X, =

0.9997  0.2998  —0.0001  —0.0002
0.2998 2.9995 0.0997 —0.0006 Applvi the it ti
~0.0001  0.0997 1.9994  0.1998 |- APplyIng the iterative
—0.0002 —0.0006 0.1998 0.9991
process (3.1) for Eq. (4.1) where A= (@) + A and P=
(0.66 x)I + P.
The obtained results are summarized in the table below:
_llax
Q= and
(R
_ 1 3A P 4 1A A
= G FER 141
(1 =/ 4] ||P_ ||4 )
Remarks.

(1) The first column of Table 1 shows different values of the
real number «.

q¢; in the second column refers to ""AX{L”” while
e in the third column refers to
3lar| 41a 4] :

(S + g ). For dif-

1
3
=y a1 1pt14)

ferent values of the real number « and applying the
iterative process (3.1) for Eq. (4.1), where the perturbed
matrix A= (¢I) + A and the corresponding per-
turbed matrix P = (0.66 «)I + P, it is clear that the

6. Conclusion

In this paper we are concerned with the nonlinear matrix equa-
tion X + ATV X-14 = P. An elegant property of the maximal
solution of this matrix equation is presented. Also, a perturba-
tion estimate for the maximal solution X of this matrix equa-
tion and an error bound for approximate solutions are given.
Numerical example is given to illustrate the results, where the
obtained numerical results show that the method is reliable.
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