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Abstract In the present paper, we apply the Bezier curves method for solving fractional optimal 
control problems (OCPs) and fractional Riccati differential equations. The main advantage of this 
method is that it can reduce the error of the approximate solutions. Hence, the solutions obtained 
using the Bezier curve method give good approximations. Some numerical examples are provided 
to confirm the accuracy of the proposed method. All of the numerical computations have been per- 
formed on a PC using several programs written in MAPLE 13. 
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. Introduction 

 tremendous use of the fractional calculus is in basic sciences 
nd engineering, see e.g. [1–8] . Recently, the applications have 
ncluded solving various classes of nonlinear fractional differ- 
ntial equations numerically (see for examples Refs. [1,7] and 
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he references therein). The Adomian decomposition method is 
 approach to solve the linear/nonlinear systems of fractional 
ifferential equations which gives numerical answers to any 
rder of desired accuracy (see [9–12] ). Jafari et al. [13] intro-
uced a modified variational iteration method (MVIM) for 
olving Riccati differential equations and the fractional Riccati 
ifferential equation. 

In this paper, we focus on fractional Riccati differential, 
iccati type differential-difference equation and optimal con- 

rol problems with the quadratic performance index and the 
ynamic system with the Caputo fractional derivative. The 
roblem can be solved without using Hamiltonian formulas. 
ur tool for this aim is the Bezier curves method. There

re many papers deal with the Bezier curves. Zheng et al.
duction and hosting by Elsevier B.V. This is an open access article 
nc-nd/4.0/ ). 
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[14] proposed the use of control points of the Bernstein–Bezier
form for solving differential equations numerically and also
Evrenosoglu and Somali [15] used this approach for solving
singular perturbed two points boundary value problems. Also
the Bezier control points method is used for solving delay
differential equation (see [16] ). Some other applications of the
Bezier functions and control points are found in [17] . In the
present work, we suggest a technique similar to the one which
was used in [17] for solving fractional optimal control problems
and fractional Riccati differential equations. 

This study is organized as follows: In Section 2 , the problem
is described. Method of the Solution is explained in Section 3 .
In Section 4 , the method is applied to a variety of examples
to show efficiency and simplicity of the method. Finally,
Section 5 will give a conclusion briefly. 

2. Problem statement 

The fractional Riccati differential with respect the time is gov-
erned by the equation given below 

D 

α
∗y (t) = A (t) + B(t ) y (t ) + C(t ) y 2 (t ) , (1)

where A ( t ), B ( t ) and C ( t ) denote given functions and α repre-
sents describing the order of the fractional derivative. There are
several definitions of a fractional derivative of order α > 0. For
example, the Riemann–Liouville integral operator of order α is
defined by (see [2] ) 

I α f (x ) = 

1 
�(α) 

∫ x 

0 
(x − t ) α−1 f (t ) dt , α > 0 , x > 0 , (2)

and its fractional derivative of order α ≥ 0 is 

D 

α f (x ) = 

d m 

dx 

m 

(I m −α f (x )) , with a suitable integer m, (3)

The Riemann–Liouville integral operator plays an important
role in the development of the theory of fractional derivatives
and integrals. However, it has some disadvantages for treat-
ing fractional differential equations with initial and boundary
conditions. Therefore, we adopt here the Caputo definition,
which is a modification of the Riemann–Liouville definition (see
[1,2,7] ): 

D 

α
∗ f (x ) = I m −α

(
d m 

dx 

m 

f (x ) 

)
, (4)

where m ∈ N ; m − 1 < α ≤ m . The Caputo fractional derivative
first computes an ordinary derivative followed by a fractional
integral to achieve the desired order of fractional derivative.
We mention that the Riemann–Liouville fractional derivative
is computed in the reverse order. We have chosen to use the
Caputo fractional derivative because it allows traditional (in-
teger order) initial and boundary conditions to be included in
the formulation of the problem, but for homogeneous initial
conditions assumption, these two operators coincide. For more
details on the geometric and physical interpretation of frac-
tional derivatives of both the Riemann–Liouville and Caputo
types, see Podlubny [18] . 

3. Method of the solution 

Our strategy is using Bezier curves to approximate the solutions
y ( t ) by v (t) , where v (t) is given below. Define the Bezier polyno-
mials of degree n that approximate the actions of v (t) over the
interval [ t 0 , t f ] as follows: 

v (t) = 

n ∑ 

r =0 

a r B r,n 

(
t − t 0 

h 

)
, (5)

where h = t f − t 0 , and 

B r,n 

(
t − t 0 

h 

)
= 

(
n 
r 

)
1 
h n 

(t f − t) n −r (t − t 0 ) r , 

the value B r,n ( 
t−t 0 

h ) is the Bernstein polynomial of degree n over
the interval [ t 0 , t f ], a r is the control point; for r = 0 , 1 , . . . , n .
By substituting (5) in (1) , one may define R 1 ( t ) for t ∈ [ t 0 , t f ] as
follows: 

R 1 (t) = D 

α
∗y (t) − (A (t) + B(t ) y (t ) + C(t ) y 2 (t )) . (6)

Now, by solving (6) , one can find the unknown the values a r for
r = 0 , 1 , . . . , n . 

Remark 3.1. Now, the Bezier curves method is used for solving
the Riccati type differential-difference equation 

S(t) y ′ (β1 t + μ1 ) = A (t) + B(t) y (β2 t + μ2 ) 

+ C(t) y 2 (β3 t + μ3 ) , t 0 ≤ t ≤ t f , 

with the mixed condition 

β4 y (t 0 ) + β5 y (t f ) = λ, 

where y ( t ) is an unknown function, S ( t ), A ( t ), B ( t ) and C ( t ) are
the known functions defined on the interval t 0 ≤ t ≤ t f and
β i , for i = 1 , 2 , . . . , 5 , μi , for i = 1 , 2 , 3 . Also t 0 and t f are real
constants. 

Remark 3.2. Without loss of generality, we take the time inter-
val as [0, 1], since any time interval [ t 0 , t f ] can be transferred to
[0, 1] by defining t = (t f − t 0 ) z + t 0 , where now z ∈ [0, 1]. 

Remark 3.3. Now, we suppose that α be a real number in (0, 1),
and F , G : [ t 0 , t f ] × R 

2 → R be two continuously differentiable
functions. A general form of fractional OCPs can be introduced
as (see [19] ). 

Mi ni mi ze J(x, u ) = 

∫ t f 

t 0 

F (t , x (t ) , u (t )) dt , (7)

subject to the fractional dynamic control system 

A ̇  x (t) + B 

C 
t 0 

D 

α
t x (t) = G (t , x (t ) , u (t )) , (8)

and the initial condition 

x (t 0 ) = x 0 , (9)

where ( A , B ) � = (0, 0) and x 0 is a given constant. According to
discussions in [20] , if ( x , u ) be a minimum solution of (7) –(9) ,
then there exists a λ( t ) which ( x , u , λ) satisfies 

A ̇

 λ(t) − B t D 

α
t f 

λ(t) = −∂H 

∂x 

(t, x, u, λ) , 

A ̇  x (t) + B 

C 
t 0 

D 

α
t x (t) = −∂H 

∂λ
(t, x, u, λ) , 

∂H 

∂u 
(t, x, u, λ) = 0 , t ∈ [ t 0 , t f ] , 

x (t 0 ) = x 0 , λ(t f ) = 0 , (10)
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Fig. 1 The graphs of approximated and exact solution y ( t ) for Example 1 . 
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t D 

α
t f 

λ(t) = 

(−1) n 

�(n − α) 

d n 

dt n 

∫ t f 

t 
(μ − t) n −α−1 λ(μ) μ, 

 

 0 
D 

α
t x (t) = 

1 
�(n − α) 

∫ t 

t 0 

(t − μ) n −α−1 x 

(n ) (μ) μ, 

lso, H denotes the Hamiltonian and is defined in the form of
 (t, x, u, λ) = F (t, x, u ) + λG (t, x, u ) . It should be mentioned

hat in practice, we obtain u in terms of λ and x from the con-
ition 

∂H 

∂u (t, x, u, λ) = 0 . Thence, the above-mentioned system
an be written in the following form 

A ̇

 λ(t) − B t D 

α
t f 

λ(t) = M (t , x (t ) , λ(t )) , 

 ̇  x (t) + B 

C 
t 0 

D 

α
t x (t) = N(t, x (t) , λ(t)) , 

x (t 0 ) = x 0 , λ(t f ) = 0 , (11) 

here M ( t , x ( t ), λ( t )) and N ( t , x ( t ), λ( t )) are known functions in
erms of x and λ. 

The above-mentioned fractional system contains necessary 
onditions for optimality of solutions of (7) –(9) (see [20] ). If F ( t ,
 , u ) and G ( t , x , u ) be two convex functions in terms of x and u ,
hen (11) contains necessary and sufficient condition for optimal 
olutions x 

∗ and u ∗. 
Now, using Bezier curves to approximate the solutions also 

he variables x ( t ) and u ( t ) are approximated by v (t) and w (t)
espectively where v (t) and w (t) are given below (see [16,17] ). 

v (t) = 

n ∑ 

r =0 

a r B r,n 

(
t − t 0 

h 

)
, 

 (t) = 

n ∑ 

r =0 

b r B r,n 

(
t − t 0 

h 

)
. 

he convergence was proved in the approximation with Bezier 
urves when the degree of the approximate solution, n , tends to

nfinity (see [17] ). p
. Numerical examples 

n this section, we give some computational results of numeri- 
al experiments with stated method to support our theoretical 
iscussion. 

xample 1. Consider the following fractional Riccati differen- 
ial equation (see [13] ) 

d αy 
dt α

= −y 2 (t) + 1 , 0 < α ≤ 1 , 

 (0) = 0 , 

here the exact solution of above equations is y (t) = 

e 2 t −1 
e 2 t +1 

when
= 1 . By choosing n = 7 in the stated method and α = 0 . 98 ,

he following approximated solution can be found 

 (t) = 8 . 0900837 t 4 − 10 . 23780585 t 5 − 1 . 635196129 t 7 

+6 . 508488745 t 6 + 0 . 463961845 t 2 − 3 . 427938155 t 3 + t. 

he graphs of approximated and exact solution are plotted in 

ig. 1 . 

xample 2. Consider the following fractional Riccati differen- 
ial equation (see [13] ): 

d αy 
dt α

= 2 y (t) − y 2 (t) + 1 , 0 < α ≤ 1 , 

 (0) = 0 , 

here the exact solution was found to be of the form 

 (t) = 1 + 

√ 

2 tanh 

( √ 

2 t + 

1 
2 

lg 

( √ 

2 − 1 √ 

2 + 1 

) ) 

, 

hen α = 1 . By choosing n = 7 and α = 0 . 98 , the following ap-
roximated solution can be found 
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Fig. 2 The graphs of approximated and exact solution y ( t ) for Example 2 . 

Fig. 3 The graphs of approximated and exact solution x ( t ) for Example 3 . 

 

 

 

 

 

 

 

 

 

 

y (t) = 1 . 733381253 t + . 4836486212 + 0 . 1854684368 t 7 

−2 . 540593018 t 4 − 1 . 204247718 t 6 

+2 . 84677676 t 5 + 0 . 8498937992 t 2 

−0 . 259041817 t 3 . 

The graphs of approximated and exact solution are plotted in
Fig. 2 . The modified variational iteration method (MVIM) in
[13] had been presented for solving Example 2 . Comparing with
the modified variational iteration method for solving fractional
Riccati differential equation by Bezier curves results, the results
of VIM could give a more accurate approximation in a larger
region (large interval) with high computation based on using the
Taylor expansion but the present method does not need a large
region and high computation. The use of the Bezier curves for
this problem is a novel idea. Although the method is very easy
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Fig. 4 The graphs of approximated and exact solution u ( t ) for Example 3 . 

Table 1 Exact and estimated values of x ( t ) for Example 3. 

t Analytic x ( t ) Stated method for α = 0 . 9 The absolute error for α = 1 Absolute error in [21] 

0.0 1.0000000000 1.0000000000 0.0 0.0000899 
0.2 0.7593708976912 0.7593708978173 1.261 ×10 −10 0.0000325 
0.4 0.5798975465472 0.5798980476764 5.011292 ×10 −7 0.0000213 
0.6 0.4471261037416 0.4471256204474 4.832942 ×10 −7 0.000103 
0.8 0.350363853313 0.3503638530515 2.61 ×10 −10 0.0000914 
1.0 0.281818070877 0.2818180709000 2.3 ×10 −11 –

t
t

E
[

J

s

O  

J  

α

x

w

β

A
C
0

A
u

u

B  

l

x

T  

a  

t  
o use and straightforward. These are the main advantages of 
he present method results). 

xample 3. Consider the following time invariant problem (see 
21] ) 

 = 

1 
2 

∫ 1 

0 
x 

2 (t) + u 2 (t ) dt , 

.t . D 

α
t x (t ) = −x (t) + u (t) , 

x (0) = 1 . 

ur aim is to find u ( t ) which minimizes the performance index
 . For this problem we have the exact solution in the case of
= 1 as follows 

 (t) = cosh ( 
√ 

2 t) + β sinh ( 
√ 

2 t) , 

u (t) = (1 + 

√ 

2 β) cosh ( 
√ 

2 t) + ( 
√ 

2 + β) sinh ( 
√ 

2 t) , 

here 

= − cosh ( 
√ 

2 + 

√ 

2 sinh 2 √ 

2 cosh ( 
√ 

2 ) + sinh ( 
√ 

2 ) 
= −0 . 98 . 

ccording to (11) we should have 
 

 

D 

α
t x (t) = −x (t) − λ(t) , 
α

t D 

α
1 λ(t) = x (t) − λ(t) , 

x (0) = 1 , λ(1) = 0 , 

lso, the following optimal control law may be computed by 
sing ∂H 

∂u = 0 

 

∗(t) = −λ(t) . 

y choosing n = 6 and α = 0 . 8 , the following approximated so-
ution can be found 

 (t) = 1 . + 5 . 020205491 t 4 − 4 . 04713986 t 5 + 1 . 485620981 t 2 

−3 . 010996506 t 3 − 1 . 385929291 t + 1 . 220057256 t 6 , 

u (t) = −0 . 385929291 − −0 . 062492458 t 4 + 0 . 0173924958 t 5 

−0 . 385880666 t 2 + 0 . 204185442 t 3 

+0 . 614070709 t − 0 . 00173880946 t 6 . 

he graphs of approximated and exact solution for x ( t ) and u ( t )
re plotted respectively in Figs. 3 and 4 . In Table 1 , exact, es-
imated value of x ( t ), the absolute error of stated method for

= 1 and the absolute error in [21] are shown. 
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5. Conclusions 

In the present work, we developed an efficient and accu-
rate method for solving a class of fractional optimal con-
trol problems, fractional Riccati differential, and Riccati type
differential-difference equation by Bezier curves method. The
method is computationally attractive, and also reduces the CPU
time and the computer memory at the same time while keeping
the accuracy of the solution. 
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