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1. Introduction 

There are many mathematical tools to deal with inexact or un-
certain knowledge in information systems such probability the-
ory, fuzzy sets [1] and rough sets [2] . Rough sets was proposed
by Pawlak [3] as an useful tool to deal with uncertainty and
incomplete information. Since then rough sets and its applica-
tions have attracted the interest of researchers in many fields
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[4–17] . The indiscernibility relation is the starting point of
Pawlak rough set which was first described by equivalence rela-
tion. However, the requirement of equivalence relation such as
the indiscernibility impose restrictions and limitations in many
applications. In the light of this, equivalence relation has been
extended to some other relations such as similarity relation [18] ,
tolerance relation [19] , fuzzy relations [20] , arbitrary relation
[17,21–23] and coverings of the universal sets [24–31] . 

Topology is regarded as an important and significant branch
of mathematics. In recent years many researchers have used
topological approaches in the study of rough sets and its appli-
cations. The combination of topological spaces and rough sets
and the properties of topological rough spaces are discussed by
Wu et al. [32] . Lin [12,13,33] used neighborhood systems and
topological concept in the study of approximations. Also, neigh-
borhood systems can be induced by the binary relations. The
equivalence class of each element in the equivalence relation
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an be viewed as a neighborhood of this element [34,35] . Yao 

23,36] introduced the successor elements of any element in an 

rbitrary binary relation as its right neighborhood. A concept 
f neighborhood assignment of general topology is considered 

y Hung [8] . Zuoming et al. [30] used the same concept, is called
core of neighborhoods”, and defined two classes of new rough 

ets based on neighborhood systems in terms of cores. 
In this paper, we introduce a new approach for generalization 

ough sets based on an arbitrary binary relation via the concept 
f the core of neighborhoods. Four classes of new rough sets 
re defined. The properties of new rough sets are established 

nd compared with the properties of other approaches. We dis- 
uss the relationship among the four approximation. We claim 

hat our approach is an extension of the classical rough sets. We
enerate four different topologies in terms of cores. Relation- 
hip among four different topologies are discussed. Our paper is 
onsidered an important evidence for the relationship between 

opology and rough set theory. 

. Preliminaries 

efinition 2.1. [2] Let U be a non empty set, is called the uni-
erse of discourse, and R be an equivalence relation on U . Then,
he pair K = (U, R ) is called an approximation space. For any
ubset X ⊆U , � ( X ) , � (X ) are called the lower and upper ap-
roximations, respectively, and are defined as follows: 

 (X ) = { x ∈ U : [ x ] R ⊆ X } , � (X ) = { x ∈ U : [ x ] R ∩ X � = ∅} 

here [ x ] R is the equivalence class of x with respect to R . 

roposition 2.1. [2] Let K = (U, � ) be an approximation space.
hen, the following properties hold, for X , Y ⊆U : 

(1L) � (U ) = U ; 
(1H) � (U ) = U ; 
(2L) � (∅ ) = ∅ ; 
(2H) � (∅ ) = ∅ ; 
(3L) � ( X ) ⊆X ;. 
(3H) X ⊆ � (X ) . 
(4L) � (X ∩ Y ) = � (X ) ∩ � (Y ) ; 
(4H) � (X ∪ Y ) = � (X ) ∪ � (Y ) ; 
(5) � (−X ) = −� (X ) , where (−X ) is the complement of X ;
(6L) � ( � (X )) = � (X ) ; 
(6H) � ( � (X )) = � (X ) ; 
(7L) X ⊆Y ⇒ � ( X ) ⊆ � ( Y ); 
(7H) X ⊆Y ⇒ � (X ) ⊆ � (Y ) ; 
(8L) � (−� (X )) = −� (X ) ; 
(8H) � (−� (X )) = −� (X ) ; 
(9L) � ( X ) ∪ � ( Y ) ⊆ � ( X ∪ Y ); 
(9H) � (X ∩ Y ) ⊆ � (X ) ∩ � (Y ) ; 

efinition 2.2. [36] Let R be a binary relation on the universe U
nd x , y ∈ U . If ( x , y ) ∈ R , then we say that y is related to x by R
nd the class RN(x ) = { y ∈ U : xRy } ( LN(x ) = { y ∈ U : yRx } )
s called the right neighbored (the left neighbored) of x induced 

y R , respectively. 

efinition 2.3. [8,30] Let R be a binary relation on the universe
 and x , y ∈ U . Then, the set { y ∈ U : N(y ) = N(x ) } is called

he core of neighborhood of x induced by R and is denoted by
N ( x ). 
efinition 2.4. [37] Let U be a non empty set, τ be a family of
ubsets of U and the following properties hold: 

(i) U , ∅ ∈ τ ; 
(ii) τ is closed under an arbitrary union; 

(iii) τ is closed under finite intersection. 

Then, τ is called a topology on U and the pair ( U , τ ) is called
 topological space. The elements of U are called points of the
pace. The subsets of U belonging to τ are called open sets and
he complement of the open subsets are called closed sets. 

. Generalized rough sets based on neighborhood systems 

n this section, we introduce a study of rough sets based on the
ore of neighborhood systems induced by an arbitrary binary 
elation. We define four different pairs of dual approximation 

perators. Also, we compare between our approach and some 
thers approaches. 

efinition 3.1. Let U be a non empty set, R be an arbitrary bi-
ary relation on U . Then, we can define four types of the core
f neighborhood systems induced by R as follows: 

(i) The core of right neighborhood( CN r ( x )): CN r (x ) = { y ∈
U : RN(x ) = RN(y ) } . 

(ii) The core of left neighborhood( CN l ( x )): CN l (x ) = { y ∈
U : LN(x ) = LN(y ) } . 

(iii) The core of union neighborhood( CN u ( x )): CN u (x ) =
CN r (x ) ∪ CN l (x ) . 

(iv) The core of intersection neighborhood( CN i ( x )): 
CN i (x ) = CN r (x ) ∩ CN l (x ) . 

efinition 3.2. Let U be a non empty set, R be an arbitrary bi-
ary relation on U and CN j ( x ) be the core of neighborhood sys-
ems where j ∈ { r , l , u , i } and x ∈ U . Then ( U , R , CN j ) is called
n approximation space based on neighborhood induced by the 
inary relation R (briefly called CN j -approximation space). 

emark 3.1. Let ( U , R , CN j ) be a CN j -approximation space. If
 is an equivalence relation, then the right and left neighbor-
oods are identical for each element of U . Therefore, CN j (x ) =
 x ] R for all j ∈ { r , l , u , i }, where [ x ] R is the equivalence class of x
 U induced by R . Consequently, our approach is considered a
eneralization to Pawlak’s approximation space. 

emma 3.1. Let ( U , R , CN j ) be a CN j -approximation space.
hen: 

(i) x ∈ CN j ( x ) for all x ∈ U and j ∈ { r , l , u , i } . 
(ii) if y ∈ CN j ( x ) . Then CN j (x ) = CN j (y ) , for all x , y ∈ U

and j ∈ { r , l , u , i } . 

roof. The proof is obvious from Definition 3.1 . �

efinition 3.3. Let ( U , R , CN j ) be a CN j -approximation space
nd X ⊆U . For each j ∈ { r , l , u , i } and x ∈ U , we define the
N j -lower approximation and the CN j -upper approximation of 
 respectively, as follows: 

(i) ℵ j (X ) = 

⋃ { CN j (x ) : CN j (x ) ⊆ X } . 
(ii) ℵ j (X ) = 

⋃ { CN j (x ) : CN j (x ) ∩ X � = ∅} . 
efinition 3.4. Let ( U , R , CN j ) be a CN j -approximation space,
 ⊆U . Then, the subset X is called CN j -exact set if ℵ j (X ) =
 j (X ) = X for all j ∈ { r , l , u , i }. Otherwise, the subset X is called
N j -rough. 
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Table 1 Comparison among different approaches’s properties 
of rough sets. 

Pawlak’s model Yao’s approach [36] Yu et al. [30] Our approach 

1 L × × ×
1 H × ×
2 L × ×
2 H × ×
3 L × ×
3 H × ×
4 L × ×
4 H × × ×
5 × ×
6 L × ×
6 H ×
7 L × × ×
7 H × × ×
8 L ×
8 H ×
9 L × × ×
9 H × × ×
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Definition 3.5. Let ( U , R , CN j ) be a CN j -approximation space
and X ⊆U . For all j ∈ { r , l , u , i }, the CN j -boundary region, the
CN j -positive region and the CN j -negative region can be defined
as follows, respectively: 

(i) BND j (X ) = ℵ j (X ) − ℵ j (X ) . 
(ii) POS j (X ) = ℵ j (X ) . 

(iii) NEG j (X ) = U − ℵ j (X ) 

Definition 3.6. (the accuracy measure) 
Let ( U , R , CN j ) be a CN j -approximation space, X ⊆U . Then,

CN j -accuracy of the approximations of the subset X is defined
as follows: 

δ j (X ) = 

| ℵ j (X ) | 
| ℵ j (X ) | 

where | ℵ j (X ) |� = ∅ , | X | is the cardinality of X and for all j ∈ { r ,
l , u , i } 

Remark 3.2. From the definition of the accuracy measure, we
deduce that: 

(i) 0 ≤ δj ( X ) ≤ 1, ∀ X ⊆U . 
ii) If δ j (X ) = 1 , then the subset X is CN j -exact and

BND j (X ) = 0 . Otherwise, X is CN j -rough set. 

Proposition 3.1. Let ( U , R , CN j ) be a CN j -approximation space
and X , Y ⊆U . Then, CN j -lower and upper approximations have
the following properties: 

(1L) ℵ j (U ) = U ; 
(1H) ℵ j (U ) = U ; 
(2L) ℵ j (∅ ) = ∅ ; 
(2H) ℵ j (∅ ) = ∅ ; 
(3L) ℵ j ( X ) ⊆X ; 
(3H) X ⊆ ℵ j (X ) . 
(4L) ℵ j (X ∩ Y ) = ℵ j (X ) ∩ ℵ j (Y ) ; 
(4H) ℵ j (X ∪ Y ) = ℵ j (X ) ∪ ℵ j (Y ) ; 
(5) ℵ j (−X ) = −ℵ j (X ) , where (−X ) is the complement of

X ; 
(6L) ℵ j ( ℵ j (X )) = ℵ j (X ) ; 
(6H) ℵ j ( ℵ j (X )) = ℵ j (X ) ; 
(7L) X ⊆Y ⇒ ℵ j ( X ) ⊆ ℵ j ( Y ); 
(7H) X ⊆Y ⇒ ℵ j (X ) ⊆ ℵ j (Y ) ; 
(8L) ℵ j (−ℵ j (X )) = −ℵ j (X ) ; 
(8H) ℵ j (−ℵ j (X )) = −ℵ j (X ) ; 
(9L) ℵ j ( X ) ∪ ℵ j ( Y ) ⊆ ℵ j ( X ∪ Y ); 
(9H) ℵ j (X ∩ Y ) ⊆ ℵ j (X ) ∩ ℵ j (Y ) ; 

Proof. The proofs of (1 L ), (1 H ), (2 L ), (2 H ), (3 L ), (3 H ), (6 L ),
(6 H ), (9 L ) and (9 H ) are obvious. For each x ∈ U , we will prove:

(4L) Let y ∈ ℵ j ( X ∩ Y ). Then y ∈ 

⋃ { CN j (x ) : CN j (x ) ⊆
(X ∩ Y ) } . Therefore, there exists at least CN j 0 such
that y ∈ CN j 0 ⊆ ( X ∩ Y ) ⇒ y ∈ CN j 0 ⊆ X and y ∈
CN j 0 ⊆ Y . Hence, y ∈ 

⋃ { CN j (x ) : CN j (x ) ⊆ X } and
y ∈ 

⋃ { CN j (x ) : CN j (x ) ⊆ Y } ⇒ y ∈ ( ℵ j (X ) ∩ ℵ j (Y )) . 
Thus, ℵ j ( X ∩ Y ) ⊆ ( ℵ j ( X ) ∩ ℵ j ( Y )). Conversely, we
can prove ( ℵ j ( X ) ∩ ℵ j ( Y )) ⊆ ℵ j ( X ∩ Y ). Then,
ℵ j (X ∩ Y ) = ℵ j (X ) ∩ ℵ j (Y ) . Similarly, the proof of
(4 H ) ; 

(5) Since −ℵ j (X ) = −⋃ { CN j (x ) : CN j (x ) ∩ X � = ∅}
= − ⋃ { CN j (x ) : CN j (x ) ∩ X � = ∅} = 

⋃ { CN j (x ) :
CN j (x ) ∩ X = ∅} = { CN j (x ) : CN j (x ) ⊆ (−X ) } =
ℵ j (−X ) . 

(7L) Let y ∈ ℵ j (X ) ⇒ y ∈ 

⋃ { CN j (x ) : CN j (x ) ⊆ (X ) } .
But X ⊆ Y ⇒ y ∈ 

⋃ { CN j (x ) : CN j (x ) ⊆ (Y ) } ⇒ y ∈
ℵ j (Y ) . Then, ℵ j ( X ) ⊆ ℵ j ( Y ). Similarly, the proof of
(7 H ). 

(8L) Since ℵ j (−ℵ j (X )) ⊆ −ℵ j (X ) . Conversely, let y ∈
(−ℵ j (X )) ⇒ y ∈ (−⋃ { CN j (x ) : CN j (x ) ⊆ (X ) } ) ⇒ y
∈ ( 

⋃ { CN j (x ) : CN j (x ) ∩ X = ∅} ) ⇒ y ∈ ( 
⋃ { CN j (x ) :

CN j (x ) ∩ ℵ j (X ) = ∅} ) ⇒ y ∈ ( 
⋃ { CN j (x ) : CN j (x ) ⊆

−ℵ j (X ) } ) . This implies that, y ∈ ℵ j (−ℵ j (X )) .
Hence −ℵ j (X ) ⊆ ℵ j (−ℵ j (X )) . Similarly, the proof
of (8 H ) . 

�

Remark 3.3. We notice from Proposition 3.1 that our approach
satisfies the same properties as Pawlak’s rough sets model. Since
R is an arbitrary relation in our approach. Therefore, we think
that our approach is an ideal generalization of rough sets. Al-
though there are many generalizations of rough set theory, but
many of them did not satisfy all the properties of rough sets.
In Table 1 , a comparison between our approach and other ap-
proaches of rough sets approximations where × shows that the
property hold. 

Corollary 3.1. ℵ j ( X ) ∪ ℵ j ( Y ) and ℵ j (X ∩ Y ) are proper sub-
sets of ℵ j ( X ∪ Y ) and ℵ j (X ) ∩ ℵ j (Y ) , respectively and the equal-
ity does not hold generally. The following example illustrates this
corollary. 

Example 3.1. Let U = { a, b, c, d} be a non empty set and R =
{ (a, a ) , (a, c ) , (b, b) , (b, d ) , (c, c ) , (c, a ) , (d, c ) , } be an arbitrary
relation. Then RN(a ) = { a, c } , RN(b) = { b, d} , RN(c ) =
{ a, c } , RN(d ) = { c } and LN(a ) = { a, c } , LN(b) =
{ b, d} , LN(c ) = { a, c } , LN(d ) = { D } . Therefore, CN r (a ) =
{ a, c } , CN r (b) = { b} , CN r (c ) = { a, c } , CN r (d ) = { c } , CN l (a ) =
{ a, c } , CN l (b) = { b, d} , CN l (c ) = { a, c } , CN l (d ) = { b, d} . From
Table 2 , if X = { a } ,Y = { c, d} and X ∪ Y = { a, c, d} . Then
ℵ r (X ) ∪ ℵ r (Y ) = { d} and ℵ r (X ∪ Y ) = { a, c, d} . Hence,
ℵ r ( X ) ∪ ℵ r ( Y ) � = ℵ r ( X ∪ Y ). Also, if Z = { a, b} , E = { c, d}
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Table 2 Comparison between Yao’s approach and our ap- 
proach. 

Yao’s method [36] Our method 

The subset � r ( X ) � r (X ) ℵ r ( X ) ℵ r (X ) ℵ u ( X ) ℵ u (X ) 

{ a } ∅ { a , c } ∅ { a , c } ∅ { a , c } 
{ b } ∅ { b } { b } { b } ∅ { b , d } 
{ d } ∅ { b } { d } { d } ∅ { b , d } 
{ a , b } ∅ U { b } { a , b , c } ∅ U 

{ a , b , c } { a , c , d } U { a , b , c } { a , b , c } { a , c } U 

{ a , b , d } { b } { a , b , c } { b , d } U { b , d } U 

{ a , c , d } { a , c , d } U { a , c , d } { a , c , d } { a , c } U 

a  
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a  
nd Z ∩ E = ∅ . Then ℵ u (Z) ∩ ℵ u (E ) = U and ℵ u (Z ∩ E ) = ∅ .
ence, ℵ u (Z) ∩ ℵ u (E ) � = ℵ u (Z ∩ E ) . 

emark 3.4. We notice from Table 2 that many of subsets be-
ome CN j -exact by using our approach. On the other hand, 
ao’s method does not satisfy the basic properties of rough sets 

or some subsets of U . 

.1. Relationships among different types of CN j -approximations 
perators 

n this section, we introduce a comparison among different 
ypes of CN j -approximations operators. Also, a comparison 

mong different types of accuracy of CN j -approximations is in- 
roduced. 

roposition 3.2. Let ( U , R , CN j ) be a CN j -approximation space
nd X ⊆U. Then, the following properties hold: 

(i) ℵ u ( X ) ⊆ ℵ r ( X ) ⊆ ℵ i ( X ) ; 
(ii) ℵ u ( X ) ⊆ ℵ l ( X ) ⊆ ℵ i ( X ) ; 

(iii) ℵ i (X ) ⊆ ℵ r (X ) ⊆ ℵ u (X ) ; 
(iv) ℵ i (X ) ⊆ ℵ l (X ) ⊆ ℵ u (X ) . 

roof. We will prove parts ( i ) and ( iii ). The proofs of other parts
re similar: ∀ x ∈ U 

(i) Let y ∈ ℵ u ( X ). Then y ∈ 

⋃ { CN u (x ) : CN u (x ) ⊆
X } . But, CN u (x ) = CN r (x ) ∪ CN l (x ) ⇒ y ∈ 

⋃ { CN r (x ) :
CN r (x ) ⊆ X } . Hence, y ∈ ℵ r ( X ). Therefore, ℵ u ( X ) ⊆
ℵ r ( X ). 
Now, Let y ∈ ℵ r ( X ). Then y ∈ 

⋃ { CN r (x ) : CN r (x ) ⊆
X } . But, CN i (x ) = CN r (x ) ∩ CN l (x ) ⇒ y ∈ 

⋃ { CN i (x ) :
CN i (x ) ⊆ X } . Hence, y ∈ ℵ i ( X ). Therefore, ℵ r ( X ) ⊆
ℵ i ( X ). 

(iii) Let y ∈ ℵ i (X ) . Then y ∈ 

⋃ { CN i (x ) : CN i (x ) ∩ X � = ∅} .
But, CN i (x ) = CN r (x ) ∩ CN l (x ) ⇒ y ∈ 

⋃ { CN r (x ) :
CN r (x ) ∩ X � = ∅} . Hence, y ∈ ℵ r (X ) . Therefore,
ℵ i (X ) ⊆ ℵ r (X ) . 
Now, Let y ∈ ℵ r (X ) . Then y ∈ 

⋃ { CN r (x ) : CN r (x ) ∩
X � = ∅} . But, CN u (x ) = CN r (x ) ∪ CN l (x ) ⇒ y ∈⋃ { CN u (x ) : CN u (x ) ∩ X � = ∅} . Hence, y ∈ ℵ u (X ) .
Therefore, ℵ r (X ) ⊆ ℵ u (X ) . 

�

emark 3.5. The equality relation does not hold in 

roposition 3.2 ., in general. The following example illustrates 
his remark. 

xample 3.2. Continued from Example 3.1 , we find that 
 u { a, b, c } = { a, c } � = { a, b, c } = ℵ r { a, b, c } and ℵ l { a, b} = ∅ � =
 b} = ℵ i { a, b} . Also, we find that, ℵ r { b} = { b} � = { b, d} = ℵ u { b}
nd ℵ i { c, d} = { a, c, d} � = U = ℵ l { c, d} . 
orollary 3.2. Let ( U , R , CN j ) be a CN j -approximation space
nd X ⊆U. Then, the following properties hold: 

(i) BN i ⊆BN r ⊆BN u 

(ii) BN i ⊆BN l ⊆BN u 

orollary 3.3. Let ( U , R , CN j ) be a CN j -approximation space
nd X ⊆U. Then, the following properties hold: 

(i) δu ( X ) ≤ δr ( X ) ≤ δi ( X ) 
(ii) δu ( X ) ≤ δl ( X ) ≤ δi ( X ) 

roposition 3.3. Let ( U , R , CN j ) be a CN j -approximation space
nd X ⊆U. Then, the following properties hold: 

(i) If X is CN u -exact. Then X is CN r -exact, which implies that
X is CN i -exact. 

(ii) If X is CN u -exact. Then X is CN l -exact, which implies that
X is CN i -exact. 

roof. We will prove part ( i ). The proof of part ( ii ) is similar: 

i) By Corollary 3.2 , let X be CN u -exact. Then BN u = ∅ ⇒
BN r = ∅ . Hence, X is CN r -exact. Now, X is CN r -exact. Then,
BN r = ∅ ⇒ BN i = ∅ . Therefore, X is CN i -exact 

�

emark 3.6. From Example 3.1 , we can see that the converse of
orollary 3.2 and Corollary 3.3 are not true generally. Also, ℵ

 

( X ) and ℵ i (X ) are the more accurate approximation operators
n the approximation space ( U , R , CN j ). 

. Topological spaces induced by the core of neighborhoods 

opology is a significant and interesting topic in pure math- 
matics. There are many methods for generating topological 
paces such as interior and closure operators. Topology in- 
uced by binary relations has attracted the interest of many 
esearchers. In this section, some types of topologies are gen- 
rated from the core of neighborhoods which are induced from 

he binary relation. 

roposition 4.1. Let ( U , R , CN j ) be a CN j -approximation space.
hen the families of topologies which can be generated from the
ore of neighborhoods induced by the binary relation R can be
efined as: ∀ j ∈ { r , l , u , i } 

j = { G ⊆ U : CN j (x ) ⊆ G, x ∈ G } 

roof. 

(i) U , ∅ ∈ τ j , obviously. 
(ii) Let G 1 , G 2 , G 3 , ..., G i „ ... ∈ τ j , i ∈ I and x ∈ 

⋃ 

G i . Then,
there exists at least G i 0 such that x ∈ G i0 ∈ 

⋃ 

G i and G i 0 

∈ τ . This implies that, CN j ( x ) ⊆G i 0 . Therefore, CN j (x ) ⊆⋃ 

G i and
⋃ 

G i ∈ τ j . 
(iii) Let G 1 , G 2 ∈ τ j and x ∈ G 1 ∩ G 2 . Then, x ∈ G 1 , x ∈

G 2 ⇒ CN j ( x ) ⊆G 1 and CN j ( x ) ⊆G 2 . Therefore, CN j ( x ) ⊆
G 1 ∩ G 2 . Hence, G 1 ∩ G 2 ∈ τ j 

�

xample 4.1. Let U = { a, b, c, d} be a non empty set
nd R = { (a, a ) , (a, b) , (b, b) , (b, a ) , (c, c ) , (c, d ) , (d, b) , }



Generalized rough sets based on neighborhood systems and topological spaces 607 

 

 

 

C
C
C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

be an arbitrary relation. Then, RN(a ) = { a, b} , RN(b) =
{ a, b} , RN(c ) = { c, d} , RN(d ) = { b} and LN(a ) =
{ a, b} , LN(b) = { a, b, d} , LN(c ) = { c } , LN(d ) = { c } . Therefore,

N r (a ) = { a, b} , CN r (b) = { a, b} , CN r (c ) = { c } , CN r (d ) = { d} , 
N l (a ) = { a } , CN l (b) = { b} , CN l (c ) = { c, d } , CN l (d ) = { c, d} , 
N u (a ) = { a, b} , CN u (b) = { a, b} , CN u (c ) = { c, d} , CN u (d ) = 

{ c, d} and CN i (a ) = { a } , CN i (b) = { b} , CN i (c ) = { c } , CN i (d ) =
{ d} . Hence τr = { U, ∅ , { a, b} , { c } , { d} , { a, b, c } , { a, b, d} , { c, d}} ,
τl = { U, ∅ , { a } , { b} , { c, d} , { a, b} , { a, c, d} , { b, c, d}} , τu =
{ U, ∅ , { a, b} , { c, d}} and τi = { U, ∅ , { a } , { b} , { c } , { d} , { a, b} ,
{ a, c } , { a, d} , { b, c } , { b, d} , { c, d} , { a, b, c } , { a, b, d} , , { b, c, d} , 
{ a, c, d} , { b, c, d}} 
Proposition 4.2. Let ( U , R , CN j ) be a CN j -approximation space
and τ j are topologies induced by CN j generated by the binary re-
lation R. Then, the following properties hold: 

(i) τ u ⊆τ r ⊆τ i ; 
(ii) τ u ⊆τ l ⊆τ i ; 

(iii) τ u ⊆τ i . 

Proof. We will prove parts ( i ) and ( iii ). The proof of (i i ) parts is
similar: 

(i) Let G ∈ τ u . Then, CN u ( x ) ⊆G , x ∈ G ⇒ CN r ( x ) ⊆G , x ∈
G . Therefore, G ∈ τ r and τ u ⊆τ r . Also, Let G ∈ τ r . Then,
CN r ( x ) ⊆G , x ∈ G ⇒ CN i ( x ) ⊆G , x ∈ G . Therefore, G ∈ τ i

and τ r ⊆τ i . 
(iii) Let G ∈ τ u . Then, CN u ( x ) ⊆G , x ∈ G ⇒ CN i ( x ) ⊆G , x ∈ G .

Therefore, G ∈ τ i and τ u ⊆τ i . 

�

Remark 4.1. In Proposition 4.2 , the equality relation does not
hold generally. From Example 4.1 , τ u � = τ r , τ u � = τ l and τ u � = τ i .
Also, τ u � = τ i � = τ l 

Corollary 4.1. Let ( U , R , CN j ) be a CN j -approximation space
and τ j are topologies induced by CN j generated by the binary re-
lation R and R be a symmetric relation. Then, τr = τl = τu = τi . 

Proof. Let R be a symmetric relation. Then RN(x ) =
LN(x ) , ∀ x ∈ U ⇒ CN r (x ) = CN l (x ) = CN u (x ) = CN i (x ) . 
Hence and by Proposition 4.1 , τr = τl = τu = τi . �

5. Conclusion 

In this paper, four new types of rough sets are introduced. We
generalized Pawlak’s rough set using an arbitrary general rela-
tion. The concept of core of neighborhoods induced by an arbi-
trary binary relation are used to define new approximations. We
established the properties of new approximation spaces. The re-
lationship among four approximation operators are discussed.
Four topological spaces are generated via core of neighbor-
hoods induced from an arbitrary relation. The relationships
among the four topologies are established. We think that our
approach is an important meeting point between general topol-
ogy and rough set theory. In future, we will discuss more appli-
cations of topological concepts in rough sets theory. 
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