
Journal of the Egyptian Mathematical Society (2016) 24 , 597–602 

Egyptian Mathematical Society 

Journal of the Egyptian Mathematical Society 

www.etms-eg.org 
www.elsevier.com/locate/joems 

Original Article 

Strong semilattices of topological groups 

A.M. Abd-Allah, A.I. Aggour 

∗, A. Fathy 

Mathematics Department, Faculty of Science, Al-Azhar University, Nasr City Cairo 11884, Egypt 

Received 10 December 2015; revised 3 March 2016; accepted 5 March 2016 
Available online 16 April 2016 

Keywords 

Partial group; 
Topological group; 
Identification map; 
Strong semilattice; 
Partial group homomor- 
phism 
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1. Preliminaries 

We collect for sake of reference the needed definitions and re-
sults appeared in the given references. 

Definition 1.1 ( [3,4] ) . A topological group G is a pair ( G , τ ),
where G is a group and τ is a topology on G which satisfies the
continuity of the following maps: 

(i) μ: G × G → G ; ( x , y ) �→ xy ; 
−1 
(ii) γ : G → G ; x �→ x . 
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Theorem 1.1 [3] . If G is a topological group, then γ is a homoeo-
morphism. 

Theorem 1.2 [4] . A group G with a topology τ is a topological
group if and only if the map f : G × G → G , (x, y ) �→ x 

−1 y is
continuous. 

Definition 1.2 [3] . Let G and H be topological groups, then φ:
G → H is called a morphism if φ is continuous and a group
homomorphism. 

Definition 1.3 [4] . Let G be a topological group and B be a sub-
group of G . Then B with the relative topology is called a topo-
logical subgroup. 

Theorem 1.3 [4] . B is a topological subgroup of a topological
group G if and only if the inclusion map i : B → G is a morphism. 

Definition 1.4 [5] . Let S be a semigroup. Then x ∈ S is called
an idempotent element if x · x = x . The set of all idempotent
elements in S is denoted by E ( S ). 
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is called the weak product of X and Y , denoted by X × W 

Y . 
efinition 1.5 [2] . Let S be a semigroup and x ∈ S . Then e ∈ S
s called a partial identity of x if 

(i) ex = xe = x ; 
(ii) If e ′ x = xe ′ = x, e ′ ∈ S , then ee ′ = e ′ e = e . 

heorem 1.4 [2] . If S is a semigroup, then 

(i) If x ∈ S has a partial identity, then it is unique. 
(ii) E ( S ) is the set of all partial identities of the elements of S. 

We will denote by e x the partial identity of the element 
 ∈ S . 

efinition 1.6 [2] . Let S be a semigroup and x ∈ S has a partial
dentity e x . The element y ∈ S is called a partial inverse of x if 

(i) xy = yx = e x . 
(ii) e x y = ye x = y . 

heorem 1.5 [2] . Let S be a semigroup and x ∈ S has a partial
dentity e x . If x has a partial inverse y , then it is unique. 

We will denote by x 

−1 the partial inverse of x ∈ S . 

heorem 1.6 [2] . Let S be a semigroup and x ∈ S. Then: 

(i) (e x ) −1 = e x , ∀ e x ∈ E ( S ) . 
(ii) e x −1 = e x . 

(iii) (x 

−1 ) −1 = x . 

efinition 1.7 [2] . A semigroup S is called a partial group if: 

(i) Every x ∈ S has a partial identity e x . 
(ii) Every x ∈ S has a partial inverse x 

−1 . 
(iii) The map e S : S → S ; x �→ e x is a semigroup homomor-

phism. 
(iv) The map γ : S → S , x �→ x 

−1 is a semigroup anti-
homomorphism [(xy ) −1 = y −1 x 

−1 ] . 

From this definition we have every group is a partial group. 
o, the notion of partial group is a good generalization of that
f group. So, it is important to study a reasonable topology on a
artial group to satisfy the nice properties of topological groups. 

efinition 1.8 [2] . If S is a partial group and x ∈ S , then we
efine 

 x = { y ∈ S : e x = e y } . 

heorem 1.7 [2] . Let S be a partial group and x ∈ S , then 

(i) S x is a maximal subgroup of S which has identity e x . 
(ii) S = ∪{ S x : x ∈ S} = ∪{ S e x : e x ∈ E (S) } . 

orollary 1.1 [2] . Every partial group is a disjoint union of a fam-
ly of groups. 

heorem 1.8 [2] . Let S be a partial group, then E ( S ) is commuta-
ive and central. 

efinition 1.9 [1] . A subsemigroup B of a partial group S is
alled a subpartial group, denoted by B ≤ S , if ∀ x ∈ B we have
 

−1 ∈ B and e x ∈ B . 

heorem 1.9 [5] . Let S be a partial group and B ⊆S , then B ≤ S
f and only if x 

−1 y ∈ B, ∀ x , y ∈ B. 

efinition 1.10 [1] . Let S and T be partial groups, then φ: S → T
s called a partial group homomorphism if φ(xy ) = φ(x ) φ(y ) ,
 x , y ∈ S . 
efinition 1.11 [1] . Let φ: S → T be a partial group homomor-
hism, then ker φ = { x ∈ S : φ(x ) = e φ(x ) } and Im φ = { φ(x ) :
 ∈ S} . 
efinition 1.12 [1] . A partial group homomorphism φ: S → T

s called an isomorphism if it is bijective. 

efinition 1.13 [1] . If S is a partial group and B ≤ S , then B is
alled normal, denoted by B � S, if B is wide ( E ( S ) ⊆ B ) and
yx 

−1 ∈ B, ∀ x ∈ S , y ∈ B . 

efinition 1.14 [1] . Let S be a partial group and B � S. The set
 xB : x ∈ S } is called the quotient set, denoted by S | B , where
B = { y ∈ S : x 

−1 y ∈ B, e x = e y } is called the left coset of B by
 . 

heorem 1.10 [1] . Let S be a partial group and N � S. Then S | N
ith the map μ: S | N × S | N → S | N , ( xN , yN ) �→ ( xy ) N is a
artial group. 

efinition 1.15 [5] . Let ( S i ) i ∈ Y be a family of groups indexed by
 semilattice Y of the identities of the groups such that if i ≥ j , i , j
 Y , there exists a group homomorphism φi , j : S i → S j , satisfies:

(i) φi , i is the identical automorphism; 
(ii) φ j,k φi, j = φi,k , where i ≥ j ≥ k , i , j , k ∈ Y . 

Then the disjoint union S = 

⋃ 

i∈ Y S i , with the binary op-
ration S × S → S , (x i , y j ) �→ x i y j = (φi,i j x i )(φ j,i j y j ) , ∀ x i ∈
 i , y j ∈ S j , is called a strong semilattice of groups, denoted by
 = L (S i , Y , φi, j ) . 

heorem 1.11 [2] . S is a partial group if and only if S is a strong
emilattice of groups. 

efinition 1.16 [5] . Let φ: S → T be a partial group homomor-
hism. Then φ is called idempotent separating if φ(e x ) = φ(e y )

mplies that e x = e y , ∀ e x , e y ∈ E ( S ). 

The following results are the fundamental theorems of iso- 
orphisms. 

heorem 1.12 [1] . Let φ: S → T be an idempotent separating sur-
ective partial group homomorphism and K = ker φ. Then there
xists a unique isomorphism α: S | K → T such that φ = αρK ,

here ρK : S → S | K; x �→ xK is the quotient map. 

heorem 1.13 [1] . Let M, N � S be such that M ⊆N. Then 

(i) N| M � S| M; 
(ii) There exists a unique isomorphism α: ( S | M )|( N | M ) →

S | N such that ρN = αρN| M 

ρM 

, where ρN 

: S → S | N and
ρN | M 

: S | M → ( S | M )|( N | M ) are the quotient maps. 

efinition 1.17 [2] . Let S be a partial group, and A , B ⊆S . Then,
e define AB = { ab : a ∈ A, b ∈ B} and A 

−1 = { a −1 : a ∈ A } . 
efinition 1.18 [6] . Let X = � λ∈ L X λ be the sum of the under-

ying sets of the family ( X λ) λ ∈ L of topological spaces, and let
 λ: X λ → X be the inclusions. The final topology on X with
espect to ( i λ) λ ∈ L is called the sum topology. Clearly, a map
f : X = � λ∈ L X λ → Y is continuous if and only if fiλ is continu-
us, for all λ ∈ L . 

efinition 1.19 [6] . Let X = � n ∈ N X n and Y = � m ∈ M 

Y m 

and X ×
 be the cartesian product of X and Y . Then, X × Y with the
nal topology with respect to the inclusions ( i n × i m 

) n ∈ N , m ∈ M 
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2. Topological partial groups 

In this article, we introduce the notion of topological partial
groups. The category of topological partial groups Tpg and its
continuous homomorphisms has some deficiencies. 

Definition 2.1. Let S be a partial group and τ be a topology on
S . Then S is called a topological partial group if the following
maps are continuous: 

(i) μ: S × S → S , ( x , y ) �→ xy ; 
(ii) γ : S → S , x �→ x 

−1 ; 
(iii) e S : S → S , x �→ e x . 

Every topological group is a topological partial group. 

Theorem 2.1. A partial group S with a topology τ is a topological
partial group if and only if the map f : S × S → S , (x, y ) �→ x 

−1 y
is continuous. 

Proof. Let S be a topological partial group. Then f is continu-
ous, since f = μ(γ × I ) , where I is the identity map on S . 

Conversely, let f : S × S → S , (x, y ) �→ x 

−1 y be continuous.
Then the maps e S , γ and μ are continuous, since, e S = f �,

γ = f (I × e S )� and μ = f (γ × I ) , respectively, where � is the
diagonal map which is continuous. �

Definition 2.2. Let S and T be topological partial groups. The
map φ: S → T is called a morphism if φ is continuous and par-
tial group homomorphism. 

Theorem 2.2. If S is a topological partial group, then γ is a home-
omorphism. 

Proof. It is clear. �

Definition 2.3. Let S be a topological partial group and B be
a subpartial group of S . Then B with the relative topology is a
topological partial group, called a topological subpartial group,
denoted by B ≤ S 

Theorem 2.3. B is a topological subpartial group of a topological
partial group S if and only if the inclusion map i : B → S is a
morphism. 

Proof. It is clear. �

Theorem 2.4. Let S be a topological partial group, then the clo-
sure N̄ of a topological subpartial group N of S is a topological
subpartial group of S. 

Proof. Let a, b ∈ N̄ . Since S is a topological partial group, then
f : S × S → S , (x, y ) �→ x 

−1 y is continuous. Now, f ( ̄N × N̄ ) =
f ( N × N ) ⊆ f [ N × N] = N̄ . So, a −1 b ∈ N̄ . �

Definition 2.4. Let S be a topological partial group and a ∈ S .
Then, the map r a : S → S , x �→ xa is called a right transforma-
tion, and the map 	 a : S → S , x �→ ax is called a left transforma-
tion. 

Theorem 2.5. The maps r a and 	 a are continuous. 

Proof. The map r a is continuous since r a = μ(I S , I a ) , where I S
is the identity map and I a is the constant map on S with value
a . Similarly, 	 a is continuous since 	 a = μ(I a , I S ) . �

Theorem 2.6. Let S be a topological partial group. Then 

(i) ( ̄A ) −1 = (A 

−1 ) , 
(ii) ( A 

◦) −1 = ( A 

−1 ) ◦, where Ā and A ° are the closure and inte-
rior of the set A , respectively. 

Proof. Since γ : S → S is a homeomorphism, then 

(i) γ ( ̄A ) = γ (A ) . So, ( ̄A ) −1 = (A 

−1 ) and 

(ii) γ (A 

◦) = (γ (A )) ◦. So, ( A 

◦) −1 = ( A 

−1 ) ◦. �

3. External direct product of topological partial groups 

Let { S i : i = 1 , 2 , . . . , n } be a family of topological partial
groups and S = 

⊗ n 
i=1 S i be the cartesian product of the under-

lying sets S i . That is, S = { x = 〈 x i 〉 : x i ∈ S i , ∀ i = 1 , 2 , . . . , n } .
Theorem 3.1. The set S = 

⊗ n 
i=1 S i with the map μ: S × S → S;

( 〈 x i 〉 , 〈 y i 〉 ) �→〈 x i y i 〉 is a partial group. 

Proof. Clearly, S is a semigroup, that is, μ is a well defined as-
sociative binary operation. The element e x = 〈 e x i 〉 is the par-
tial identity of the element x = 〈 x i 〉 because xe x = 〈 x i 〉〈 e x i 〉 =
〈 x i e x i 〉 = 〈 x i 〉 = x . Similarly, e x x = x . If xe = ex = x, e =
〈 e i 〉 ∈ E (S) , then 〈 x i e i 〉 = 〈 e i x i 〉 = 〈 x i 〉 . That is, x i e i = e i x i =
x i , i = 1 , 2 , · · · , n . Now, ee x = 〈 e i 〉〈 e x i 〉 = 〈 e i e x i 〉 = 〈 e i x i x 

−1 
i 〉 =

〈 x i x 

−1 
i 〉 = 〈 e x i 〉 = e x . Similarly, e x e = e x . 

The partial inverse of the element x = 〈 x i 〉 is x 

−1 =
〈 x 

−1 
i 〉 , since xx 

−1 = 〈 x i 〉〈 x 

−1 
i 〉 = 〈 x i x 

−1 
i 〉 = 〈 e x i 〉 = e x . Similarly,

x 

−1 x = e x . Also, e x x 

−1 = 〈 e x i 〉〈 x 

−1 
i 〉 = 〈 e x i x 

−1 
i 〉 = 〈 x 

−1 
i 〉 = x 

−1 ,

and x 

−1 e x = x 

−1 . 
e xy = e 〈 x i 〉〈 y i 〉 = e 〈 x i y i 〉 = 〈 e x i y i 〉 = 〈 e x i e y i 〉 = 〈 e x i 〉〈 e y i 〉 = e x e y . 
Finally, (xy ) −1 = (〈 x i 〉〈 y i 〉 ) −1 = 〈 x i y i 〉 −1 = 〈 (x i y i ) −1 〉 =

〈 y −1 
i x 

−1 
i 〉 = 〈 y −1 

i 〉〈 x 

−1 
i 〉 = y −1 x 

−1 . Hence, S is a partial
group. �

Theorem 3.2. The partial group S = 

⊗ n 
i=1 S i with the cartesian

product topology is a topological partial group. 

Proof. The maps μ, γ and e S are continuous since μ = <

μi (P i × P i ) >, γ = < γi P i > and e S = < e S i P i >, respectively,
where P i : �n 

i=1 S i → S i are the projection maps. �

Definition 3.1. The topological partial group 

⊗ n 
i=1 S i is called

the external direct product of { S i : i = 1 , 2 , . . . , n } . 
Theorem 3.3. Let S = 

⊗ n 
i=1 S i be an external direct product

of topological partial groups and let A i o = { < x i : x i o = e x i o > } ,
where e x i o is the partial identity of x i o in S i o . Then A i o � S. 

Proof. Let x, y ∈ A i o , be such that x = < x i : x i o = e x i o >, y = <

y i : y i o = e y i o > . Then x 

−1 y = < x 

−1 
i y i : x 

−1 
i o y i o = e x i o e y i o > ∈ A i o .

Also, let x = < x i : x i o = e x i o > ∈ A i o and y = < y i > ∈ S. Then,
yxy −1 = < y i x i y −1 

i : y i o x i o y 
−1 
i o = e x i o e y i o > . So, yxy −1 ∈ A i o , since

y i o x i o y 
−1 
i o = e x i o e y i o = e x i o y i o Hence, A i o � S. �

4. Neighborhoods of the partial identity elements 

Let S be a topological partial group and x ∈ S , then the system
of open neighborhoods of x is denoted by N x and a subfamily
βx of N x is called a base of open neighborhoods of x if ∀ N ∈
N x ∃ B ∈ βx such that x ∈ B ⊆N . 

Theorem 4.1. Let S be a topological partial group and x ∈ S , then
βe x has the following properties: 

(i) If U, V ∈ βe x , then ∃ W ∈ βe x such that W ⊆ U ∩ V. 
(ii) If U ∈ βe , then ∃ V ∈ βe such that V 

−1 V ⊆ U . 
x x 
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(iii) If U ∈ βe x , then ∃ V ∈ βe x such that x 

−1 V x ⊆ U . 

roof. 

(i) Let U, V ∈ βe x , then U ∩ V ∈ βe x . So ∃ W ∈ βe x such
that W ⊆ U ∩ V . 

(ii) Since f : S × S → S , (x, y ) �→ x 

−1 y is continuous
and U is open in S , then f −1 [ U ] is open in S × S .
Since (e x , e x ) ∈ f −1 [ U ] , then there exists N 1 , N 2 ∈ N e x 
such that (e x , e x ) ∈ N 1 × N 2 ⊆ f −1 [ U ] . But N 1 , N 2 ∈ N e x ,

then N 1 ∩ N 2 ∈ N e x , and so ∃ V ∈ βe x such that V ⊆
N 1 ∩ N 2 . Now, V × V ⊆ (N 1 ∩ N 2 ) × (N 1 ∩ N 2 ) ⊆ N 1 ×
N 2 ⊆ f −1 [ U ] . Hence, f [ V × V ] ⊆ U . Then V 

−1 V ⊆ U . 
(iii) The map f x : S → S , y �→ x 

−1 yx is continuous because
f x = 	 x −1 r x . So, f −1 

x [ U ] is open in S for each U ∈ βe x .
But e x ∈ f −1 

x [ U ] , since f x (e x ) = e x . Then, f −1 
x [ U ] is an

open neighborhood of e x , and so, ∃ V ∈ βe x such that
V ⊆ f −1 

x [ U ] . So, f x [ V ] ⊆ U . Hence, x 

−1 V x ⊆ U . �

heorem 4.2. Let S be a topological partial group, x ∈ S and
 ∈ βe x . Then 

(i) ∃ V ∈ βe x such that V 

−1 e x ⊆ U ; 
(ii) ∃ V ∈ βe x such that VV ⊆U; 

(iii) U 

−1 ∈ N e x . 

roof. 

(i) From (ii) above. 
(ii) Since μ: S × S → S , ( x , y ) �→ xy is continuous

and U is open in S , then μ−1 [ U ] is open in S ×
S . But (e x , e x ) ∈ μ−1 [ U ] , since μ(e x , e x ) = e x . Then,
∃ N 1 , N 2 ∈ N e x such that (e x , e x ) ∈ N 1 × N 2 ⊆ μ−1 [ U ] .
Since N 1 , N 2 ∈ N e x , then N 1 ∩ N 2 ∈ N e x , and so, ∃ V ∈
βe x such that V ⊆N 1 ∩ N 2 . Now, V × V ⊆ (N 1 ∩ N 2 ) ×
(N 1 ∩ N 2 ) ⊆ N 1 × N 2 ⊆ μ−1 [ U ] . Thus, μ( V × V ) ⊆U .
Hence, VV ⊆U . 

(iii) Since γ : S → S , is a homeomorphism and U is open in S ,
then γ −1 [ U ] = U 

−1 is open in S and e x ∈ U 

−1 . Therefore,
U 

−1 ∈ N e x . �

We note that 	 a and r a may be neither injective nor surjec-
ive and so may not be a homeomorphism, as clear from the
ollowing example. 

xample 4.1. Let S e = { e, a } and S f = { f , g, h } be isomorphic
o Z 2 and Z 3 , respectively. Consider the semilattice e ≥ f , that
eans e f = f , one can define φe , f : S e → S f ; e �→ f , a �→ f . Then,

he corresponding partial group S = { e, a, f , g, h } is given by the
able: 

· e a f g h 
e e a f g h 
a a e f g h 
f f f f g h 
g g g g h f 
h h h h f g 

It is clear that r f is not surjective and is not injective. 
Let τS = { S, φ, S e , S f , { e } , { a } , { e, f , g, h } , { a, f , g, h }} . Then

 is a topological partial group. We note that S = S e � S f and
e , f is continuous. 
(

We have the following deficiency: If x ∈ S , then the maps r x 
nd 	 x may not be open. In the above example, we have that { a }
s open in S but r f { a } = { a } f = { f } is not open in S . 

efinition 4.1. If S is a topological partial group and N ≤ S ,
hen S | N with the identification topology, with respect to the
uotient map ρN 

: S → S | N , is called the coset space. 

Also, we have the following deficiencies 

(i) The quotient map ρN 

: S → S | N , N ≤ S may not be open,
in general. 

(ii) If S is a topological partial group and N �S , then S | N
may not be a topological partial group, because ρN 

× ρN 

may not be an identification map. 

We note that if S is a locally compact space, then S / N is
lso locally compact. Thus, ρN 

× ρN 

is an identification map. 
o, S | N is a topological partial group. Therefore, one can say
hat the category of locally compact partial groups Lcpg has 
 quotient (limit) and a product (co-limit). Hence, we have the
ollowing result. 

heorem 4.3. Let S , T be locally compact partial groups, φ: S
 T be an idempotent separating surjective morphism, and K = 

er φ. Then, there exists a unique bijective morphism α: S | K →
 such that φ = αρK . 

roof. Since ρK is identification and φ is continuous, then α is 
ontinuous. That is all we need. �

. Strong semilattices of topological groups 

n this section, we suggest the notion of strong semilattices of
opological groups to get over the above deficiencies. Also, we 
eplace the cartesian product S × S by the weak product S ×
 

S . 

efinition 5.1. Let ( S i ) i ∈ Y be a family of topological groups in-
exed by a semilattice Y of the identities of the groups such that

f i ≥ j , i , j ∈ Y , , there exist a continuous and open group ho-
omorphism φi , j : S i → S j , satisfies: 

(i) φi , i is the identical automorphism; 
(ii) φj , k , φi, j = φi,k , ∀ i , j , k ∈ Y , i ≥ j ≥ k . Then S = 

⊔ 

i∈ Y S i 

with the binary operation S × S → S ; (x i , y j ) �→ x i y j =
(φi,i j x i )(φ j,i j y j ) , ∀ x i ∈ S i , y j ∈ S j , is called a strong
semilattice of topological groups, and is denoted by S = 

L (S i , Y , φi, j ) . 

heorem 5.1. If S is a strong semilattice of topological groups,
hen S is a topological partial group. 

roof. Since S is a strong semilattice of groups, then S
s a partial group ( Theorem 1.11 ). We prove the continu-
ty of structure maps. The maps μ, γ and e S are continu-
us since μ(i α × i β ) = i αβμαβ (φα,αβ × φβ,αβ ) , γ i α = i αγα, and
 S i α = i αe S α , respectively. �

heorem 5.2. Let S be a strong semilattice of topological groups,
hen the maps r a and 	 a are open. 

roof. Let U ⊆S be open, so U α = U ∩ S α is open in S α for
ach α. If a ∈ S , then a ∈ S β , for some β. Now, r a (U ) = U a =
∪ αU α ) a = ∪ α(U αa ) . Since U αa = φα,αβ (U α ) φβ,αβ (a ) , then: 
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(i) If α > β, then αβ = β, and so U αa = φα,β (U α ) φβ,β (a ) =
φα,β (U α ) a = r a (φα,β (U α )) is open in S β . So U αa is open
in S . 

(ii) If α = β, then U αa = U βa = r a (U β ) is open in S β . So, U αa
is open in S . 

(iii) If β > α, then βα = α, then U αa == φα,α(U α ) φβ,α(a ) =
U αφβ,α(a ) = r φβ,α (a ) (U α ) is open in S α . So, U αa is open
in S . 
Hence r a ( U ) is open in S . Similarly, 	 a is open. �

Example 5.1. Let S e = { e, a } and S f = { f , g, h } be isomorphic
to Z 2 and Z 3 , respectively. Consider the semilattice f ≥ e that
means f e = e, one can define φf , e : S f → S e , f �→ e , g �→ e , h
�→ e . Then the corresponding partial group S = { e, a, f , g, h } is
given by the next table: 

· e a f g h 
e e a e e e 
a a e a a a 
f e a f g h 
g e a g h f 
h e a h f g 

Let τS e = { S e , φ, { e } , { a }} and τS f = { S f , φ} . Hence, S e and
S f are topological groups and S = S e � S f is a strong semilattice
of topological groups, since φf , e is continuous and open. 

We note that in Example (4.1) S is not a strong semilattice
of topological groups even S = S e � S f and φe , f is continuous,
since φe , f is not open. 

Theorem 5.3. If S is a strong semilattice of topological groups, x
∈ S and A , B ⊆ S. Then 

(i) If A is open in S , then xA and Ax are also open in S. 
(ii) If A is open in S , then AB and BA are also open in S. 

Proof. 

(i) The result follows since r a and 	 a are open maps. 
(ii) Since AB = ∪ b∈ B r b (A ) , then AB is open. Similarly, BA is

open. �

We note that every topological group is a strong semilattice
of topological groups and every strong semilattice of topologi-
cal groups which is not a topological group, is disconnected. 

Theorem 5.4. If S 1 and S 2 are strong semilattices of topological
groups, then S 1 × W 

S 2 is also a strong semilattice of topological
groups. 

Proof. Let S 1 = L (S i , Y , φi, j ) and S 2 = L (S 

′ 
i ′ , Y 

′ , φ′ 
i ′ , j ′ ) be

strong semilattices of topological groups, then S 1 ×W 

S 2 =
L (S i × S 

′ 
i ′ , Y × Y 

′ , φi, j × φ′ 
i ′ , j ′ ) is a strong semilattice of topo-

logical groups, where (S i × S 

′ 
i ′ ) (i,i ′ ) ∈ Y ×Y ′ is a famil y of topolo g-

ical groups indexed by the semilattice Y × Y 

′ and φi, j × φ′ 
i ′ , j ′ =

φ′′ 
(i,i ′ ) , ( j, j ′ ) : S i × S 

′ 
i ′ → S j × S 

′ 
j ′ , are morphisms and open which

satisfies: 

(i) φ′′ 
(i,i ′ ) , (i,i ′ ) is the identical automorphism. 

(ii) φ′′ 
( j, j ′ ) , (k,k ′ ) φ

′′ 
(i,i ′ )( j, j ′ ) = φ′′ 

(i,i ′ ) , (k,k ′ ) . �

Let A be a wide topological subpartial group of the strong
semilattice of topological groups S = L (S i , Y , φi, j ) . Then A i =
A ∩ S i is a topological subgroup of S i . If φi , j ( A i ) ⊆ A j , then
φ′ 

i, j = φi, j | A i ,A j is a morphism of topological groups. If φ′ 
i, j are

open, then A = (A i , Y , φ′ 
i, j ) is a substrong semilattice of topo-
logical groups, called a substrong semilatic of topological group
of S . 

Theorem 5.5. Let S be a strong semilattice of topological groups.
Then, every open substrong semilattice of topological groups is
closed. 

Proof. Let N ≤ S be open, then xN is open in S for each
x ∈ S . Since S − N = ∪ x �∈ N xN, then S − N is open. So, N is
closed. �

Theorem 5.6. Let N be a substrong semilattice of topological
groups of the strong semilattice of topological groups S , then the
quotient map ρN 

: S → S | N is open. 

Proof. Let U be open in S . Then, ρ−1 
N [ ρN [ U ]] = U N is open in

S . Hence, ρN 

[ U ] is open in S | N . �

Theorem 5.7. If S is a strong semilattice of topological groups
and N � S , then S | N is a strong semilattice of topological groups.

Proof. Let S = L (S i , Y , φi, j ) be a strong semilattice of topolog-
ical groups and N � S. It is easily to show that N ∩ S i = N i �
S i . So, S i | N i is a topological group. So, (S i | N i ) e ′ i ∈ Y ′ is a family
of topological groups indexed by the semilattice Y 

′ of the iden-
tities of the groups. Let φe ′ i ,e 

′ 
j 

: S i | N i → S j | N j , xN i �→ φi , j ( x ) N j .
We have φe ′ i ,e 

′ 
j 

is continuous, since φe ′ i ,e 
′ 
j 
ρN i = ρN j φi, j and ρN i 

is an identification map. From the properties of the quo-
tient of topological groups [3] there exists a continuous ho-
momorphism and open map ψ : S i / N i → S j such that ψρN i =
φi, j . Since φe ′ i ,e 

′ 
j 
= ρN j ψ, then φe ′ i ,e 

′ 
j 

is open. Finally φe ′ i ,e 
′ 
j 

is
the identical automorphism and φe ′ j ,e 

′ 
k 
φe ′ i ,e 

′ 
j 
= φe ′ i ,e 

′ 
k 
. Therefore

S/N = L (S i /N i , Y , φe ′ i ,e 
′ 
j 
) , is a strong semilattice of topological

groups. �

The sum of two strong semilattices of topological groups can
be constructed but it may not be unique, in general. 

Theorem 5.8. Let φ: S → T be an idempotent separating mor-
phism of strong semilattice of topological groups. Let N � S such
that N ⊆ker φ, then, there exists a unique injective morphism α:
S | N → T such that φ = αρN . 

Proof. We only prove the continuity of α as follows. We have
that α is continuous since φ is continuous and ρN 

is an identifi-
cation map. �

In particular, if N = kerφ in the above theorem, then α:
S | ker φ → T is the unique injective morphism. 

Theorem 5.9. Let S be a strong semilattice of topological groups
and M , N ≤ S with M ⊆N. Then the identification topology on
N | M with respect to the quotient map ρ ′ 

M 

: N → N| M is the rel-
ative topology on N | M as a subspace of S | M. 

Proof. Let ρM 

: S → S | M be the quotient map and ρ ′ 
M 

:
N → N| M be the restriction ρM 

on N . So, ρ ′ 
M 

is continu-
ous and surjective . Let N | M be a subspace of S | M , then
the inclusion i ′ : N | M → S | M is continuous. We need only
to prove that ρ ′ 

M 

is open to show that it is an identification
map. Let U ⊆ N be open, there exists an open set V in S
such that U = V ∩ N. Now, ρ ′ 

M 

[ U ] = ρM 

[ U ] = ρM 

[ V ∩ N] =
ρM 

[ V ] ∩ ρM 

[ N] = ρM 

[ V ] ∩ N| M. 

Since ρM 

[ V ] is open in S , then ρ ′ 
M 

[ U ] is open in N | M . 
Conversely, let ρ ′ 

M 

be an identification map. Since i ′ ρ ′ 
M 

=
ρM 

i and i is continuous, then i ′ is continuous, where i : N → S is
the inclusion map. So, N | M is a subspace of N | M . �
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heorem 5.10. Let S be a strong semilattice of topological groups 
nd M, N � S such that M ⊆N , then 

(i) N| M � S| M; 
(ii) There exists a unique bijective morphism α: ( S | M )|( N | M )

→ S | N , such that ρN = αρN| M 

ρM 

. 

roof. 

(i) See [1] . 
(ii) Let ρN 

: S → S | N and ρM 

: S → S | M be the
quotient maps. Since ρN 

is an idempotent separat- 
ing surjective morphism and kerρN = { x ∈ S : ρN (x ) =
e x N} = { x ∈ S : xN = e x N} = { x ∈ S : x ∈ N} = N, that
is, M ⊆ker ρN 

. So, from Theorem 5.8 , there exists a unique
bijective morphism φ: S | M → S | N , xM �→ xN such
that φρM 

= ρN . Now, kerφ = { xM ∈ S| M : φ(xM ) =
e x N} = { xM ∈ S| M : xN = e x N} = N| M is a strong
semilattice of topological groups, from Theorem 5.7 . 
Then, from Theorem 5.8 , there exists a unique bijective 
morphism α: ( S | M )|( N | M ) → S | N such that αρN| M 

=
φ. �

heorem 5.11. Let ( S i ) i ∈ I be strong semilattices of topological 
roups and N i � S i , ∀ i ∈ I. Then, 

(i) �n 
i=1 N i � �

n 
i=1 S i 

(ii) There exists a unique bijective morphism β : �n 
i=1 S i | �n 

i=1 
N i → �

n 
i=1 (S i | N i ) . 

roof. 

(i) Since the inclusions j i : N i → S i , ∀ i ∈ I are morphisms,
then the inclusion j = �

n 
i=1 j i : �

n 
i=1 N i → �

n 
i=1 S i is a mor-

phism, and so �
n 
i=1 N i ≤ �

n 
i=1 S i . Let x = < x i > ∈ �

n 
i=1 S i 

and y = < y i > ∈ �
n 
i=1 N i . Now, xyx 

−1 = < x i >< y i ><
x 

−1 
i > = < x i y i x 

−1 
i > ∈ �

n 
i=1 N i , where x i y i x 

−1 
i ∈ N i , ∀ i ∈ I .

So, �n 
i=1 N i � �

n 
i=1 S i . 

(ii) Let φi : S i → S i | N i , x i �→ x i N i . Then φi are continuous sur-
jective maps. Now, we define α : �n 

i=1 S i → �
n 
i=1 (S i | N i ) ,

< x i > �→ < φi ( x i ) > , ∀ i ∈ I . Then, α is an idempotent
separating surjective morphism. Hence by Theorem 5.8 , 
we have that there exists a unique bijective morphism 

β : �n 
i=1 S i | kerα → �

n 
i=1 (S i | N i ) . Now, we prove that

kerα = �
n 
i=1 N i . kerα = { < x i > ∈ �

n 
i=1 S i : α(< x i > ) = <

e x i N i > } = { < x i > ∈ �
n 
i=1 S i : < φi (x i ) > = < e x i N i > } = 

{ < x i > ∈ �
n 
i=1 S i : x i N i = e x i N i } = { < x i > ∈ �

n 
i=1 S i : 

x 

−1 
i e x i ∈ N i , e x i = e e x i } = { < x i > ∈ �

n 
i=1 S i : x 

−1 
i ∈ N i } = 

{ < x i > ∈ �
n 
i=1 S i : x i ∈ N i } = �

n 
i=1 N i . �
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