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. Introduction 

he homotopy theory is an important part of mathematics 
hich has many applications and numerous variants, general- 

zations, and adaptations. It has been improved to the shape 
heory in order to deal better with spaces with poor local 
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ions [1] have p layed very important roles for investigating the
utual relations among the topological spaces. 

Under the notion of homotopy theory for topological 
paces, Cerin in [2] introduced the definition of homotopy 
heory for topological semigroups. He extended some basic 
roperties in homotopy theory to their analogous struc- 
ures in homotopy theory for topological semigroups such as 
-retraction, K-retraction, S-homotopically domination, S χ - 
bration and S χ -cofibration. 

This paper is organized as follows. Section 2 is devoted to
ome preliminaries. In Section 3 we give the concepts of de-
ormation S-retract, deformation K-retract, strong deformation 

-retraction, and ES-homotopy extension property. The S χ - 
brations and S χ -cofibrations played very important roles for 
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duction and hosting by Elsevier B.V. This is an open access article 
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Section 4 we introduce the covering homotopy theorems for S-
maps into S χ -fibrations and S χ -cofibrations. We prove the pull-
backs for S χ -fibrations are S χ -fibrations. 

2. Preliminaries 

In this section we provide some preliminary works that serve as
background for the present study which were previously estab-
lished by Cerin, in [2] . 

A topological semigroup or S-space is a pair ( S , a ) consisting
a topological space S and a map (i.e., a continuous function) a :
S × S → S such that a (x, a (y, z )) = a (a (x, y ) , z ) for all x , y , z
∈ S . Let χ denotes the class of all S-spaces. 

For every space S , the natural S-space is S-space ( S , π i ),
where π i is a continuous associative multiplication on S given
by π1 (x, y ) = x and π2 (x, y ) = y for all x , y ∈ S . We denote the
class of all natural S-spaces ( S , π ) by N π , where π = π1 , π2 . 

S-space ( B , c ) is called an S-subspace of ( S , a ) if B is a sub-
space of S and the map a takes the product B × B into B and
c (x, y ) = a (x, y ) for all x , y ∈ B . It is natural to denote the mul-
tiplication of S-subspace with the same symbol used for the mul-
tiplication on the S-space under consideration. 

Let ( S , a ) and ( O , e ) be two S-spaces. The function f : ( S , a )
→ ( O , e ) is called a homomorphism or an S-map if f is a map of
a space S into O and f (a (x, y )) = e ( f (x ) , f (y )) for all x , y ∈
S . Recall [2] that the usual composition and the usual product
of two S-maps are S-maps. 

For every a space S , by P ( S ) we mean the space of all paths
from the unit closed interval I = [0 , 1] into S with the compact-
open topology. Recall [2] that for every S-space ( S , a ), ( P ( S ), a
) is S-space where a : P ( S ) × P ( S ) → P ( S ) is a map defined by
a (α, β)(t) = a (α(t) , β(t)) for all α, β ∈ P ( S ), t ∈ I . The shorter
notion for this S-space will be P ( S , a ). 

Definition 2.1. The S-maps f , g : ( S , a ) → ( O , e ) are called S-
homotopic and write f � s g provided there is S-map H : ( S , a )
→ P ( O , e ) called S-homotopy such that H (s )(0) = f (s ) and
H (s )(1) = g(s ) for all s ∈ S . 

Theorem 2.2. The relation of S-homotopy � s is an equivalence
relation on the set of all S-maps of ( S , a ) into ( O , e ) . 

Theorem 2.3. If the S-maps f , g : ( S , a ) → ( O , e ) are S-homotopic
then the relations f ◦h � s g ◦h and k ◦f � s k ◦g hold for all S-maps
h into ( S , a ) and k from ( O , e ) . 

Recall [2] that if the S-maps f , g : ( S , a ) → ( O , e ) are S-
homotopic then the maps f , g : S → O are homotopic and the
S-maps f , g : ( S , π ) → ( O , π ) are S-homotopic if and only if the
maps f , g : S → O are homotopic. 

Throughout this paper, for every S-homotopy H : ( S , a ) →
P ( O , e ) and for every t ∈ I , by H t (or [ H ] t ) we mean the S-
map, [2] , H t : ( S , a ) → ( O , e ) which given by H t (s ) = H (s )(t)
for all s ∈ S . Also for every S-homotopy H : ( S , a ) → P [ P ( O ), e
] and for every r , t ∈ I , by H rt (or [ H ] rt ) we mean the S-map H rt :
( S , a ) → ( O , e ) which given by H rt (s ) = [ H (s )(r )](t) for all s ∈
S . 

Definition 2.4. S-map f : ( S , a ) → ( O , e ) is called S χ -fibration
if for every space ( X , c ) ∈ χ , S-map g : ( X , c ) → ( S , a ), and
S-homotopy G : ( X , c ) → P ( O , e ) with G 0 = f ◦ g, there is S-
homotopy H : ( X , c ) → P ( S , a ) such that H 0 = g and f ◦ H t =
G t for all t ∈ I . 
Recall [2] that the map f : S → O is a Hurewicz fibration if
and only if the S-map f : ( S , π ) → ( O , π ) is S N π −fibration. 

Definition 2.5. S-map f : ( S , a ) → ( O , e ) is called S χ -cofibration if
for every space ( X , c ) ∈ χ , S-map g : ( O , e ) → ( X , c ), and
S-homotopy G : ( S , a ) → P ( X , c ) with G 0 = g ◦ f , there is S-
homotopy H : ( O , e ) → P ( X , c ) such that H 0 = g and H t ◦ f = G t

for all t ∈ I. 

Recall [2] that the map f : S → O is a cofibration if and only
if the S-map f : ( S , π ) → ( O , π ) is S N π −cofibration. 

Definition 2.6. An S-subspace ( B , a ) of S-space ( S , a ) is called
S-retract of ( S , a ) if there exists S-map R : ( S , a ) → ( B , a ) such
that R (s ) = s for all s ∈ B. The S-map R is called S-retraction of
( S , a ) onto ( B , a ) . 

Throughout this paper, j : ( B , a ) → ( S , a ) will denote to the
inclusion S-map for every S-subspace ( B , a ) of S-space ( S , a )
and id the identity S-map. 

Definition 2.7. An S-subspace ( B , a ) of S-space ( S , a ) is called
K-retract of ( S , a ) if there exists S-map r : ( S , a ) → ( B , a ) such
that r ◦j � s id B . The S-map r is called K-retraction of ( S , a ) onto
( B , a ). 

Notice that S-retract is an K-retract. The converse of the first
claim is not true in general. In the following theorem, [2] proved
a sufficient condition. 

Theorem 2.8. Let ( B , a ) be S-subspace of S-space ( S , a ) such that
the inclusion S-map j : ( B , a ) → ( S , a ) is S {( B , a )} -cofibration. Then
( B , a ) is S-retract of ( S , a ) if and only if ( B , a ) is K-retract of ( S ,
a ) . 

3. Deformation S-retractions 

Definition 3.1. An S-subspace ( B , a ) of S-space ( S , a ) is called
a deformation S-retract of ( S , a ) if there exists S-retraction map
R : ( S , a ) → ( B , a ) of ( S , a ) onto ( B , a ) such that j ◦R � s id S .
The S-homotopy between j ◦R and id S is called a deformation
S-retraction. 

Example 3.2. Let ( S , a ) be S-space and s o ∈ S be an idempotent
element of ( S , a ) (i.e., s o as o = s o ). Let 

L (S, s o ) = { α ∈ P(S) : α(0) = s o } ⊂ P(S) 

and 

˜ s o be the constant path at s o in L ( S , s o ). For every α, β ∈
L ( S , s o ), 

(αa β)(0) = α(0) aβ(0) = s o as o = s o . 

That is, a pair ( L ( S , s o ), a ) is S-subspace of P ( S , a ). Similarly,
({ ̃  s o } , a ) is S-subspace of ( L ( S , s o ), a ). Define the S-retraction
R : (L (S, s o ) , a ) → ({ ̃  s o } , a ) by F (α) = ̃

 s o for all α ∈ L ( S , s o ).
({ ̃  s o } , a ) is a deformation S-retract of ( L ( S , s o ), a ) such that
id L (S,s o ) � s j ◦ R by a deformation S-retraction F : ( L ( S , s o ), a )
→ P ( L ( S , s o ), a ) given by F rt (α) = α(r (1 − t)) for all r , t ∈ I ,
α ∈ L ( S , s o ), where j : ({ ̃  s o } , a ) → (L (S, s o ) , a ) is the inclusion
S-map. 

The S-map f : ( S , a ) → ( O , e ) is called S-homotopy equivalence
if there exists S-map g : ( O , e ) → ( S , a ) such that f ◦g � s id O 

and
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 ◦f � s id S . An S-subspace ( B , a ) of S-space ( S , a ) is called a
eformation K-retract of ( S , a ) if the inclusion S-map j : ( B , a ) →
 S , a ) is S-homotopy equivalence. 

Notice that a deformation S-retract is a deformation K- 
etract. Moreover, a deformation K-retract is a deformation H- 
etract (called a weak deformation retract in [ [4] , p. 30]). The
onverse of the last claim holds for multiplications π but fail in 

eneral, see Example (7) in ( [4] , P. 30), for the natural S-spaces
 X , π ) and ( A , π ). In the following theorem, we shall identify a
ufficient condition when the converse of the first claim is true. 

heorem 3.3. Let ( B , a ) be S-subspace of S-space ( S , a ) such that
he inclusion S-map j : ( B , a ) → ( S , a ) is S {( B , a )} -cofibration. Then
 B , a ) is a deformation S-retract of ( S , a ) if and only if ( B , a ) is a
eformation K-retract of ( S , a ) . 

roof. We already noticed that the (only if) part is always true,
t remains to show the (if) part. Since ( B , a ) is a deformation K-
etract of ( S , a ), then there exists S-map r : ( S , a ) → ( B , a ) such
hat r ◦j � s id B and j ◦r � s id S . For the first part, there exists S-
omotopy F : ( B , a ) → P ( B , a ) such that F 0 = r ◦ j and F 1 = id B .
y hypothesis, there exists S-homotopy H : ( S , a ) → P ( B , a ) such

hat H 0 = r and H t ◦ j = F t for all t ∈ I . Define the S-retraction
 : ( S , a ) → ( B , a ) of ( S , a ) onto ( B , a ) by R (s ) = H (s )(1) for all
 ∈ S . Note that for all s ∈ B , R (s ) = H (s )(1) = F (s )(1) = s . 

For the second part j ◦r � s id S , there exists S-homotopy G :
 S , a ) → P ( S , a ) such that G 1 = j ◦ r and G 0 = id S . Since G 1 =
j ◦ r = j ◦ H 0 , then we can define S-homotopy H 

′ : ( S , a ) → P ( S ,
 ) by 

 

′ (s )(t) = 

{
G (s )(2 t) for all t ∈ [0 , 1 / 2] , s ∈ S;
j[ H (s )(2 t − 1)] for all t ∈ [1 / 2 , 1] , s ∈ S. 

ote that H 

′ 
0 = G 0 = id S and H 

′ 
1 = j ◦ H 1 = j ◦ R . That is, j ◦R

 s id S . Hence ( B , a ) is a deformation S-retract of ( S , a ). �

In Definition (3.1) , the S-homotopy between j ◦r and id S , say
 : ( S , a ) → P ( S , a ), is called a strong deformation S-retraction

f F (s )(t) = s for all s ∈ B , t ∈ I and we say ( B , a ) is a strong
eformation S-retract of ( S , a ). 

In Example (3.2) , F is a strong deformation S-retraction such 

hat 

 rt ( ̃  s o ) = ̃

 s o (r (1 − t)) = s o = ̃

 s o (r ) 

or all r , t ∈ I . 
One can easily check that a strong deformation S-retract is a 

eformation S-retract. The converse of this claim fail in general, 
ee Example (8) in ( [4] , P. 30), for the natural S-spaces ( X , π ) and
 A , π ). In Theorem (3.7) , we shall identify a sufficient condition
hen the converse of the first claim is true. 

efinition 3.4. Let ( B , a ) be an S-subspace of S-space ( S , a ) and
 O , e ) be any S-space. An S-homotopy G : ( B , a ) → P [ P ( O ), e ]
s called a S 01 -extended map to ( S , a ) provided for every t ∈ I ,
he two S-maps G 0 t , G 1 t : ( B , a ) → ( O , e ) have extension S-maps
o S , denoted by EG 0 t , EG 1 t : ( S , a ) → ( O , e ), respectively. 

For every a closed subspace B of a space S , S 

01 
B will be denote

o the closed subspace ( S × {0}) ∪ ( B × I ) ∪ ( S × {1}) of S ×
 . In the above definition, for every (s, r ) ∈ S 

01 
B , E sr -path in O
nduced by G ( denoted E 

G 
sr ) is a path in O given by 

 

G 
sr (t) = 

⎧ ⎨ 

⎩ 

EG 0 t (s ) s ∈ S, r = 0 ;
G rt (s ) s ∈ B, r ∈ I;
EG 1 t (s ) s ∈ S, r = 1 

or all t ∈ I . Note that E 

G 
sr is a continuous, since B is a closed

ubspace of S . 

efinition 3.5. A closed S-subspace ( B , a ) of S-space ( S , a ) is
aid to have ES-homotopy extension property in ( S , a ) with re-
pect to ( O , e ) if, given S-homotopy g : ( S , a ) → P ( O , e ) and S 01 -
xtended map G : ( B , a ) → P [ P ( O ), e ] to S with E 

G 
sr (0) = g(s )(r )

or all (s, r ) ∈ S 

01 
B , there exists S-homotopy H : ( S , a ) → P [ P ( O ),

 ] such that H r 0 = g r for all r ∈ I and H rt (s ) = E 

G 
sr (t) for all

s, r ) ∈ S 

01 
B , t ∈ I . 

xample 3.6. Let ( S , a ) be any S-space and ( B , a ) be any closed
-subspace of ( S , a ). Let s o ∈ S be an idempotent element of
 S , a ). Then ( B , a ) has ES-homotopy extension property in
 S , a ) with respect to ({ s o }, a ). Note that we have only one S-
omotopy g : ( S , a ) → P ({ s o }, a ) given by g(s ) = ̃

 s o for all s ∈ S
nd one S 01 -extended map G : ( B , a ) → P [ P ({ s o }), a ] to S given
y G (s )(r ) = ̃

 s o for all s ∈ B with extensions EG 0 t (s ) = s o and
G 1 t (s ) = s o for all s ∈ S , t ∈ I . For every (s, r ) ∈ S 

01 
B , E 

G 
sr = ̃s o

nd we observe that 

 

G 
sr (0) = ̃

 s o (0) = s o = ̃

 s o (r ) = g(s )(r ) . 

efine S-homotopy H : ( S , a ) → P [ P ({ s o }), a ] by H rt (s ) = s o
or all s ∈ S and r , t ∈ I . Note that H r 0 = g r for all r ∈ I and
 rt (s ) = E 

G 
sr (t) for all (s, r ) ∈ S 

01 
B , t ∈ I . 

heorem 3.7. Let ( B , a ) be a closed S-subspace of S-space ( S ,
 ) such that ( B , a ) has ES-homotopy extension property in ( S ,
 ) with respect to ( S , a ) . Then ( B , a ) is a strong deformation S-
etract of ( S , a ) if and only if ( B , a ) is a deformation S-retract of
 S , a ) . 

roof. We already noticed above that the (only if) part is always
rue, it remains to show the (if) part. Since ( B , a ) is a deforma-
ion S-retract of ( S , a ), there exist S-retraction map R : ( S , a ) →
 B , a ) and S-homotopy F : ( S , a ) → P ( S , a ) such that F 0 = id S 
nd F 1 = j ◦ R . Define S-homotopy G : ( B , a ) → P [ P ( S ), a ] by 

 rt (s ) = F (s )(r (1 − t)) 

or all r , t ∈ I , s ∈ B . For every t ∈ I , define S-maps EG 0 t , EG 1 t :
 S , a ) → ( S , a ) by 

G 0 t (s ) = s, EG 1 t (s ) = F (R (s ))(1 − t) 

or all s ∈ S , respectively. Note that for every t ∈ I , 

 0 t (s ) = F (s )(0) = s = EG 0 t (s ) 

nd since R is S-retraction of ( S , a ) onto ( B , a ), then 

 1 t (s ) = F (s )(1 − t) = F (R (s ))(1 − t) = EG 1 t (s ) 

or all s ∈ B . Then EG 0 t and EG 1 t are extension S-maps of G 0 t 

nd G 1 t to S , respectively. That is, S-homotopy G is S 01 -extended
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map to S . For every (s, r ) ∈ S 

01 
B , the E sr -path in O induced by G

is given by 

E 

G 
sr (t) = 

⎧ ⎨ 

⎩ 

s s ∈ S, r = 0 ;
F (s )(r (1 − t)) s ∈ B, r ∈ I;
F (R (s ))(1 − t) s ∈ S, r = 1 

for all t ∈ I . 
Note that E 

G 
sr (0) = F (s )(r ) for all s ∈ B , r ∈ I , E 

G 
s 0 (0) = s =

F (s )(0) , and 

E 

G 
s 1 (0) = F (R (s ))(1) = ( j ◦ R )(R (s )) = j[ R (R (s ))] 

= j[ R (s )] = F (s )(1) 

for all s ∈ S . That is, E 

G 
sr (0) = F (s )(r ) for all (s, r ) ∈ S 

01 
B . Since

( B , a ) has ES-homotopy extension property in ( S , a ) w.r.t ( S , a ),
then there exists S-homotopy H : ( S , a ) → P [ P ( S ), a ] such that
H r 0 = F r for all r ∈ I and H rt (s ) = E 

G 
sr (t) for all (s, r ) ∈ S 

01 
B , t ∈

I . 
Define S-homotopy F 

′ : ( S , a ) → P ( S , a ) by F ′ (s )(r ) = H r 1 (s )
for all r ∈ I , s ∈ S . Note that 

F ′ (s )(0) = H 01 (s ) = E 

G 
s 0 (1) = s 

and 

F ′ (s )(1) = H 11 (s ) = E 

G 
s 1 (1) = F (R (s ))(0) = R (s ) = ( j ◦ R )(s ) 

for all s ∈ S . That is, F 

′ is S-homotopy between id S and j ◦R .
Since R is S-retraction, then F 

′ is a deformation S-retraction.
For a strong property, we note that for every s ∈ B , r ∈ I , 

F ′ (s )(r ) = H r 1 (s ) = E 

G 
sr (1) = F (s )(0) = s. 

Hence ( B , a ) is a strong deformation S-retract of ( S , a ). �

In the following theorem, recall [2] that the function f : S →
O of a natural S-space ( S , π ) into ( O , π ) is S-map if and only if
it is continuous. 

Theorem 3.8. Let ( B , π ) be a closed S-subspace of S-space ( S ,
π ) . Then ( B , π ) has ES-homotopy extension property in ( S , π )
w.r.t any S-space (O, π) ∈ N π if and only if the inclusion S-map
j : (S 

01 
B , π) → (S × I, π) is S N π -cofibration. 

Proof. Suppose ( B , π ) has ES-homotopy extension property in
( S , π ) with respect to S-space ( O , π ). Let g ′ : ( S × I , π ) → ( O ,
π ) be S-map and G 

′ : (S 

01 
B , π) → P(O, π) be S-homotopy with

G 

′ 
0 = g ′ ◦ j. Define S-homotopy G : ( B , π ) → P [ P ( O ), π ] by

G rt (s ) = G 

′ (s, r )(t) for all r , t ∈ I , s ∈ B . For every t ∈ I , define
S-maps EG 0 t , EG 1 t : ( S , π ) → ( O , π ) by 

EG 0 t (s ) = G 

′ ((s, 0) , t) , EG 1 t (s ) = G 

′ ((s, 1) , t) 

for all s ∈ S , respectively. Note that for every t ∈ I , EG 0 t and EG 1 t

are extension S-maps of G 0 t and G 1 t to S , respectively. That is,
S-homotopy G is S 01 -extended map to S . For every (s, r ) ∈ S 

01 
B ,

the E sr -path in O induced by G is given by E 

G 
sr (t) = G 

′ (s, r )(t)
for all t ∈ I . 

Define S-map g : ( S , π ) → P ( O , π ) by g(s )(r ) = g ′ (s, r ) for all
s ∈ S , r ∈ I . Note that 

E 

G 
sr (0) = G 

′ ((s, r ) , 0) = g ′ (s, r ) = g(s )(r ) 
for all (s, r ) ∈ S 

01 
B . Then there exists S-homotopy H : ( S , π ) →

P [ P ( O ), π ] such that H r 0 (s ) = g r (s ) = g ′ (s, r ) for all r ∈ I , s
∈ S and H rt (s ) = E 

G 
sr (t) = G 

′ (s, r )(t) for all (s, r ) ∈ S 

01 
B , t ∈ I .

Hence j is S N π -cofibration. 
Conversely, suppose j : (S 

01 
B , π) → (S × I, π) is an S N π -

cofibration. Let g : ( S , π ) → P ( O , π ) be S-homotopy and G :
( B , π ) → P [ P ( O ), π ] be S 01 -extended map to ( S , π ) with
E 

G 
sr (0) = g(s )(r ) for all (s, r ) ∈ S 

01 
B . Define S-map g ′ : ( S × I , π )

→ ( O , π ) by g ′ (s, r ) = g(s )(r ) for all r ∈ I , s ∈ S and define
S-homotopy G 

′ : (S 

01 
B , π) → P(O, π) by G 

′ (s, r )(t) = E 

G 
sr (t) for

all (s, r ) ∈ S 

01 
B , t ∈ I . Note that 

G 

′ (s, r )(0) = E 

G 
sr (0) = g(s )(r ) = g ′ (s, r ) 

for all (s, r ) ∈ S 

01 
B . That is, G 

′ 
0 = g ′ ◦ j. Since j is S N π -cofibration,

then there exists S-homotopy H 

′ : ( S × I , π ) → P ( O , π ) such that
H 

′ 
0 = g ′ and H 

′ ◦ j = G 

′ . Then the desired S-homotopy H : ( S ,
π ) → P [ P ( O ), π ] is defined by H rt (s ) = H 

′ (s, r )(t) for all r , t ∈
I , s ∈ S . �

In the following theorem, we show the role of S χ -fibrations
in finding the extensions S-maps with a deformation S-retract
property. 

Theorem 3.9. Let f : ( S , a ) → ( O , e ) be S χ -fibration. Let ( B , c )
be S-subspace of S-space ( X , c ) such that ( B , c ) is a deformation
S-retract of ( X , c ) . If h : ( B , c ) → ( S , a ) and k : ( X , c ) → ( O , e ) are
S-maps such that f ◦ h = kB, then there exists S-map h ′ : ( X , c )
→ ( S , a ) such that f ◦ h ′ = k and h ′ | B � s h. 

Proof. Since ( B , c ) is a deformation S-retract of ( X , c ), then
there exist S-retraction map R : ( X , c ) → ( B , c ) and S-homotopy
F : ( X , c ) → P ( X , c ) such that F 0 = j ◦ R and F 1 = id X . Define
S-map g : ( X , c ) → ( S , a ) and S-homotopy G : ( X , c ) → P ( O , e )
by g = h ◦ R and G t = k ◦ F t for all t ∈ I , respectively. Note that 

G 0 = k ◦ F 0 = k ◦ ( j ◦ R ) = (k ◦ j) ◦ R = k | B ◦ R 

= ( f ◦ h ) ◦ R = f ◦ g. 

Since f : ( S , a ) → ( O , e ) be S χ -fibration, then there exists S-
homotopy H : ( X , c ) → P ( S , a ) such that H 0 = g and f ◦ H t =
G t for all t ∈ I . Define h ′ : ( X , c ) → ( S , a ) by h ′ = H 1 . Note that 

f ◦ h ′ = f ◦ H 1 = G 1 = k ◦ F 1 = k 

and for all x ∈ B , 

H 0 (x ) = g(x ) = (h ◦ R )(x ) = h (R (x )) = h (x ) . 

Since h ′ = H 1 , then h � s h ′ | B by S-homotopy H | B : ( B , c ) →
P ( S , a ). �

4. Covering homotopy theorem 

The main results of this section are covering homotopy theo-
rems for S-maps into S χ -fibrations and into S χ -cofibrations. 

Recall [2] that for every S-map f : ( S , a ) → ( O , e ), ̂ f :
P(S, a ) → P(O, e ) is S-map given by ̂ f (α) = f ◦ α for all α ∈
P ( S , a ). By P 1 and P 2 we mean the usual first and the second
projection maps (or S-maps), respectively. 

Theorem 4.1. Let f : ( S , a ) → ( O , e ) be S χ -fibration and let h , h ′ :
( X , c ) → P ( S , a ) be two S-maps. Let h 0 � s h ′ 0 and ̂ f ◦ h � s 

̂ f ◦ h ′
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y S-homotopies K : ( X , c ) → P ( S , a ) and G : ( X , c ) → P [ P ( O ),
 ], respectively. If G 0 t = f ◦ K t for all t ∈ I , then there exists S-
omotopy H : ( X , c ) → P [ P ( S ), a ] between h and h ′ such that
 0 t = K t and f ◦ H rt = G rt for all r , t ∈ I. 

roof. Let M = (I × { 0 } ) ∪ ({ 0 } × I ) ∪ (I × { 1 } ) ⊂ I × I . For
very ( r , t ) ∈ M , define S-map �( r , t ) : ( X , c ) → ( S , a ) by 

(r,t) (x ) = 

⎧ ⎨ 

⎩ 

h (x )(r ) t = 0 ;
K(x )(t) r = 0 ;
h ′ (x )(r ) t = 1 

or all x ∈ X . Recall ( [4] , P. 100) that there is a homeomorphism
: I × I → I × I taking M onto I × {0}. By hypothesis, note
hat for every ( r , t ) ∈ M , 

f ◦ �(r,t) )(x ) = G rt (x ) = (G (x )(r ))(t) 

or all x ∈ X . For every r ∈ I , define an S-map g r : ( X , c ) → ( S ,
 ) and S-homotopy G 

r : ( X , c ) → P ( O , e ) by g r (x ) = �λ−1 (r, 0) (x )

nd 

 

r (x )(t) = [ G (x )(P 1 [ λ−1 (r, t)])](P 2 [ λ−1 (r, t)]) 

or all x ∈ X , t ∈ I , respectively. Note that for every r ∈ I , 

 

r (x )(0) = (G (x )(P 1 [ λ−1 (r, 0)]))(P 2 [ λ−1 (r, 0)]) 

= ( f ◦ �(P 1 [ λ−1 (r, 0)] , P 2 [ λ−1 (r, 0)]) )(x ) 

= ( f ◦ �λ−1 (r, 0) )(x ) = ( f ◦ g r )(x ) 

or all x ∈ X . That is, G 

r 
0 = f ◦ g r . Then for every r ∈ I , since f is

 χ -fibration, there exists S-homotopy H 

r : ( X , c ) → P ( S , a ) such
hat H 

r 
0 = g r and f ◦ H 

r 
t = G 

r 
t for all t ∈ I . Define S-homotopy

 : ( X , c )) → P [ P ( S ), a ] by 

H (x )(r ))(t) = H 

P 1 [ λ(r,t)] (x )(P 2 [ λ(r, t)]) 

or all x ∈ X , r , t ∈ I . Note that 

H (x )(r ))(0) = H 

P 1 [ λ(r, 0)] (x )(P 2 [ λ(r, 0)]) = H 

P 1 [ λ(r, 0)] (x )(0) 

= g P 1 [ λ(r, 0)] (x ) 

= �λ−1 (P 1 [ λ(r, 0)] , 0) (x ) = �λ−1 (P 1 [ λ(r, 0)] , P 2 [ λ(r, 0)]) ( x ) 

= �λ−1 (λ(r, 0)) (x ) = �(r, 0) (x ) = h (x )(r ) 

nd 

H (x )(r ))(1) = H 

P 1 [ λ(r, 1)] (x )(P 2 [ λ(r, 1)]) = H 

P 1 [ λ(r, 1)] (x )(0) 

= g P 1 [ λ(r, 1)] (x ) 

= �λ−1 (P 1 [ λ(r, 1)] , 0) (x ) = �λ−1 (P 1 [ λ(r, 1)] , P 2 [ λ(r, 1)]) ( x ) 

= �λ−1 (λ(r, 1)) (x ) = �(r, 1) (x ) = h ′ (x )(r ) 

or all x ∈ X , r ∈ I . Then H is S-homotopy between h and h ′ .
lso note that 

 ot (x ) = (H (x )(0))(t) = H 

P 1 [ λ(0 ,t)] (x )(P 2 [ λ(0 , t)]) 

= H 

P 1 [ λ(r, 0)] (x )(0) 

= g P 1 [ λ(0 ,t)] (x ) = �λ−1 (P 1 [ λ(0 ,t)] , 0) (x ) 

= �λ−1 (P 1 [ λ(0 ,t)] , P 2 [ λ(0 ,t)]) (x ) 

= �λ−1 (λ(0 ,t)) (x ) = �(0 ,t) (x ) = K t (x ) 
nd 

f ◦ H rt )(x ) = ( f ◦ H r (x ))(t) = ( f ◦ H 

P 1 [ λ(r,t)] (x ))(P 2 [ λ(r, t)]) 

= G 

P 1 [ λ(r,t)] (x )(P 2 [ λ(r, t)]) 

= 

{
G (x )(P 1 [ λ−1 {P 1 [ λ(r, t)] , P 2 [ λ(r, t)] } ]) }

(P 2 [ λ−1 {P 1 [ λ(r, t)] , P 2 [ λ(r, t)] } ]) 
= 

{
G (x )(P 1 [ λ−1 { λ(r, t) } ]) }(P 2 [ λ−1 { λ(r, t) } ]) 

= 

{
G (x )(P 1 [ r, t]) 

}
(P 2 [ r, t]) 

= (G (x )(r ))(t) = G rt (x ) 

or all r , t ∈ I , x ∈ X . That is, H 0 t = K t and f ◦ H rt = G rt for all
 , t ∈ I . �

orollary 4.2. Let f : ( S , a ) → ( O , e ) be S χ -fibration. Let h , h ′ :
 X , c ) → P ( S , a ) be S-maps such that h 0 = h ′ 0 and ̂ f ◦ h = 

̂ f ◦ h ′ .
hen there exists S-homotopy H : ( X , c ) → P [ P ( S ), a ] between h
nd h ′ such that H 0 t = h 0 = h ′ 0 and f ◦ H rt = f ◦ h r for all r , t ∈
. 

roof. Define S-homotopy K : ( X , c ) → P ( S , a ) by K(x )(t) =
 0 (x ) and S-homotopy G : ( X , c ) → P [ P ( O ), e ] by
G (x )(r ))(t) = ( f ◦ h r )(x ) for all r , t ∈ I , x ∈ X . Then by using
he above theorem, one can get the desired S-homotopy. �

In the following example, we give some applications for 
heorem (4.1) . 

xample 4.3. The two pairs (R , π) and (R 

2 , π) are S-spaces
ith the usual real space R and the usual product space R 

2 ,

espectively. Let b, b ′ : (X , π) → (R , π) be any two S-maps
rom any S-space ( X , π ) into (R , π) . Define S N π -fibration f :
R 

2 , π) → (R , π) by f (x, y ) = x for all (x, y ) ∈ R 

2 . Define two
-maps h, h ′ : (X , π) → P(R 

2 , π) by 

 (x )(r ) = (b(x ) , r ) and h ′ (x )(r ) = (b ′ (x ) , 1 − r ) 

or all x ∈ X , r ∈ I . Define S-homotopies K : (X , π) → P(R 

2 , π)

nd G : (X , π) → P [ P (R ) , π ] by 

(x )(t) = (tb ′ (x ) + (1 − t) b(x ) , t) and 

G rt (x ) = tb ′ (x ) + (1 − t) b(x ) 

or all x ∈ X , r , t ∈ I . Note that K(x )(0) = (b(x ) , 0) = h (x )(0) , 

(x )(1) = (b ′ (x ) , 1) = h ′ (x )(0) , 

G r 0 (x ) = b(x ) = [( ̂  f ◦ h )(x )](r ) 

nd G r 1 (x ) = b ′ (x ) = [( ̂  f ◦ h ′ )(x )](r ) for all x ∈ X , r , t ∈ I . That
s, h 0 � s h ′ 0 and 

̂ f ◦ h � s 
̂ f ◦ h ′ by S-homotopies K and G , re-

pectively. Since G 0 t = f ◦ K t for all t ∈ I , then the desired S- 
omotopy H : (X , π) → P [ P (R 

2 ) , π ] is given by 

 rt (x ) = [ tb ′ (x ) + (1 − t) b(x ) , r + t − 2 rt] 

or all x ∈ X , r , t ∈ I . 

Let f : ( S , a ) → ( O , e ) and k : ( O 

′ , e ′ ) → ( O , e ) be S-maps. The
-space ( S k , e ′ × a ) is called a pullback S-space of ( S , a ) induced
rom f by k where S k = { (x, s ) ∈ O 

′ × S| k (x ) = f (s ) } . The S-
ap f k : ( S k , e ′ × a ) → ( O 

′ , e ′ ) which is given by f k (x, s ) = x for
ll ( x , s ) ∈ S k is called a pullback S-map of f induced by k . 

One notable exception is that the pullbacks of some fibration 

ypes need not be an fibrations such as approximate fibrations. 
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In the following theorem, we show that the pullbacks of S χ -
fibration maps are S χ -fibrations. 

Theorem 4.4. Let f : ( S , a ) → ( O , e ) be S χ -fibration and k : ( O 

′ ,
e ′ ) → ( O , e ) be S-map. Then the pullback f k of f induced by k is
S χ -fibration. 

Proof. Let ( X , c ) ∈ χ , g ′ : ( X , c ) → ( S k , e ′ × a ) be S-map, and G 

′ :
( X , c ) → P ( O 

′ , e ′ ) be S-homotopy with G 

′ 
0 = f k ◦ g ′ . Define S-

map g : ( X , c ) → ( S , a ) by g(x ) = P 2 (g ′ (x )) and S-homotopy G :
( X , c ) → P ( O , e ) by G (x ) = k ◦ G 

′ (x ) for all x ∈ X . Note that 

G (x )(0) = (k ◦ G 

′ (x ))(0) = k (G 

′ (x )(0)) = k [ f k (g ′ (x ))] 

= k (P 1 (g ′ (x ))) = f (P 2 (g ′ (x ))) = f (g(x )) 

for all x ∈ X . That is, G 0 = f ◦ g. Since f is S χ -fibration, then
there is S-homotopy H : ( X , c ) → P ( S , a ) such that H 0 = g and
f ◦ H t = G t for all t ∈ I . 

Define S-homotopy H 

′ : ( X , c ) → P ( S k , e ′ × a ) by H 

′ (x )(t) =
[ G 

′ (x )(t) , H (x )(t)] for all x ∈ X , t ∈ I . Note that f ◦ H 

′ = G 

′

and 

H 

′ (x )(0) = [ G 

′ (x )(0) , H (x )(0)] = [ f k (g ′ (x )) , g(x )] 

= [ P 1 (g ′ (x )) , P 2 (g ′ (x ))] = g ′ (x ) 

for all x ∈ X . That is, H 

′ 
0 = g ′ . Hence f k is S χ -fibration. �

In the following theorem, we use Corollary (4.2) to show that
the pullback S χ -fibrations, which induced by S-homotopic S-
maps, have S-homotopy equivalent total S-spaces. 

Theorem 4.5. Let f : ( S , a ) → ( O , e ) be S χ -fibration and k , k 

′ : ( O 

′ ,
e ′ ) → ( O , e ) be two S-maps. If k and k 

′ are S-homotopic, then the
total S-spaces S k and S k ′ of pullback S χ -fibrations f k : ( S k , e ′ ×
a ) → ( O 

′ , e ′ ) and f k 
′ 

: (S k ′ , e ′ × a ) → (O 

′ , e ′ ) are S-homotopy
equivalent. 

Proof. Define two S-maps d : ( S k , e ′ × a ) → ( S , a ) and d ′ :
(S k ′ , e ′ × a ) → (S, a ) by d (x, s ) = s and d ′ (x 

′ , s ′ ) = s ′ for all ( x ,
s ) ∈ S k , (x 

′ , s ′ ) ∈ S k ′ , where 

S k = { (x, s ) ∈ O 

′ × S| k (x ) = f (s ) } , 
S k ′ = { (x, s ) ∈ O 

′ × S| k 

′ (x ) = f (s ) } , 
respectively. Note that f ◦ d = k ◦ f k and f ◦ d ′ = k 

′ ◦ f k 
′ 
.

Since k and k 

′ are S-homotopic, then there exists S-homotopy
F : ( O 

′ , e ′ ) → P ( O , e ) such that F 0 = k and F 1 = k 

′ . 
Consider S-homotopy F ◦f k : ( S k , e ′ × a ) → P ( O , e ) with S-

map d and S-homotopy F ◦ f k 
′ 

: (S k ′ , e ′ × a ) → P(O, e ) with S-
map d ′ . Since 

[ F ◦ f k ] 0 = f ◦ d, [ F ◦ f k 
′ 
] 1 = f ◦ d ′ , 

and f is S χ -fibration, then there exist two S-homotopies H : ( S k ,
e ′ × a ) → P ( S , a ) and H 

′ : (S k ′ , e ′ × a ) → P(S, a ) such that 

H 0 = d, ̂ f ◦ H = F ◦ f k , H 

′ 
1 = d ′ , 

and 

̂ f ◦ H 

′ = F ◦ f k 
′ 
. 

Let μ : (S k , e ′ × a ) → (S k ′ , e ′ × a ) and μ′ : (S k ′ , e ′ × a ) →
(S k , e ′ × a ) be two S-maps defined by the properties H 1 = d ′ ◦ μ

and H 

′ 
0 = d ◦ μ′ , respectively. In Corollary (4.2) , take h = H ◦

μ′ and h ′ = H 

′ . Note that 

h 0 = H 0 ◦ μ′ = d ◦ μ′ = H 

′ 
0 = h ′ 0 
 

and 

f ◦ h t = f ◦ H t ◦ μ′ = F t ◦ f k ◦ μ′ = F t ◦ f k 
′ = f ◦ H 

′ 
t = f ◦ h ′ t 

for all t ∈ I . That is, h 0 = h ′ 0 and 

̂ f ◦ h = 

̂ f ◦ h ′ . Then H ◦μ′ �
s H 

′ . Hence μ ◦ μ′ � s id S k ′ . Again in Corollary (4.2) , take h =
H 

′ ◦ μ and h ′ = H . Similarly, we get that μ′ ◦ μ � s id S k . Hence
the total S-spaces S k and S k ′ are S-homotopy equivalent. �

The following theorem is the analogous result of
Theorem (4.1) in the S χ -cofibration theory which its proof
is similar as the proof of Theorem (4.1) . 

Theorem 4.6. Let f : ( S , a ) → ( O , e ) be S χ -cofibration and let h ,
h ′ : ( O , e ) → P ( X , c ) be two S-maps. Let h 0 � s h ′ 0 and h ◦f � s h ′ ◦f
by S-homotopies K : ( O , e ) → P ( X , c ) and G : ( S , a ) → P [ P ( X ),
c ], respectively. If G 0 t = K t ◦ f for all t ∈ I , then there exists S-
homotopy H : ( O , e ) → P [ P ( X ), c ] between h and h ′ such that
H 0 t = K t and H rt ◦ f = G rt for all r , t ∈ I. 

The proof of following corollary is also similar as the proof
of Corollary (4.2) . 

Corollary 4.7. Let f : ( S , a ) → ( O , e ) be S χ -cofibration. Let h , h ′ :
( O , e ) → P ( X , c ) be two S-maps such that h 0 = h ′ 0 and h ◦ f =
h ′ ◦ f . Then there exists S-homotopy H : ( O , e ) → P [ P ( X ), c ]
between h and h ′ such that H 0 t = h 0 = h ′ 0 and H rt ◦ f = h ◦ f for
all r , t ∈ I. 

In the following example, we give some applications
for Theorem (4.6) which are the analogous applications of
Theorem (4.1) in Example (4.3) . 

Example 4.8. It’s clear that for n = 1 , 2 , 3 , . . . , the S-space
(S 

n , π) is a closed S-subspace of S-space (D 

n +1 , π) and both
of them are closed S-subspace of S-space (R 

n +1 , π) , where
S 

n = { x ∈ R 

n +1 : | x | = 1 } is the unit sphere of dimension n ,
D 

n +1 = { x ∈ R 

n +1 : | x | ≤ 1 } is the unit disk of dimension n + 1
and R 

n +1 is the Euclidean space of dimension n + 1 . Let d , d ′ :
(D 

n +1 , π) → (R , π) be any two S-maps from S-space (D 

n +1 , π)

into the usual real S-space (R , π) . It’s clear that the inclusion S-
map j : (S 

n , π) → (D 

n +1 , π) is S N π -cofibration. Define two S-
maps h, h ′ : (D 

n +1 , π) → P(R , π) by 

h (x )(r ) = r + d (x ) and h ′ (x )(r ) = 1 − r + d ′ (x ) 

for all x ∈ D 

n +1 , r ∈ I . Define S-homotopies 

K : (D 

n +1 , π) → P(R , π) and G : (S 

n , π) → P [ P (R ) , π ] 

by 

K(x )(t) = t(1 + d ′ (x )) + (1 − t) d (x ) and G rt (y ) 

= r + t − 2 rt + d (y ) − td (y ) + td ′ (y ) 

for all x ∈ D 

n +1 , y ∈ S 

n , r , t ∈ I . Note that K(x )(0) = d (x ) =
h (x )(0) , 

K(x )(1) = 1 + d ′ (x ) = h ′ (x )(0) , 

G r 0 (y ) = r + d (y ) = [(h ◦ j)(y )](r ) 

and G r 1 (y ) = 1 − r + d ′ (y ) = [(h ′ ◦ j)(y )](r ) for all x ∈ D 

n +1 ,

y ∈ S 

n , r , t ∈ I . That is, h 0 � s h ′ 0 and h ◦j � s h ′ ◦j by S-homotopies
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 and G , respectively. Since G 0 t = K t ◦ j for all t ∈ I , then the
esired S-homotopy H : (D 

n +1 , π) → P [ P (R ) , π ] is given by 

 rt (x ) = r + t − 2 rt + d (x ) − td (x ) + td ′ (x ) 

or all x ∈ D 

n +1 , r , t ∈ I . 

heorem 4.9. Let ( B , π ) be closed S-subspace of S-space ( S , π ) .
he inclusion S-map j : ( B , π ) → ( S , π ) is S N π -cofibration if and
nly if (S 

0 
B , π) is S-retract of ( S × I , π ), where S 

0 
B = (S × { 0 } ) ∪

B × I ) ⊂ S × I. 

roof. Let j : ( B , π ) → ( S , π ) be S N π -cofibration. Define S-map
 : (S, π) → (S 

0 
B , π) by g(s ) = (s, 0) for all s ∈ I and define S-

omotopy G : (B, π) → P(S 

0 
B , π) by G (s )(t) = (s, t) for all s ∈

 , t ∈ I . Note that G 0 = g ◦ j, then there is S-homotopy H :
S, π) → P(S 

0 
B , π) such that H 0 = g and H t ◦ j = G t for all t

 I . Then define the S-retraction R : (S × I, π) → (S 

0 
B , π) by

 (s, t) = H (s )(t) for all ( s , t ) ∈ S × I . That is, (S 

0 
B , π) is S-

etract of ( S × I , π ). 
Conversely, suppose R : (S × I, π) → (S 

0 
B , π) is S-

etraction. Define S-map R 

′ : (S, π) → P(S 

0 
B , π) by 

 

′ (s )(t) = R (s, t) for all s ∈ S , t ∈ I . Then for every an-
pace (X , π) ∈ N π , S-map g : ( S , π ) → ( X , π ), and S-homotopy
 : ( B , π ) → P ( X , π ) with G 0 = g ◦ j, define S-homotopy H : ( S ,
) → P ( X , π ) by 

 (s )(t) 
{
(g ◦ P 1 )(R (s, t)) (s, t) ∈ R 

−1 (S × { 0 } ) ;
( G ◦ R 

′ )(s )(t) (s, t) ∈ R 

−1 (B × I ) 

or all s ∈ S , t ∈ I . H is continuous, since S × {0} and B × I are
losed subspace of S × I . Then 

 (s )(0) = (g ◦ P 1 )(R (s, 0)) = (g ◦ P 1 )(s, 0) = g(s ) 

or all s ∈ I and 

H t ◦ j)(s ) = (G t ◦ R 

′ 
t )(s ) = G t (s ) 

or all s ∈ B , t ∈ I . Hence j : ( B , π ) → ( S , π ) is S N π -
ofibration. �
orollary 4.10. Let ( B , π ) be closed S-subspace of S-space
 S , π ) . j : ( B , π ) → ( S , π ) be an inclusion S N π -cofibration.
hen its S-retraction R : (S × I, π) → (S 

0 
B , π) is unique up to

-homotopy. 

roof. Let R, R 

′ : (S × I, π) → (S 

0 
B , π) be two S-retractions.

et X = S 

0 
B and h , h ′ : ( S , π ) → P ( X , π ) be two S-maps given

y h ′ (s )(r ) = R 

′ (s, r ) and h (s )(r ) = R (s, r ) for all s ∈ S , t ∈ I ,
espectively. Since R and R 

′ are S-retractions of S × I onto S 

0 
B ,

hen 

 (s )(0) = R (s, 0) = (s, 0) = R 

′ (s, 0) = h ′ (s )(0) 

or all s ∈ S and 

h ◦ j)(s, r ) = R (s, r ) = (s, r ) = R 

′ (s, r ) = (h ′ ◦ j)(s, r ) 

or all s ∈ B , r ∈ I . Then by Corollary (4.7) , there exists S-
omotopy H 

′ : ( S , π ) → P [ P ( X ), π ] between h and h ′ such
hat H 

′ 
0 t = h 0 = h ′ 0 and H 

′ 
rt ◦ j = h ◦ j for all r , t ∈ I . Define the

esired S-homotopy H : ( S × I , π ) → P ( X , π ) by H (s, r )(t) =
 

′ 
rt (s ) for all s ∈ S and r , t ∈ I . �
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