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1. Introduction

The homotopy theory is an important part of mathematics
which has many applications and numerous variants, general-
izations, and adaptations. It has been improved to the shape
theory in order to deal better with spaces with poor local
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properties. The concepts of Hurewicz fibrations [3] and retrac-
tions [1] have p layed very important roles for investigating the
mutual relations among the topological spaces.

Under the notion of homotopy theory for topological
spaces, Cerin in [2] introduced the definition of homotopy
theory for topological semigroups. He extended some basic
properties in homotopy theory to their analogous struc-
tures in homotopy theory for topological semigroups such as
S-retraction, K-retraction, S-homotopically domination, S,-
fibration and S, -cofibration.

This paper is organized as follows. Section 2 is devoted to
some preliminaries. In Section 3 we give the concepts of de-
formation S-retract, deformation K-retract, strong deformation
S-retraction, and ES-homotopy extension property. The S, -
fibrations and S, -cofibrations played very important roles for
investigating the mutual relations of among these concepts. In
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Section 4 we introduce the covering homotopy theorems for S-
maps into S, -fibrations and S, -cofibrations. We prove the pull-
backs for S, -fibrations are S, -fibrations.

2. Preliminaries

In this section we provide some preliminary works that serve as
background for the present study which were previously estab-
lished by Cerin, in [2].

A topological semigroup or S-space is a pair (S, a) consisting
a topological space S and a map (i.e., a continuous function) a:
S x S — S such that a(x, a(y, z)) = a(a(x, y),z) forall x, y, z
€ S. Let x denotes the class of all S-spaces.

For every space S, the natural S-space is S-space (S, m;),
where 7; is a continuous associative multiplication on S given
by 71 (x,y) = x and w2 (x, y) = y for all x, y € S. We denote the
class of all natural S-spaces (S, 7) by N, where 7 = 7y, .

S-space (B, c) is called an S-subspace of (S, a) if B is a sub-
space of S and the map « takes the product B x B into B and
¢(x, y) = a(x, y) for all x, y € B. It is natural to denote the mul-
tiplication of S-subspace with the same symbol used for the mul-
tiplication on the S-space under consideration.

Let (S, @) and (O, e) be two S-spaces. The function f: (S, a)
— (0, e) is called a homomorphism or an S-map if f'is a map of
a space S into O and f'(a(x,y)) = e(f(x), f(y)) forall x, y €
S. Recall [2] that the usual composition and the usual product
of two S-maps are S-maps.

For every a space S, by P(S) we mean the space of all paths
from the unit closed interval I = [0, 1] into S with the compact-
open topology. Recall [2] that for every S-space (S, «), (P(S), a
) is S-space where a : P(S) x P(S) — P(S) is a map defined by
a(a, B)(t) = a(a(t), B(t)) for all w, B € P(S), t € I. The shorter
notion for this S-space will be P(S, a).

Definition 2.1. The S-maps f, g: (S, a) — (O, e) are called S-
homotopic and write f' =~ ;g provided there is S-map H: (S, a)
— P(0, e) called S-homotopy such that H(s)(0) = f(s) and
H(s)(1) = g(s) forall s € S.

Theorem 2.2. The relation of S-homotopy = ; is an equivalence
relation on the set of all S-maps of (S, a) into (O, e).

Theorem 2.3. If'the S-maps f, g: (S, a) — (O, e) are S-homotopic
then the relations foh =~ jgoh and kof = jkog hold for all S-maps
hinto (S, a) and k from (O, e).

Recall [2] that if the S-maps f, g: (S, @) — (O, e) are S-
homotopic then the maps f, g: S — O are homotopic and the
S-maps f, g: (S, ) — (O, ) are S-homotopic if and only if the
maps f, g: S — O are homotopic.

Throughout this paper, for every S-homotopy H: (S, a) —
P(O, e) and for every t € I, by H, (or [H],) we mean the S-
map, 2], H;: (S, a) — (O, e) which given by H,(s) = H(s)(t)
for all s € S. Also for every S-homotopy H: (S, a) — P[P(O), e
] and for every r, t € I, by H,, (or [H],;) we mean the S-map H,,:
(S, a) — (O, e) which given by H,,(s) = [H(s)(r)](¢) for all s €
S.

Definition 2.4. S-map f: (S, a) — (O, e) is called S,-fibration
if for every space (X, ¢) € x, S-map g: (X, ¢) — (S, a), and
S-homotopy G: (X, ¢) — P(O, e) with Gy = f o g, there is S-
homotopy H: (X, ¢) — P(S, a) such that Hy =gand fo H, =
G, forallr eI

Recall [2] that the map /2 S — O is a Hurewicz fibration if
and only if the S-map f: (S, 7) — (O, 7) is Sy, —fibration.

Definition 2.5. S-map f: (S, a) = (O, e) is called S -cofibrationif’
for every space (X, ¢) € x, S-map g: (0, ¢) — (X, ¢), and
S-homotopy G: (S, a) — P(X, c¢) with Gy = go f, there is S-
homotopy H: (O, e) = P(X, c¢) such that Hy = gand H, o f = G,
foralltel

Recall [2] that the map f: S — O is a cofibration if and only
if the S-map f: (S, 7) — (O, 7) is Sy;, —cofibration.

Definition 2.6. An S-subspace (B, a) of S-space (S, a) is called
S-retractof (S, a) if there exists S-map R: (S, a) — (B, a) such
that R(s) = s for all s € B. The S-map R is called S-retractionof
(S, a) onto (B, a).

Throughout this paper, j: (B, a) — (S, a) will denote to the
inclusion S-map for every S-subspace (B, a) of S-space (S, a)
and id the identity S-map.

Definition 2.7. An S-subspace (B, a) of S-space (S, «) is called
K-retract of (S, a) if there exists S-map r: (S, a) — (B, a) such
that roj = ;idg. The S-map r is called K-retraction of (S, @) onto
(B, a).

Notice that S-retract is an K-retract. The converse of the first
claim is not true in general. In the following theorem, [2] proved
a sufficient condition.

Theorem 2.8. Let (B, a) be S-subspace of S-space (S, a) such that
the inclusion S-map j: (B, a) — (S, a) is Sy, ay-cofibration. Then
(B, a) is S-retract of (S, a) if and only if (B, a) is K-retract of (S,
a).

3. Deformation S-retractions

Definition 3.1. An S-subspace (B, a) of S-space (S, a) is called
a deformation S-retract of (S, a) if there exists S-retraction map
R: (S, a) — (B, a) of (S, a) onto (B, a) such that joR = ids.
The S-homotopy between joR and ids is called a deformation
S-retraction.

Example 3.2. Let (S, a) be S-space and s, € S be an idempotent
element of (S, a) (i.e., s,as, = s,). Let

L(S,s,) = {a € P(S) :a(0) =5,} C P(S)

and 5, be the constant path at s, in L(S, s,). For every a, B €
L(S, ),

(@aB)(0) = a(0)ap(0) = s,as, = S,.

That is, a pair (L(S, s,), @ ) is S-subspace of P(S, a). Similarly,
({55}, @) is S-subspace of (L(S, s,), a ). Define the S-retraction
R: (L(S,s,),a) — ({5}, a) by F(a) =5, for all o € L(S, s,).
({5}, @) is a deformation S-retract of (L(S, s,), a ) such that
idr(s.s,) =5 j o R by a deformation S-retraction F: (L(S, s,), a )
— P(L(S, s,), a ) given by F;(a) =a(r(1 —t)) forallr, t € I,
a € L(S, s,), where j: ({S,}, a) — (L(S,s,), a) is the inclusion
S-map.

The S-map f: (S, a) — (0, e) is called S-homotopy equivalence
if there exists S-map g: (O, ¢) — (S, a) such that fog = jidp and
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gof = ,ids. An S-subspace (B, a) of S-space (S, a) is called a
deformation K-retract of (S, a) if the inclusion S-map j: (B, a) —
(S, a) is S-homotopy equivalence.

Notice that a deformation S-retract is a deformation K-
retract. Moreover, a deformation K-retract is a deformation H-
retract (called a weak deformation retract in [[4], p. 30]). The
converse of the last claim holds for multiplications & but fail in
general, see Example (7) in ([4], P. 30), for the natural S-spaces
(X, ) and (4, ). In the following theorem, we shall identify a
sufficient condition when the converse of the first claim is true.

Theorem 3.3. Let (B, a) be S-subspace of S-space (S, a) such that
the inclusion S-map j: (B, a) — (S, a) is Sy, ay,-cofibration. Then
(B, a) is a deformation S-retract of (S, a) if and only if (B, a) is a
deformation K-retract of (S, a).

Proof. We already noticed that the (only if) part is always true,
it remains to show the (if) part. Since (B, «) is a deformation K-
retract of (S, a), then there exists S-map r: (S, a) — (B, a) such
that roj = idp and jor = ids. For the first part, there exists S-
homotopy F: (B, a) - P(B, a) such that Fy = r o j and F, = idp.
By hypothesis, there exists S-homotopy H: (S, a) - P(B, a) such
that Hy = rand H, o j = F, for all t € I. Define the S-retraction
R: (S, a) — (B, a) of (S, a) onto (B, a) by R(s) = H(s)(1) for all
s € S. Note that forall s € B, R(s) = H(s)(1) = F(s)(1) = 5.

For the second part jor = ids, there exists S-homotopy G:
(S, a) — P(S, a) such that G| = j o r and Gy = ids. Since G| =
Jjor= jo Hy, then we can define S-homotopy H': (S, a) — P(S,
a) by

G(s)(21)
JIH (5)(21 — D]

forallz € 0,1/2],s € S;

H5)() = { forallz €[1/2, 1], s € S.

Note that H; = Gy = ids and H| = jo H, = jo R. That s, joR
=~ (ids. Hence (B, a) is a deformation S-retract of (S, ). O

In Definition (3.1), the S-homotopy between jor and ids, say
F: (S, a) > P(S, a), is called a strong deformation S-retraction
if F(s)(t) =sforalls e B, teland we say (B, a) is a strong
deformation S-retract of (S, a).

In Example (3.2), F'is a strong deformation S-retraction such
that

Fi(5) = 5,(r(1 = 1)) =5, = 5,(r)

forallr,r el

One can easily check that a strong deformation S-retract is a
deformation S-retract. The converse of this claim fail in general,
see Example (8) in ([4], P. 30), for the natural S-spaces (X, ) and
(A, ). In Theorem (3.7), we shall identify a sufficient condition
when the converse of the first claim is true.

Definition 3.4. Let (B, a) be an S-subspace of S-space (S, @) and
(0, e) be any S-space. An S-homotopy G: (B, a) — P[P(O), e ]
is called a Sy, -extended map to (S, a) provided for every ¢ € I,
the two S-maps Gy, Gy;: (B, a) — (O, e) have extension S-maps
to S, denoted by EGy,, EGy,: (S, a) — (O, e), respectively.

For every a closed subspace B of a space S, S will be denote
to the closed subspace (S x {0})U(B x DU(S x {1}) of S x
I In the above definition, for every (s,r) € SY, E-path in O

induced by G ( denoted EC ) is a path in O given by

EGy(s) se8,r=0;
ES(t)=1G.(s) seBrel;
EG,(s) seSr=1

for all 7 € 1. Note that E is a continuous, since B is a closed
subspace of S.

Definition 3.5. A closed S-subspace (B, a) of S-space (S, a) is
said to have ES-homotopy extension property in (S, a) with re-
spect to (O, e) if, given S-homotopy g: (S, @) — P(O, e¢) and Sy;-
extended map G: (B, a) — P[P(0), e]to S with ES(0) = g(s)(r)
for all (s, r) € SY, there exists S-homotopy H: (S, @) — P[P(O),
e ] such that H, =g, for all r € I and H, (s) = ES(¢) for all
(s, eSY rel

Example 3.6. Let (S, a) be any S-space and (B, @) be any closed
S-subspace of (S, a). Let s, € S be an idempotent element of
(S, a@). Then (B, a) has ES-homotopy extension property in
(S, a) with respect to ({s,}, a). Note that we have only one S-
homotopy g: (S, a) — P({s,}, a) given by g(s) = 5, forall s € S
and one Sy;-extended map G: (B, a) — P[P({s,}), a]to S given
by G(s)(r) =5, for all s € B with extensions EGy,(s) = s, and
EG(s) =s, foralls € S, ¢ e I Forevery (s,r) € S%, ES =5,
and we observe that

EJ(0) = 5,0) =5, = 5,(r) = g(s)(r).

Define S-homotopy H: (S, a) — P[P({s,}), a ] by H,(s) = s,
for all s € S and r, t € I. Note that H,y = g, for all » € [ and
H,(s)=ES@) forall (s,r) € SY, 1 el

Theorem 3.7. Let (B, a) be a closed S-subspace of S-space (S,
a) such that (B, a) has ES-homotopy extension property in (S,
a) with respect to (S, a). Then (B, a) is a strong deformation S-
retract of (S, a) if and only if (B, a) is a deformation S-retract of
(S, a).

Proof. We already noticed above that the (only if) part is always
true, it remains to show the (if) part. Since (B, a) is a deforma-
tion S-retract of (S, a), there exist S-retraction map R: (S, a) —
(B, a) and S-homotopy F: (S, a) — P(S, a) such that Fy = ids
and F{ = j o R. Define S-homotopy G: (B, a) — P[P(S), a ] by
Gp(s) = F(s)(r(1 — 1))

forallr,t € I, s € B. For every ¢ € I, define S-maps EGy,, EG\;:
(S, a) — (S, a) by

EGy(s)=s, EG(s) = F(R(s))(1—1)

for all s € S, respectively. Note that for every ¢ € I,
Goi(8) = F(5)(0) = 5 = EGo (s)

and since R is S-retraction of (S, a) onto (B, a), then
G () =F)(1 —1) = F(R()(1 —1) = EGy(9)

for all s € B. Then EGy, and EG, are extension S-maps of G,
and Gy, to S, respectively. That is, S-homotopy G is Sp;-extended
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map to S. For every (s, r) € SY, the E,-path in O induced by G
is given by

s se S r=0;
ESt)={F&) (1 —1) seBrel
FRs)H(1—1) seSr=1

forallz e I
Note that ES(0) = F(s)(r) foralls € B,r € I, E§(0) = s =
F(s5)(0), and

EJ(0) = F(R($))(1) = (jo R)(R() = JIR(R(5))]
= JIR(®] = F(s)(1)

for all s € S. That is, ES(0) = F (s)(r) for all (s, r) € SY. Since
(B, a) has ES-homotopy extension property in (S, a) w.r.t (S, a),
then there exists S-homotopy H: (S, a) — P[P(S), a ] such that
Hy = F, forallr e Iand H, (s) = ES(1) for all (s,r) € SY,1 €
1.

Define S-homotopy F: (S, a) — P(S, a) by F'(s)(r) = H, (s)
forall r € I, s € S. Note that

F'(5)(0) = Hy (s) = ES(1) = s
and
F'(s)(1) = Hy 1 (s) = ES(1) = F(R(5))(0) = R(s) = (j o R)(s)

for all s € S. That is, F' is S-homotopy between ids and joR.
Since R is S-retraction, then F' is a deformation S-retraction.
For a strong property, we note that for every s € B, r € I,

F'(s)(r) = Ha(s) = EJ(1) = F(5)(0) = s.

Hence (B, a) is a strong deformation S-retract of (S, @). O

In the following theorem, recall [2] that the function f: S —
O of a natural S-space (S, 7) into (O, 7) is S-map if and only if
it is continuous.

Theorem 3.8. Let (B, ) be a closed S-subspace of S-space (S,
7). Then (B, ) has ES-homotopy extension property in (S, 1)
w.r.t any S-space (O, w) € N if and only if the inclusion S-map
Jj: (SOBI, ) — (S x I, ) is Sy, -cofibration.

Proof. Suppose (B, ) has ES-homotopy extension property in
(S, ) with respect to S-space (O, 7). Let g": (S x I, 7) — (O,
7) be S-map and G’ : (SY', 7) — P(O, ) be S-homotopy with
G, = g o j. Define S-homotopy G: (B, m) — P[P(0), . ] by
G, () =G'(s,r)(t) forall r, t € I, s € B. For every t € I, define
S-maps EGy,, EGy;: (S, 7) — (O, 7) by

EGo(s) = G'((5,0),0), EGi,(s) =G ((s,1), 1)

for all s € S, respectively. Note that for every 1 € I, EGy, and EG|,
are extension S-maps of Gy, and Gy, to S, respectively. That is,
S-homotopy G is Sp;-extended map to S. For every (s, r) € SY',
the E,-path in O induced by G is given by ES(¢) = G'(s,7)(t)
forallz e I

Define S-map g: (S, 7) — P(O, ) by g(s)(r) = (s, r) for all
s € S, re Il Note that

ES(0) =G ((5,71),0) = g (s, 1) = g(s)(r)

for all (s, ) € SY. Then there exists S-homotopy H: (S, 7) —
P[P(0O), r | such that H(s) =g,(s) =g (s,r) forall r € I, s
€ Sand H,(s) = ES(t) = G'(s,r)(2) for all (s,r) € SY, 1€ 1.
Hence j is Sy, -cofibration.

Conversely, suppose j: (SY,7) — (S xI,7) is an Sy,-
cofibration. Let g: (S, ) — P(O, ) be S-homotopy and G-
(B, m) — P[P(O), m ] be Syi-extended map to (S, 7) with
ES(0) = g(s)(r) for all (s,r) € SY. Define S-map g’: (S x 1, )
— (O, ) by g(s,r) =g(s)(r) for all r € I, s € S and define
S-homotopy G’ : (S%', 7) — P(O, ) by G'(s, r)(¢) = EZ (1) for
all (s,r) € SY, t € I. Note that

G'(5,1)(0) = EJ(0) = g(s)(r) = ¢ (5, 7)

forall (s, r) € SY. Thatis, Gy = g o j. Since jis Sy;, -cofibration,
then there exists S-homotopy H': (S x I, w) — P(O, ) such that
Hj =g and H' o j = G'. Then the desired S-homotopy H: (S,
) — P[P(O), r ]is defined by H,,(s) = H'(s, r)(¢t) for all r, t €
LseS. O

In the following theorem, we show the role of S, -fibrations
in finding the extensions S-maps with a deformation S-retract

property.

Theorem 3.9. Let f: (S, a) — (O, e) be S,-fibration. Let (B, c)
be S-subspace of S-space (X, c) such that (B, ¢) is a deformation
S-retract of (X, ¢). If h: (B, ¢) = (S, a) and k: (X, ¢) — (O, ¢) are
S-maps such that f o h = kB, then there exists S-map h': (X, ¢)
— (S, a) such that foh' =k and h'| B = ;h.

Proof. Since (B, ¢) is a deformation S-retract of (X, ¢), then
there exist S-retraction map R: (X, ¢) — (B, ¢) and S-homotopy
F: (X, ¢) = P(X, ¢) such that Fy = j o R and F| = idy. Define
S-map g: (X, ¢) — (S, @) and S-homotopy G: (X, ¢) — P(O, ¢)
byg=ho Rand G, = k o F; for all t € I, respectively. Note that

Go=koFy=ko(joR)y=(koj)oR=k|BoR
=(foh)oR=fog

Since f: (S, a) — (O, e) be S, -fibration, then there exists S-
homotopy H: (X, ¢) = P(S, a) such that Hy =gand fo H, =
G, for all ¢ € I. Define /': (X, ¢) — (S, @) by ' = H,. Note that

folh=foH =G =koF =k
and for all x € B,
Hy(x) = g(x) = (ho R)(x) = h(R(x)) = h(x).

Since /' = H,, then h =~ (4’| B by S-homotopy H|B: (B, ¢) —
P(S,a). O

4. Covering homotopy theorem

The main results of this section are covering homotopy theo-
rems for S-maps into S, -fibrations and into S, -cofibrations.

Recall [2] that for every S-map f: (S, @) — (O, e), f:
P(S,a) — P(O,e) is S-map given by f(«¢) = fo« for all « €
P(S, a). By P, and P, we mean the usual first and the second
projection maps (or S-maps), respectively.

Theorem 4.1. Let f: (S, a) — (O, e) be Sy~fibration and let h, I':
(X, ¢) = P(S, a) be two S-maps. Let hy =, hyyand foh >~ f ol



594

A. Saif, A. Kiligman

by S-homotopies K: (X, ¢) — P(S, a) and G: (X, ¢) — P[P(0O),
e ], respectively. If Gy, = f o K, for all t € I, then there exists S-
homotopy H: (X, ¢) — P[P(S), a | between h and I such that
Hy =K, and f o H, = G, forallr,t € L

Proof. Let M = (I x {0})) U ({0} x I)U (I x {1}) c I x I. For
every (r, ) € M, define S-map I'">9: (X, ¢) — (S, a) by

h(x)(r) t=0;
reoxy ={Kx) @) r=0;
W) =1

for all x € X. Recall ([4], P. 100) that there is a homeomorphism
A I x I — I x Itaking M onto I x {0}. By hypothesis, note
that for every (r, 1) € M,

(f o TN (x) = Gy (x) = (G(X) (1)) (1)

for all x € X. For every r € I, define an S-map g": (X, ¢) — (S,
a) and S-homotopy G": (X, ¢) — P(O, ¢) by &' (x) = [ 0 (x)
and

G () (1) = [G)(Pi[A~ (s ODIP[AT (O]

for all x € X, ¢ € I, respectively. Note that for every r € I,

G (x)(0) = (GX) (P12~ ()] (P~ (1, 0)])
= (f o PR COLPAT ROy (1

= (foT* D) (x) = (f o &)(x)

forall x € X. Thatis, G = f o g". Then for every r € I, since fis
S, -fibration, there exists S-homotopy H": (X, ¢) — P(S, a) such
that H] = g" and f o H = G| for all t € I. Define S-homotopy
H: (X, ¢)) = P[P(S), a]by

(H (x)(n)(1) = HPPCO 00 (Paa(r, 0)])

forall x € X, r, t € I. Note that

(H () (m)(0) = HPREOI0 (Pafa(r, 0)]) = HP () (0)
— gPl[)"(rwo)](x)
= [V PIBEOLO) () — AT PIRCOLPLOD (1

_ r}rl(k(r.O))(X) =T (x) = h(x)(r)
and

(H (x) (1) (1) = HMPED Qo (Pyfa(r, D)) = HPPHEP () (0)
— gP][)L(’ll)](x)
— [V PIEDLO) () — AT PIREDLPALGDD ()
= D @) = PO () = H () ()
for all x € X, r € I. Then H is S-homotopy between /. and /'.
Also note that
Hy (x) = (H(x)(0)) (1) = HMPFOD () (P[0 (0, 1)])

— HP'[M"’O)]()C)(O)
= PBONT () = P PIAOOL) (1

= [+ PIROOIPLO.0D ()

= O () = PO (y) = K, (x)

and

(f o Hy)(x) = (f o H,(x))(t) = (f o H'PE(x0) (Po[a(r, 1)])
= GO (P, 1)])
= {G) (P {PIA( O] Palr(r, O}
(P HPIA G O], Pala(r, O
= {G)(PiA A O J P A DD
= {GxX) (P, (D} (Palr. 1])
= (GX) (M (1) = Gy (x)

forallr,t e I, x € X. Thatis, Hy, = K, and f o H,, = G,, for all
r,tel O

Corollary 4.2. Let f: (S, a) — (O, e) be Sy-fibration. Let h, i":
(X, ) = P(S, a) be S-maps such that hy = hjyand f oh = fol'.
Then there exists S-homotopy H: (X, ¢) — P[P(S), a ] between h
and I’ such that Ho, = hy = hy and f o Hy = foh, forallr, t €
L

Proof. Define S-homotopy K: (X, ¢) — P(S, a) by K(x)(t) =
ho(x) and S-homotopy G: (X, ¢) — P[P(O), e ] by
(GX)()) () = (foh)(x) forallr, t € I, x € X. Then by using
the above theorem, one can get the desired S-homotopy. [

In the following example, we give some applications for
Theorem (4.1).

Example 4.3. The two pairs (R, ) and (R?, ) are S-spaces
with the usual real space R and the usual product space R?,
respectively. Let b, : (X,7) — (R,7) be any two S-maps
from any S-space (X, 7) into (R, 7). Define Sy, -fibration f :
(R%, 1) — (R, ) by f(x,y) = xforall (x, y) € R%. Define two
S-maps i, i 1 (X, ) — P(R?, ) by

h(x)(r) = (b(x),r)and ' (x)(r) = (b (x), 1 —r)

forall x € X, r € I. Define S-homotopies K : (X, 7) — P(R?, )
and G : (X, ) - P[P(R), =] by

K(x)(t) = (tb'(x) + (1 — 1)b(x), ) and
Gy (x) =t (x) + (1 — 1)b(x)

forall x € X, r, t € I. Note that K(x)(0) = (b(x), 0) = h(x)(0),

K(x)(1) = '(x), 1) = K (x)(0),
Gro(x) = b(x) = [(f o ) ()](r)

and G,1 (x) = b/ (x) = [(f’o\h’)(x)](r) forall x € X, r, t € I. That
is, hg ~; hy and foh~, f ok’ by S-homotopies K and G, re-
spectively. Since Gy, = f o K, for all ¢ € I, then the desired S-
homotopy H : (X, ) — P[P(R?), nr] is given by

H,(x) =[th'(x) + (1 —0)b(x), r+ 1 — 2rf]

forallxe X, r,tel.

Let f: (S, a) = (O, e) and k: (O, ¢') — (O, ¢) be S-maps. The
S-space (S, € x a) is called a pullback S-space of (S, a) induced
from f by k where S; = {(x,s) € O x Slk(x) = f(s)}. The S-
map *: (S, € x a) — (O, ¢') which is given by f*(x, s) = x for
all (x, s) € Sy is called a pullback S-map of finduced by k.

One notable exception is that the pullbacks of some fibration
types need not be an fibrations such as approximate fibrations.
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In the following theorem, we show that the pullbacks of S,-
fibration maps are S, -fibrations.

Theorem 4.4. Let f: (S, a) — (O, e) be S,~fibration and k: (O,
¢') — (0, e) be S-map. Then the pullback f* of f induced by k is
S, -fibration.

Proof. Let (X, ¢) € x,g": (X, ¢) > (Sk, ¢ x a) be S-map, and G:
(X, ¢) = P(0', ¢) be S-homotopy with G = f* o . Define S-
map g: (X, ¢) = (S, a) by g(x) = P>(g (x)) and S-homotopy G:
(X, ¢) > P(O, e) by G(x) = k o G'(x) for all x € X. Note that

G(x)(0) = (ko G'(x))(0) = k(G (x)(0)) = k[/* (¢ (x))]
= k(P1(g(x)) = [(P2(g' (x))) = f(g(x))

for all x € X. That is, Gy = f o g. Since f'is S,-fibration, then
there is S-homotopy H: (X, ¢) — P(S, a) such that Hy = g and
foH =G, foralltel

Define S-homotopy H': (X, ¢) — P(Sy, ¢ x a) by H' (x)(t) =
[G'(x)(®), H(x)(¢)] for all x € X, t € I. Note that f o H = G’
and

H'(x)(0) = [G'(x)(0), H(x)(0)] = [/*(£ (x)), g(x)]
= [P1(g'(x)), P2(g (x))] = g (x)

for all x € X. That is, H) = ¢. Hence f* is S, -fibration. O

In the following theorem, we use Corollary (4.2) to show that
the pullback S, -fibrations, which induced by S-homotopic S-
maps, have S-homotopy equivalent total S-spaces.

Theorem 4.5. Let f: (S, a) — (O, e) be S, -fibration and k, k' (O,
') — (0, e) be two S-maps. If k and k' are S-homotopic, then the
total S-spaces Sy and Sy of pullback S,-fibrations f*: (S, ¢ x
a) — (0, ¢) and f"'/ (S, e xa)— (O,¢) are S-homotopy
equivalent.

Proof. Define two S-maps d: (Sk, ¢ x a) — (S, @) and d':

Sy, e xa) — (S,a)byd(x,s) =sand d'(x,s") = s for all (x,
s) € Sk, (X', 8') € Sy, where

S = {(x,5) € O x Slk(x) = f(5)},
S ={(x,5) € O’ x S|k'(x) = f(5)},

respectively. Note that fod =ko f* and fod =k o f¥.
Since k and k" are S-homotopic, then there exists S-homotopy
F:(O,¢)— P(O, e)such that Fy = kand F; = k'.

Consider S-homotopy Fof*: (S, ¢ x a) — P(O, e) with S-
map dand S-homotopy F o f¥ : (Sy, ¢ x a) — P(O, e) with S-
map d'. Since

[Foff=/fod [Foffli=fod,

and fis S, -fibration, then there exist two S-homotopies H: (Sk,
¢ xa)— P(S,a)and H' : (Si, ¢ x a) = P(S, a) such that

Hy=d, foH=Fof* H =d,

and 70 H =Fo f~.

Let w: (Sk,e¢ xa) — (Sp,e¢ xa) and ' : (S, e x a) —
(Sk, € x a) be two S-maps defined by the properties H; = d' o u
and Hy = d oy, respectively. In Corollary (4.2), take h = H o
w and /' = H'. Note that

ho:H()O/,L/de/J,/zHézhé)

and
foh=foHow=Foffou=Fof'=foH =foh

for all r € I. That is, hg = and f oh = f o i. Then Hou' =
sH'. Hence pou' =~ ids,. Again in Corollary (4.2), take h =
H’'opand h' = H. Similarly, we get that ' o u >~ ids, . Hence
the total S-spaces S; and Sy are S-homotopy equivalent. [

The following theorem is the analogous result of
Theorem (4.1) in the S,-cofibration theory which its proof
is similar as the proof of Theorem (4.1).

Theorem 4.6. Let f: (S, a) — (O, e) be S,-cofibration and let h,
h': (0, e) — P(X, c) be two S-maps. Let hy >~ hy and hof = i'of
by S-homotopies K: (O, e) — P(X, ¢) and G: (S, a) - P[P(X),
c ], respectively. If Go, = K, o f for all t € I, then there exists S-
homotopy H: (O, ¢) — P[P(X), ¢ ]| between h and I such that
Hy =K and H, o f = G, forallr,t e L

The proof of following corollary is also similar as the proof
of Corollary (4.2).

Corollary 4.7. Let f: (S, a) — (O, e) be S, -cofibration. Let h, I’
(0, e) = P(X, c) be two S-maps such that hy = hy and ho f =
W o f. Then there exists S-homotopy H: (O, e¢) — P[P(X), c ]
between h and I’ such that Hy, = hy = hyy and H,, o f = ho f for
allr,t el

In the following example, we give some applications
for Theorem (4.6) which are the analogous applications of
Theorem (4.1) in Example (4.3).

Example 4.8. It’s clear that for n =1,2,3,..., the S-space
(S", ) is a closed S-subspace of S-space (D!, 7) and both
of them are closed S-subspace of S-space (R"*',m), where
S" = {x e R :|x| =1} is the unit sphere of dimension n,
D" = {x € R"*! : |x| < 1} is the unit disk of dimension n + 1
and R"*! is the Euclidean space of dimension n + 1. Let d, d’ :
(D!, 1) — (R, ) be any two S-maps from S-space (D"*!, )
into the usual real S-space (R, 7). It’s clear that the inclusion S-
map j: (", w) — (D', ) is Sy -cofibration. Define two S-
maps b, h' - (D", 1) — P(R, ) by

hx))=r+dx)and V(X)) =1—r+d(x)
for all x € D", r € I. Define S-homotopies
K: D' 7) > PR,7)and G: (§", 1) - P[P(R), 7]

by

Kx) (1) = t(1+d'(x) + (1 —1)d(x) and G, (y)

=r+t=2rt+dy) —td(y) +td (y)

for all x e D™, y e §", r, t € I. Note that K(x)(0) = d(x) =
h(x)(0),

K@) =1+d'(x) =h(x)(0),
Go() =r+d(y)=[(ho )H(NI(r)

and G (y) =1 —r+d Q) =[1 o j)»](F) for all x e D",
yeS" r,tel Thatis, hy > hjy and hoj = ;i'oj by S-homotopies
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K and G, respectively. Since Gy, = K, o j for all ¢ € I, then the
desired S-homotopy H : (D", 7) — P[P(R), ] is given by

H,(x)=r+1t—2rt +d(x) —td(x) +td (x)

forallx e D" r, t e I

Theorem 4.9. Let (B, wr) be closed S-subspace of S-space (S, ).
The inclusion S-map j: (B, w) — (S, 7) is Sy, -cofibration if and
only if (SY, ) is S-retract of (S x I, 7r), where 8% = (S x {0}) U
(BxI)cSxI.

Proof. Letj: (B, 7) — (S, w) be Sy, -cofibration. Define S-map
g: (S, ) — (S%, ) by g(s) = (5,0) for all s € I and define S-
homotopy G : (B, ) — P(S%, m) by G(s)(¢) = (s, 1) for all s €
B, t € I. Note that Gy = go j, then there is S-homotopy H :
(S, ) — P(SY, ) such that Hy =g and H, 0 j = G, for all ¢
€ I. Then define the S-retraction R: (S x I, 7) — (S%, ) by
R(s,t) = H(s)(¢) for all (s, f) € S x I. That is, (S%, ) is S-
retract of (S x 1, ).

Conversely, suppose R:(SxI,m)— (S%,7) 1is S-
retraction. Define S-map R :(S,7)— P(S% 7) by
R (s)(t) = R(s,t) for all s € S, t € I. Then for every an-
space (X, ) € Ny, S-map g: (S, ) — (X, ), and S-homotopy
G: (B, r) — P(X, ) with Gy = g o j, define S-homotopy H: (S,
) — P(X, ) by

(s, 1) € R7'(S x {0});
(s,1) € R\ (B x I)

(g0 P(R(s.1))
" “)(’){(G o R)(5)(1)

forall s € S, t € 1. H is continuous, since S x {0} and B x [ are
closed subspace of S x I. Then

H(s)(0) = (goP1)(R(s5,0)) = (go P1)(s,0) = g(s)
forall s € I and
(H; 0 j)(5) = (G, o R)(5) = Gi(s)

for all s € B, t € I. Hence j: (B, m) — (S, 7) is Sy,-
cofibration. [

Corollary 4.10. Let (B, w) be closed S-subspace of S-space
(S, m). j: (B, ®) — (S, ) be an inclusion Sy, -cofibration.
Then its S-retraction R : (S x I, ) — (8%, ) is unique up to
S-homotopy.

Proof. Let R, R : (S x I,7) — (S%, ) be two S-retractions.
Let X = S% and A, I': (S, m) - P(X, ) be two S-maps given
by 4 (s)(r) = R'(s,r) and h(s)(r) = R(s,r) forall s € S, t € I,
respectively. Since R and R’ are S-retractions of S x I onto S%,
then

h(s)(0) = R(s5,0) = (5,0) = R'(5,0) = ' (5)(0)
for all s € Sand
(ho )(s,r) = R(s,r) = (s,7) = R(s,7) = (N 0 j)(s, 1)

for all s € B, r € I. Then by Corollary (4.7), there exists S-
homotopy H': (S, 7) — P[P(X), = ] between & and /' such
that Hj, = hy = hjyand H), o j = ho jforallr, t € I. Define the
desired S-homotopy H: (S x I, 7) — P(X, ) by H(s,r)(t) =
H(s)forallse Sandr,tel 0O
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