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support our claim.

MATHEMATICS SUBJECT CLASSIFICATION:

In this comment, we show that some assertions made in Bayoumi and Ibedou (2002)
[1] and Bayoumi and Ibedou (2002) [2] are incorrect. Specifically, one implication from Theorem 3.1
made in Bayoumi and Ibedou (2002) [1] is erroneous. Consequently, Propositions 5.1 and 6.1 intro-
duced in Bayoumi and Ibedou (2002) [2] are incorrect. In addition, one implication from Theorems
5.1 and 6.1, made in Bayoumi and Ibedou (2002) [2] are incorrect. We give some counterexamples to
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1. Introduction and preliminaries

In order for this comment to be clear, we need to review the ter-
minology. Using Chang’s [3] sense of fuzzy topological spaces,
the concept of separation axioms is linked to fuzzy points and
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their stronger forms. In [1,2], the notions of separation axioms
T:,i=0,1,2,3,4, in L-topological spaces depend on the no-
tions of fuzzy neighborhood filters, ordinary points and crisp
closed subsets of X.

In this comment L is a complete chain with differing least
and last elements 0 and 1, respectively, Ly = L\{0} and L, =
L\{1}. By a fuzzy set of a set X we mean a mapping f : X —>
L. L* and P(X) denote the sets of all fuzzy sets and of all ordi-
nary subsets of X, respectively. For each x € X and ¢ € Ly, the
fuzzy set x, of X, whose value is ¢ at x and 0 otherwise, is called
a fuzzy point in X. For each « € L, the constant fuzzy set of X
with value o will be denoted by &.

A fuzzy topology of a set X [3]is a subset T of L* which con-
tains the constant fuzzy sets 0 and 1, and closed with respect to
finite intersection and arbitrary union. The pair (X, 7) is called
a fuzzy topological space and the elements of t are called open
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fuzzy sets. The family of all closed fuzzy sets on X is denoted by
t’. The interior int f (respectively, closure ¢/, f) of a fuzzy set fis
the greatest open fuzzy set less than or equal to f (respectively,
is the smallest closed fuzzy set greater than or equal to f), that

i8, int | = \/ yer g, & (vespectively, o f'= N\, oo )
Definition 1.1 [4.5]. Let X be a non-empty set. A fuzzy filter on

X is a mapping M : LY — L such that the following condi-
tions are fulfilled:

(F1) M(a) < a holds for all « € L and M(1) = 1.
(F2) M(f Ag) = M(f) AM(g) forallf,ge L~

A fuzzy filter M is called homogeneous if M (&) = « for all
a € L. If M and N are fuzzy filters on X, then M is finer than
N, which is denoted by M < N, provided that M (f) > N'(f)
holds for all f € L*. By M £ N, we means that M is not finer
than V. Since L is a complete chain, then

M £ N & there exists [ € LY such that M(f) < N(f).
1)

Proposition 1.1 [5]. Let A be a set of fuzzy filters on X. Then, the
following are equivalent:

(1) The infimum )\ M of A with respect to the finer relation
MeAa
of a fuzzy filter exists,

(2) For each non-empty finite subset {My, M, ..., M,} of
A we have My (f1) AMa(f2) Ao AMG(S) < sup (fi A
o~ NS forall fi, fa, ..., fre LY.

Definition 1.2 [6]. For each fuzzy topological space (X, 7) and
each x € X, a fuzzy neighborhood filter of the space (X, t) at x
is a mapping N (x) : LY — L defined by

N () (f) = (int /) (x), 2

for all f € LY which is a fuzzy filter on X. The fuzzy neighbor-
hood filter N'(F) at a set F C X is defined by means of A (x)
and x € Fas

N(F) = \/N ). 3)

xeF

For each x € X, the mapping x : L¥ — L defined by
x(f) = f(x), 4)

for all fe LY, is a homogeneous fuzzy filter on X.

Definition 1.3 [7]. For each fuzzy topological space (X, t) the
closure operator of t is the mapping ¢/ that is assigned to each
fuzzy filter ¢/ M such that

AM(f) = \/ M(p). ®)

clep<f
¢l M is called the closure of M.
Definition 1.4. A fuzzy topological space (X, 7) is called

(1) Ty-space if for all x, y € X with x # y we have X £ N (p)
ory £ N(x) [1].

(2) Ty-space if for all x, y € X with x # y we have x £ N (p)
and y £ N (x) [1].

(3) T,-space (or Hausdorff space) if for all x, y € X with x #
y we have N'(x) A N (y) does not exist [1].

(4) Regular space if N'(x) A N'(F) does not exist for all x €
X,FC Xwithx¢gFand c[,F =F.

T-space if it is regular space and T;-space [2].

(5) Normal space if for all Fy, F>» C X, such that ¢/, [} = F,
./ =Fand F;NF =, we have N (F}) AN (F) does
not exist.

T,-space if it is normal and T}-space [2].

2. Counterexamples

In this section we point out where the errors occur in [1] and [2].
We then give counterexamples to confirm our claim.

(a) In[1, Theorem 3.1, p. 190], the authors introduced a char-
acterization of Tj-spaces. The implication (1)==(3) (i.e.,
“If (X, 7) is a T-space, then ¢/x = x for each x € X”) is
not necessarily true, as we show in the following example.
Example 1. Let L =0, 1], X = {x, y}, 7 = {0, 1, X1V
X1 Vy%} and 7/ = {0, 1, y, x| \/y%,y%}. Then (X, 7) is
T,. However, ¢ly # y. Indeed, one can find f = x, v Vi€
LY such that Cly(-f)z\/('/rpsxlvy% y(p) = y(x vy =

1# 3=y Vi)

(b

~

In[2, p. 203], Lemma 5.1 states that “for every fuzzy topo-
logical space (X, 7) and each x € X we have c¢/x = X im-
plies ¢/, {x} = {x}”. This statement has been used as a suf-
ficient condition to prove that: (i) “every T3-spaceis a 75-
space” (see [2, Proposition 5.1, p. 203]), and (ii) “every T4-
space is a T3-space” (see [2, Proposition 6.1, p. 209]). In
fact, the condition ¢/, {x} = {x} for all x € X is not equiv-
alent to T -spaces.

In Example 1, (X, 7) is a T)-space but there exists x € X
such that ¢/, x; = x; Vv yi # x1. Hence, (i) and (ii) are not
necessarily true.

In [2, Theorem 5.1, p. 203], a characterization of regular
spaces has been introduced (see (1)=—=(3), i.e., “if (X, 7) is
a regular space, then ¢/N (x) = N (x) for each x € X”. In
fact this result is not correct as we show in the following
example.

(c

~

Example 2. Let L=1[0,1], X ={x,».z}, t ={0,1,z,
X1 V)1 \/z%,z%} and r’:{(_),i,xl \/yl,z%,xl VvV
z1}. We next show that (X, t) is a regular space. Ob-
serve that the only closed fuzzy set in X is F = {x, y}
with z¢ F. Note also that N(z) AN(F) does not
exist. Indeed, if f=2z and g=x Vy Vv = then
N @) () ANF)(xr Vo vz = 1>1=sup(frg.
However, ¢/N (x) # N (x) for some x € X. For instance,
take z € X with f =z, then N ()(f) = % £1=
NE@ ).

(d) The last claim, a characterization of normal spaces is
given in [2, Theorem 6.1, p. 209]. More specifically, the
implication of (1)==(3) (i.e., “if (X, 7) is a normal space,
then ¢IN'(F) = N(F) for all F € P(X) with F = clF ™).
This result is incorrect as the next example shows.

Example 3. Let L=1[0,1], X = {x,y}, T ={0,1,x, y1.
X1L,YL X VYLV ynL X Vol and v/ ={0, 1, y1, xy,
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! V y1, X1 \/y%, X3 \/y%, x%,y%}. Then, (X, 7) is a nor-
mal space because the only closed fuzzy sets in X are
F ={x}and /5 = {y}suchthat F N K = @ and N (F) A
N (F) does not exist. For example, if we take f = x| and
g=y1, then N(F)(x)) AN(B)(y1) = 1> 0 =sup(f A
g). However, ¢/ N (F) # N (F) for some F € P(X). For in-
stance, if we take F = {x} and f = x 1V this implies

that (/N (F)(f) =0 # 1 = N(F)(f).
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