

Journal of the Egyptian Mathematical Society

Egyptian Mathematical Society

www.etms-eg.org www.elsevier.com/locate/joems

Short Communication

Comment on "*T_i*-spaces I, II"

W

O.A. Tantawy^a, S.A. El-Sheikh^b, R.N. Majeed^{c,d,*}

^a Mathematics Department, Faculty of Science, Zagaziq University, Cairo, Egypt

^b Mathematics Department, Faculty of Education, Ain Shams University, Cairo, Egypt

^c Mathematics Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt

^d Mathematics Department, College of Education Ibn-Al-Haitham, Baghdad University, Iraq

Received 13 August 2015; revised 23 December 2015; accepted 21 January 2016 Available online 31 March 2016

Keywords

Fuzzy topological space; Fuzzy filter; Fuzzy neighborhood filter; Fuzzy separation axioms **Abstract** In this comment, we show that some assertions made in Bayoumi and Ibedou (2002) [1] and Bayoumi and Ibedou (2002) [2] are incorrect. Specifically, one implication from Theorem 3.1 made in Bayoumi and Ibedou (2002) [1] is erroneous. Consequently, Propositions 5.1 and 6.1 introduced in Bayoumi and Ibedou (2002) [2] are incorrect. In addition, one implication from Theorems 5.1 and 6.1, made in Bayoumi and Ibedou (2002) [2] are incorrect. We give some counterexamples to support our claim.

MATHEMATICS SUBJECT CLASSIFICATION: 54A05; 54A40; 54E55; 54C08

Copyright 2016, Egyptian Mathematical Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction and preliminaries

In order for this comment to be clear, we need to review the terminology. Using Chang's [3] sense of fuzzy topological spaces, the concept of separation axioms is linked to fuzzy points and

E-mail addresses: rashanm6@gmail.com, majeedrasha@yahoo.com (R.N. Majeed).

Peer review under responsibility of Egyptian Mathematical Society.

their stronger forms. In [1,2], the notions of separation axioms T_i , i = 0, 1, 2, 3, 4, in *L*-topological spaces depend on the notions of fuzzy neighborhood filters, ordinary points and crisp closed subsets of *X*.

In this comment *L* is a complete chain with differing least and last elements 0 and 1, respectively, $L_0 = L \setminus \{0\}$ and $L_1 = L \setminus \{1\}$. By a fuzzy set of a set *X* we mean a mapping $f : X \longrightarrow$ *L*. L^X and P(X) denote the sets of all fuzzy sets and of all ordinary subsets of *X*, respectively. For each $x \in X$ and $t \in L_0$, the fuzzy set x_t of *X*, whose value is *t* at *x* and 0 otherwise, is called a fuzzy point in *X*. For each $\alpha \in L$, the constant fuzzy set of *X* with value α will be denoted by $\overline{\alpha}$.

A fuzzy topology of a set X [3] is a subset τ of L^X which contains the constant fuzzy sets $\overline{0}$ and $\overline{1}$, and closed with respect to finite intersection and arbitrary union. The pair (X, τ) is called a fuzzy topological space and the elements of τ are called open

S1110-256X(16)00022-5 Copyright 2016, Egyptian Mathematical Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). http://dx.doi.org/10.1016/j.joems.2016.01.006

^{*} Corresponding author at: Mathematics Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt. Tel.: +20 1111306923.

fuzzy sets. The family of all closed fuzzy sets on X is denoted by τ' . The interior $int_{\tau}f$ (respectively, closure $cl_{\tau}f$) of a fuzzy set f is the greatest open fuzzy set less than or equal to f (respectively, is the smallest closed fuzzy set greater than or equal to f), that is, $int_{\tau}f = \bigvee_{g \in \tau, g \leq f} g$ (respectively, $cl_{\tau}f = \bigwedge_{g \in \tau', g \geq f} g$).

Definition 1.1 [4,5]. Let X be a non-empty set. A fuzzy filter on X is a mapping $\mathcal{M} : L^X \longrightarrow L$ such that the following conditions are fulfilled:

(F1) $\mathcal{M}(\bar{\alpha}) \leq \alpha$ holds for all $\alpha \in L$ and $\mathcal{M}(\bar{1}) = 1$. (F2) $\mathcal{M}(f \wedge g) = \mathcal{M}(f) \wedge \mathcal{M}(g)$ for all $f, g \in L^X$.

A fuzzy filter \mathcal{M} is called homogeneous if $\mathcal{M}(\bar{\alpha}) = \alpha$ for all $\alpha \in L$. If \mathcal{M} and \mathcal{N} are fuzzy filters on X, then \mathcal{M} is finer than \mathcal{N} , which is denoted by $\mathcal{M} \leq \mathcal{N}$, provided that $\mathcal{M}(f) \geq \mathcal{N}(f)$ holds for all $f \in L^X$. By $\mathcal{M} \nleq \mathcal{N}$, we means that \mathcal{M} is not finer than \mathcal{N} . Since L is a complete chain, then

$$\mathcal{M} \nleq \mathcal{N} \iff$$
 there exists $f \in L^X$ such that $\mathcal{M}(f) < \mathcal{N}(f)$.
(1)

Proposition 1.1 [5]. *Let A be a set of fuzzy filters on X. Then, the following are equivalent:*

- (1) The infimum $\bigwedge_{\mathcal{M} \in A} \mathcal{M}$ of A with respect to the finer relation of a fuzzy filter exists,
- (2) For each non-empty finite subset $\{\mathcal{M}_1, \mathcal{M}_2, \dots, \mathcal{M}_n\}$ of A we have $\mathcal{M}_1(f_1) \land \mathcal{M}_2(f_2) \land \dots \land \mathcal{M}_n(f_n) \leq \sup (f_1 \land f_2 \land \dots \land f_n)$ for all $f_1, f_2, \dots, f_n \in L^X$.

Definition 1.2 [6]. For each fuzzy topological space (X, τ) and each $x \in X$, a fuzzy neighborhood filter of the space (X, τ) at x is a mapping $\mathcal{N}(x) : L^X \longrightarrow L$ defined by

$$\mathcal{N}(x)(f) = (\operatorname{int}_{\tau} f)(x), \tag{2}$$

for all $f \in L^X$ which is a fuzzy filter on *X*. The fuzzy neighborhood filter $\mathcal{N}(F)$ at a set $F \subseteq X$ is defined by means of $\mathcal{N}(x)$ and $x \in F$ as

$$\mathcal{N}(F) = \bigvee_{x \in F} \mathcal{N}(x). \tag{3}$$

For each $x \in X$, the mapping $\dot{x} : L^X \longrightarrow L$ defined by

 $\dot{x}(f) = f(x), \tag{4}$

for all $f \in L^X$, is a homogeneous fuzzy filter on X.

Definition 1.3 [7]. For each fuzzy topological space (X, τ) the closure operator of τ is the mapping *cl* that is assigned to each fuzzy filter *cl* \mathcal{M} such that

$$cl\mathcal{M}(f) = \bigvee_{cl_{\tau}\rho \le f} \mathcal{M}(\rho) \,. \tag{5}$$

 $cl\mathcal{M}$ is called the closure of \mathcal{M} .

Definition 1.4. A fuzzy topological space (X, τ) is called

- (1) T_0 -space if for all $x, y \in X$ with $x \neq y$ we have $\dot{x} \nleq \mathcal{N}(y)$ or $\dot{y} \nleq \mathcal{N}(x)$ [1].
- (2) T_1 -space if for all $x, y \in X$ with $x \neq y$ we have $\dot{x} \nleq \mathcal{N}(y)$ and $\dot{y} \nleq \mathcal{N}(x)$ [1].
- (3) T₂-space (or Hausdorff space) if for all x, y ∈ X with x ≠ y we have N(x) ∧ N(y) does not exist [1].

- (4) Regular space if N(x) ∧ N(F) does not exist for all x ∈ X, F ⊆ X with x ∉ F and cl_τF = F.
 T₃-space if it is regular space and T₁-space [2].
- (5) Normal space if for all F₁, F₂ ⊆ X, such that cl_τF₁ = F₁, cl_τF₂ = F₂ and F₁ ∩ F₂ = Ø, we have N(F₁) ∧ N(F₂) does not exist.
 T₄-space if it is normal and T₁-space [2].

2. Counterexamples

In this section we point out where the errors occur in [1] and [2]. We then give counterexamples to confirm our claim.

(a) In [1, Theorem 3.1, p. 190], the authors introduced a characterization of T₁-spaces. The implication (1)⇒(3) (i.e., "If (X, τ) is a T₁-space, then clẋ = ẋ for each x ∈ X") is not necessarily true, as we show in the following example.

Example 1. Let L = [0, 1], $X = \{x, y\}$, $\tau = \{\bar{0}, \bar{1}, x_1, y_{\frac{1}{2}}, x_1 \lor y_{\frac{1}{2}}\}$ and $\tau' = \{\bar{0}, \bar{1}, y_1, x_1 \lor y_{\frac{1}{2}}, y_{\frac{1}{2}}\}$. Then (X, τ) is T_1 . However, $cl\dot{y} \neq \dot{y}$. Indeed, one can find $f = x_1 \lor y_{\frac{3}{4}} \in L^X$ such that $cl\dot{y}(f) = \bigvee_{cl_{\tau}\rho \leq x_1 \lor y_{\frac{3}{4}}} \dot{y}(\rho) = \dot{y}(x_1 \lor y_{\frac{1}{2}}) = \frac{1}{2} \neq \frac{3}{4} = \dot{y}(x_1 \lor y_{\frac{3}{2}})$.

(b) In [2, p. 203], Lemma 5.1 states that "for every fuzzy topological space (X, τ) and each x ∈ X we have clẋ = ẋ implies cl_τ{x} = {x}". This statement has been used as a sufficient condition to prove that: (i) "every T₃-space is a T₂-space" (see [2, Proposition 5.1, p. 203]), and (ii) "every T₄-space is a T₃-space" (see [2, Proposition 6.1, p. 209]). In fact, the condition cl_τ{x} = {x} for all x ∈ X is not equivalent to T₁-spaces.

In Example 1, (X, τ) is a T_1 -space but there exists $x \in X$ such that $cl_{\tau}x_1 = x_1 \lor y_{\frac{1}{2}} \neq x_1$. Hence, (*i*) and (*ii*) are not necessarily true.

(c) In [2, Theorem 5.1, p. 203], a characterization of regular spaces has been introduced (see (1)⇒>(3), i.e., "if (X, τ) is a regular space, then clN(x) = N(x) for each x ∈ X". In fact this result is not correct as we show in the following example.

Example 2. Let L = [0, 1], $X = \{x, y, z\}$, $\tau = \{\overline{0}, \overline{1}, z_1, x_1 \lor y_1 \lor z_{\frac{1}{2}}, z_{\frac{1}{2}}\}$ and $\tau' = \{\overline{0}, \overline{1}, x_1 \lor y_1, z_{\frac{1}{2}}, x_1 \lor y_1 \lor z_{\frac{1}{2}}\}$. We next show that (X, τ) is a regular space. Observe that the only closed fuzzy set in X is $F = \{x, y\}$ with $z \notin F$. Note also that $\mathcal{N}(z) \land \mathcal{N}(F)$ does not exist. Indeed, if $f = z_1$ and $g = x_1 \lor y_1 \lor z_{\frac{1}{2}}$ then $\mathcal{N}(z)(z_1) \land \mathcal{N}(F)(x_1 \lor y_1 \lor z_{\frac{1}{2}}) = 1 > \frac{1}{2} = sup(f \land g)$. However, $cl\mathcal{N}(x) \neq \mathcal{N}(x)$ for some $x \in X$. For instance, take $z \in X$ with $f = z_1$, then $cl\mathcal{N}(z)(f) = \frac{1}{2} \neq 1 = \mathcal{N}(z)(f)$.

(d) The last claim, a characterization of normal spaces is given in [2, Theorem 6.1, p. 209]. More specifically, the implication of (1)⇒(3) (i.e., "if (X, τ) is a normal space, then clN(F) = N(F) for all F ∈ P(X) with F = clF "). This result is incorrect as the next example shows.

 $x_{\frac{2}{3}} \vee y_1, x_1 \vee y_{\frac{2}{3}}, x_{\frac{2}{3}} \vee y_{\frac{2}{3}}, x_{\frac{2}{3}}, y_{\frac{2}{3}}$ }. Then, (X, τ) is a normal space because the only closed fuzzy sets in X are $F_1 = \{x\}$ and $F_2 = \{y\}$ such that $F_1 \cap F_2 = \emptyset$ and $\mathcal{N}(F_1) \land \mathcal{N}(F_2)$ does not exist. For example, if we take $f = x_1$ and $g = y_1$, then $\mathcal{N}(F_1)(x_1) \land \mathcal{N}(F_2)(y_1) = 1 > 0 = sup(f \land g)$. However, $cl\mathcal{N}(F) \neq \mathcal{N}(F)$ for some $F \in P(X)$. For instance, if we take $F = \{x\}$ and $f = x_{\frac{1}{3}} \vee y_{\frac{1}{3}}$ this implies that $cl\mathcal{N}(F)(f) = 0 \neq \frac{1}{3} = \mathcal{N}(F)(f)$.

Acknowledgment

The authors express their grateful thanks to the referee for reading the manuscript and making helpful comments.

References

[1] F. Bayoumi, I. Ibedou, T_i-spaces, I, J. Egypt. Math. Soc. 10 (2) (2002) 179–199.

- [2] F. Bayoumi, I. Ibedou, T_i-spaces, II, J. Egypt. Math. Soc. 10 (2) (2002) 201–215.
- [3] C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182–190.
- [4] P. Eklund, W. Gähler, Fuzzy filter functors and convergence, Applications of Category Theory to Fuzzy Subsets, Kluwer, Dordrecht/ Boston/ London, 1992, pp. 109–136.
- [5] W. G\u00e4hler, The general fuzzy filter approach to fuzzy topology, I, Fuzzy Sets Syst. 76 (1995) 205–224.
- [6] W. Gähler, The general fuzzy filter approach to fuzzy topology, II, Fuzzy Sets Syst. 76 (1995) 225–246.
- [7] W. Gähler, Monadic topology A new concept of generalized topology, Recent Development of General Topology and its Applications, International Conference in Memory of Felix Hausdorff (1868–1942), Mathematical Research 67, Akademie Verlag Berlin, 1992, pp. 136–149.