

Egyptian Mathematical Society **Journal of the Egyptian Mathematical Society**

> www.etms-eg.org www.elsevier.com/locate/joems

Short Communication

Comment on "*Ti***-spaces I, II"**

X

O.A. Tantawy ^a , S.A. El-Sheikh ^b , R.N. Majeed c,d,[∗]

^a*Mathematics Department, Faculty of Science, Zagaziq University, Cairo, Egypt*

^b*Mathematics Department, Faculty of Education, Ain Shams University, Cairo, Egypt*

^c*Mathematics Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt*

^d*Mathematics Department, College of Education Ibn-Al-Haitham, Baghdad University, Iraq*

Received 13 August 2015; revised 23 December 2015; accepted 21 January 2016 Available online 31 March 2016

Keywords

Fuzzy topological space; Fuzzy filter; Fuzzy neighborhood filter; Fuzzy separation axioms

Abstract In this comment, we show that some assertions made in Bayoumi and Ibedou (2002) [1] and Bayoumi and Ibedou (2002) [2] are incorrect. Specifically, one implication from Theorem 3.1 made in Bayoumi and Ibedou (2002) [1] is erroneous. Consequently, Propositions 5.1 and 6.1 introduced in Bayoumi and Ibedou (2002) [2] are incorrect. In addition, one implication from Theorems 5.1 and 6.1, made in Bayoumi and Ibedou (2002) [2] are incorrect. We give some counterexamples to support our claim.

MATHEMATICS SUBJECT CLASSIFICATION: 54A05; 54A40; 54E55; 54C08

Copyright 2016, Egyptian Mathematical Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license [\(http://creativecommons.org/licenses/by-nc-nd/4.0/\)](http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction and preliminaries

In order for this comment to be clear, we need to review the terminology. Using Chang's [\[3\]](#page-2-0) sense of fuzzy topological spaces, the concept of separation axioms is linked to fuzzy points and

E-mail addresses: [rashanm6@gmail.com,](mailto:rashanm6@gmail.com) majeedrasha@yahoo.com (R.N. Majeed).

Peer review under responsibility of Egyptian Mathematical Society.

their stronger forms. In $[1,2]$, the notions of separation axioms T_i , $i = 0, 1, 2, 3, 4$, in *L*-topological spaces depend on the notions of fuzzy neighborhood filters, ordinary points and crisp closed subsets of *X*.

In this comment *L* is a complete chain with differing least and last elements 0 and 1, respectively, $L_0 = L \setminus \{0\}$ and $L_1 =$ *L*\{1}. By a fuzzy set of a set *X* we mean a mapping $f : X \longrightarrow$ *L*. *L^X* and *P*(*X*) denote the sets of all fuzzy sets and of all ordinary subsets of *X*, respectively. For each $x \in X$ and $t \in L_0$, the fuzzy set x_t of X , whose value is t at x and 0 otherwise, is called a fuzzy point in *X*. For each $\alpha \in L$, the constant fuzzy set of *X* with value α will be denoted by $\bar{\alpha}$.

A fuzzy topology of a set $X[3]$ $X[3]$ is a subset τ of L^X which contains the constant fuzzy sets $\overline{0}$ and $\overline{1}$, and closed with respect to finite intersection and arbitrary union. The pair (X, τ) is called a fuzzy topological space and the elements of τ are called open

S1110-256X(16)00022-5 Copyright 2016, Egyptian Mathematical Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license [\(http://creativecommons.org/licenses/by-nc-nd/4.0/\)](http://creativecommons.org/licenses/by-nc-nd/4.0/). <http://dx.doi.org/10.1016/j.joems.2016.01.006>

[∗] Corresponding author at: Mathematics Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt. Tel.: +20 1111306923.

fuzzy sets. The family of all closed fuzzy sets on *X* is denoted by τ' . The interior $int_{\tau} f$ (respectively, closure $cl_{\tau}f$) of a fuzzy set *f* is the greatest open fuzzy set less than or equal to *f* (respectively, is the smallest closed fuzzy set greater than or equal to *f*), that is, $int_{\tau} f = \bigvee_{g \in \tau, g \leq f} g$ (respectively, $cl_{\tau} f = \bigwedge_{g \in \tau', g \geq f} g$).

Definition 1.1 [\[4,5\]](#page-2-0)**.** Let *X* be a non-empty set. A fuzzy filter on *X* is a mapping $\mathcal{M}: L^X \longrightarrow L$ such that the following conditions are fulfilled:

(F1) $\mathcal{M}(\bar{\alpha}) \leq \alpha$ holds for all $\alpha \in L$ and $\mathcal{M}(\bar{1}) = 1$. (F2) $\mathcal{M}(f \wedge g) = \mathcal{M}(f) \wedge \mathcal{M}(g)$ for all $f, g \in L^X$.

A fuzzy filter M is called homogeneous if $M(\bar{\alpha}) = \alpha$ for all $\alpha \in L$. If M and N are fuzzy filters on X, then M is finer than N, which is denoted by $M \leq N$, provided that $M(f) \geq N(f)$ holds for all $f \in L^X$. By $\mathcal{M} \nleq \mathcal{N}$, we means that \mathcal{M} is not finer than N . Since L is a complete chain, then

$$
\mathcal{M} \nleq \mathcal{N} \iff \text{there exists } f \in L^X \text{ such that } \mathcal{M}(f) < \mathcal{N}(f). \tag{1}
$$

Proposition 1.1 [\[5\]](#page-2-0)**.** *Let A be a set of fuzzy filters on X. Then, the following are equivalent:*

- (1) *The infimum* M∈*A* M *of A with respect to the finer relation of a fuzzy filter exists,*
- (2) For each non-empty finite subset $\{M_1, M_2, \ldots, M_n\}$ of *A* we have $M_1(f_1) \wedge M_2(f_2) \wedge \ldots \wedge M_n(f_n) \leq \sup (f_1 \wedge f_n)$ *f*₂ ∧ . . . ∧ *f_n*) *for all f*₁, *f*₂, *f_n* ∈ *L^X*.

Definition 1.2 [\[6\]](#page-2-0). For each fuzzy topological space (X, τ) and each $x \in X$, a fuzzy neighborhood filter of the space (X, τ) at *x* is a mapping $\mathcal{N}(x): L^X \longrightarrow L$ defined by

$$
\mathcal{N}(x)(f) = (\text{int}_{\tau} f)(x),\tag{2}
$$

for all $f \in L^X$ which is a fuzzy filter on *X*. The fuzzy neighborhood filter $\mathcal{N}(F)$ at a set $F \subseteq X$ is defined by means of $\mathcal{N}(x)$ and $x \in F$ as

$$
\mathcal{N}(F) = \bigvee_{x \in F} \mathcal{N}(x). \tag{3}
$$

For each $x \in X$, the mapping $\dot{x}: L^X \longrightarrow L$ defined by

 $\dot{x}(f) = f(x)$, (4)

for all $f \in L^X$, is a homogeneous fuzzy filter on X.

Definition 1.3 [\[7\]](#page-2-0). For each fuzzy topological space (X, τ) the closure operator of τ is the mapping *cl* that is assigned to each fuzzy filter *cl*M such that

$$
cl\mathcal{M}(f) = \bigvee_{cl_t \rho \le f} \mathcal{M}(\rho).
$$
 (5)

*cl*M is called the closure of M.

Definition 1.4. A fuzzy topological space (X, τ) is called

- (1) *T*₀-space if for all *x*, $y \in X$ with $x \neq y$ we have $\dot{x} \nleq \mathcal{N}(y)$ or $\dot{y} \nleq \mathcal{N}(x)$ [\[1\].](#page-2-0)
- (2) *T*₁-space if for all *x*, $y \in X$ with $x \neq y$ we have $\dot{x} \nleq \mathcal{N}(y)$ and $\dot{y} \nleq \mathcal{N}(x)$ [\[1\].](#page-2-0)
- (3) *T*₂-space (or Hausdorff space) if for all *x*, $y \in X$ with $x \neq$ *y* we have $\mathcal{N}(x) \wedge \mathcal{N}(y)$ does not exist [\[1\].](#page-2-0)
- (4) Regular space if $\mathcal{N}(x) \wedge \mathcal{N}(F)$ does not exist for all $x \in$ $X, F \subseteq X$ with $x \notin F$ and $cl_rF = F$. T_3 -space if it is regular space and T_1 -space [\[2\].](#page-2-0)
- (5) Normal space if for all $F_1, F_2 \subseteq X$, such that $cl_{\tau}F_1 = F_1$, cl_{τ} *F*₂ = *F*₂ and *F*₁ ∩ *F*₂ = Ø, we have $\mathcal{N}(F_1) \wedge \mathcal{N}(F_2)$ does not exist. T_4 -space if it is normal and T_1 -space [\[2\].](#page-2-0)

2. Counterexamples

In this section we point out where the errors occur in [\[1\]](#page-2-0) and [\[2\].](#page-2-0) We then give counterexamples to confirm our claim.

(a) In [1, [Theorem](#page-2-0) 3.1, p. 190], the authors introduced a characterization of T_1 -spaces. The implication (1) \Longrightarrow (3) (i.e., "If (X, τ) is a T_1 -space, then $cl\dot{x} = \dot{x}$ for each $x \in X$ ") is not necessarily true, as we show in the following example.

Example 1. Let $L = [0, 1]$, $X = \{x, y\}$, $\tau = \{\overline{0}, \overline{1}, x_1, y_{\frac{1}{2}}, \dots\}$ $x_1 \vee y_1$ and $\tau' = \{\overline{0}, \overline{1}, y_1, x_1 \vee y_1, y_1\}$. Then (X, τ) is *T*₁. However, *cly*^{\neq} \dot{y} . Indeed, one can find *f* = *x*₁ ∨ *y*₃ ∈ L^X such that $cly(f) = \bigvee_{c l_\tau \rho \leq x_1 \vee y_{\frac{3}{4}}} y(\rho) = y(x_1 \vee y_{\frac{1}{2}}) =$ $\frac{1}{2} \neq \frac{3}{4} = \dot{y}(x_1 \vee y_{\frac{3}{4}}).$

(b) In [2, p. 203], Lemma 5.1 states that "for every fuzzy topological space (X, τ) and each $x \in X$ we have $cl\dot{x} = \dot{x}$ implies $cl_{\tau}\{x\} = \{x\}$ ". This statement has been used as a sufficient condition to prove that: (*i*) "every T_3 -space is a T_2 space" (see [2, [Proposition](#page-2-0) 5.1, p. 203]), and (*ii*) "every *T*4 space is a T_3 -space" (see [2, [Proposition](#page-2-0) 6.1, p. 209]). In fact, the condition $cl_{\tau}\{x\} = \{x\}$ for all $x \in X$ is not equivalent to T_1 -spaces. In Example 1, (X, τ) is a T_1 -space but there exists $x \in X$

such that $cl_{\tau} x_1 = x_1 \vee y_1 \neq x_1$. Hence, *(i)* and *(ii)* are not necessarily true.

(c) In [2, [Theorem](#page-2-0) 5.1, p. 203], a characterization of regular spaces has been introduced (see (1) \Longrightarrow (3), i.e., "if (*X*, τ) is a regular space, then $c/N(x) = N(x)$ for each $x \in X$ ". In fact this result is not correct as we show in the following example.

Example 2. Let $L = [0, 1]$, $X = \{x, y, z\}$, $\tau = \{0, 1, z_1, z_2, z_1, z_2, z_2, z_1, z_2, z_2, z_3, z_3, z_4, z_5, z_6, z_7, z_8, z_9, z_9, z_1, z_2, z_4, z_6, z_7, z_8, z_9, z_9, z_1, z_2, z_4, z_6, z_7, z_8, z_9, z_1, z_2, z_4, z_6, z_7, z_8, z_9, z_9, z_1, z_$ $x_1 \vee y_1 \vee z_1, z_1$ and $\tau' = \{\overline{0}, \overline{1}, x_1 \vee y_1, z_1, x_1 \vee y_1 \vee z_1\}$ z_1 }. We next show that (X, τ) is a regular space. Observe that the only closed fuzzy set in *X* is $F = \{x, y\}$ with $z \notin F$. Note also that $\mathcal{N}(z) \wedge \mathcal{N}(F)$ does not exist. Indeed, if $f = z_1$ and $g = x_1 \vee y_1 \vee z_1$ then $\mathcal{N}(z)(z_1) \wedge \mathcal{N}(F)(x_1 \vee y_1 \vee z_{\frac{1}{2}}) = 1 > \frac{1}{2} = \sup(f \wedge g).$ However, $c/N(x) \neq N(x)$ for some $x \in X$. For instance, take $z \in X$ with $f = z_1$, then $c \mathcal{N}(z)(f) = \frac{1}{2} \neq 1$ $\mathcal{N}(z)(f)$.

(d) The last claim, a characterization of normal spaces is given in [2, [Theorem](#page-2-0) 6.1, p. 209]. More specifically, the implication of (1) \Longrightarrow (3) (i.e., "if (*X*, τ) is a normal space, then $cl\mathcal{N}(F) = \mathcal{N}(F)$ for all $F \in P(X)$ with $F = clF$ "). This result is incorrect as the next example shows.

Example 3. Let $L = [0, 1]$, $X = \{x, y\}$, $\tau = \{0, 1, x_1, y_1,$ $x_1, y_1, x_1 \vee y_1, x_1 \vee y_1, x_1 \vee y_1$ and $\tau' = \{0, 1, y_1, x_1, x_1\}$

 $x_{\frac{2}{3}} \vee y_1, x_1 \vee y_{\frac{2}{3}}, x_{\frac{2}{3}} \vee y_{\frac{2}{3}}, x_{\frac{2}{3}}, y_{\frac{2}{3}}\}$. Then, (X, τ) is a normal space because the only closed fuzzy sets in *X* are *F*₁ = {*x*} and *F*₂ = {*y*} such that *F*₁ ∩ *F*₂ = \emptyset and $\mathcal{N}(F_1) \wedge$ $\mathcal{N}(F_2)$ does not exist. For example, if we take $f = x_1$ and *g* = *y*₁, then $\mathcal{N}(F_1)(x_1) \wedge \mathcal{N}(F_2)(y_1) = 1 > 0 = \text{sup}(f \wedge f)$ *g*). However, $cl\mathcal{N}(F) \neq \mathcal{N}(F)$ for some $F \in P(X)$. For instance, if we take $F = \{x\}$ and $f = x_{\frac{1}{3}} \vee y_{\frac{1}{3}}$ this implies that $cl\mathcal{N}(F)(f) = 0 \neq \frac{1}{3} = \mathcal{N}(F)(f)$.

Acknowledgment

The authors express their grateful thanks to the referee for reading the manuscript and making helpful comments.

References

[1] F. [Bayoumi,](http://refhub.elsevier.com/S1110-256X(16)00022-5/sbref0001) I. [Ibedou,](http://refhub.elsevier.com/S1110-256X(16)00022-5/sbref0001) *Ti*-spaces, I, J. Egypt. Math. Soc. 10 (2) (2002) 179–199.

- [2] F. [Bayoumi,](http://refhub.elsevier.com/S1110-256X(16)00022-5/sbref0002) I. [Ibedou,](http://refhub.elsevier.com/S1110-256X(16)00022-5/sbref0002) *Ti*[-spaces, II,](http://refhub.elsevier.com/S1110-256X(16)00022-5/sbref0002) J. Egypt. Math. Soc. 10 (2) (2002) 201–215.
- [3] C.L. [Chang,](http://refhub.elsevier.com/S1110-256X(16)00022-5/sbref0003) Fuzzy [topological](http://refhub.elsevier.com/S1110-256X(16)00022-5/sbref0003) spaces, J. Math. Anal. Appl. 24 (1968) 182–190.
- [4] P. [Eklund,](http://refhub.elsevier.com/S1110-256X(16)00022-5/sbref0004) W. [Gähler,](http://refhub.elsevier.com/S1110-256X(16)00022-5/sbref0004) Fuzzy filter functors and [convergence,](http://refhub.elsevier.com/S1110-256X(16)00022-5/sbref0004) Applications of Category Theory to Fuzzy Subsets, Kluwer, Dordrecht/ Boston/ London, 1992, pp. 109–136.
- [5] W. [Gähler,](http://refhub.elsevier.com/S1110-256X(16)00022-5/sbref0005) The general fuzzy filter [approach](http://refhub.elsevier.com/S1110-256X(16)00022-5/sbref0005) to fuzzy topology, I, Fuzzy Sets Syst. 76 (1995) 205–224.
- [6] W. [Gähler,](http://refhub.elsevier.com/S1110-256X(16)00022-5/sbref0006) The general fuzzy filter [approach](http://refhub.elsevier.com/S1110-256X(16)00022-5/sbref0006) to fuzzy topology, II, Fuzzy Sets Syst. 76 (1995) 225–246.
- [7] W. [Gähler,](http://refhub.elsevier.com/S1110-256X(16)00022-5/sbref0007) Monadic topology A new concept of generalized topology, Recent Development of General Topology and its Applications, International Conference in Memory of Felix Hausdorff (1868–1942), [Mathematical](http://refhub.elsevier.com/S1110-256X(16)00022-5/sbref0007) Research 67, Akademie Verlag Berlin, 1992, pp. 136–149.