

Original Article

Topological representation and quantic separation axioms of semi-quantales

Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

www.etms-eg.org www.elsevier.com/locate/joems

Y

Kamal El-Saady*

Department of Mathematics, Faculty of Science, South Valley University, Qena 83523, Egypt

Received 13 July 2015; revised 29 October 2015; accepted 12 January 2016 Available online 16 February 2016

Keywords

Semi-quantales; Spatiality; Sobriety; L-quasi-topology; Separation axioms **Abstract** An adjunction between the category of semi-quantales and the category of lattice-valued quasi-topological spaces is established. Some characterizations of quantic separation axioms, for semi-quantales and lattice-valued quasi-topological spaces, are obtained and some relations among these axioms are established.

2010 Mathematics Subject Classification: 06F07; 54A40; 54H10; 54D15

Copyright 2016, Egyptian Mathematical Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Quantales were first introduced in the eighties by Mulvey [1] in the ambitious aim of providing a possible common latticetheoretic setting for constructive foundations for quantum mechanics, as well as a non-commutative analogue of the maximal spectrum of a C^* -algebra, and for non-commutative logics. The study of such ordered algebraic structures goes back to a series of papers by Ward and Dilworth [2–4] in the 1930s. They were motivated by the ideal theory of commutative rings. Following

* Tel.: +201126040061.

E-mail address: el-saady@lycos.com, kehassan@sci.svu.edu.eg Peer review under responsibility of Egyptian Mathematical Society.

Mulvey, various types and aspects of quantales have been considered by many authors [5–8].

Since quantale theory provides a powerful tool in studying non-commutative structures, it has a wide applications, especially in studying non-commutative C^* -algebra theory [6,9], the ideal theory of commutative ring [10], linear logic [11] which supports part of the foundation of theoretic computer science [12,13] and so on.

In 1989 Borceux and van den Bossche [14] proposed a duality between spatial right-sided idempotent quantales and sober quantum spaces. In 2015, Höhle [15] established two adjunctions based on right-sided idempotent quantales. The first adjunction based on quantum spaces as an extension of the duality between spatial right-sided idempotent quantales and sober quantum spaces. The second adjunction between the category of right-sided idempotent quantales and the category of threevalued topological spaces. Both adjunctions restricts to the well known Papert–Papert–Isbell adjunction [16,17] between topological spaces and locales. In 2014 Demirci [18] established an

S1110-256X(16)00016-X Copyright 2016, Egyptian Mathematical Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). http://dx.doi.org/10.1016/j.joems.2016.01.002

abstract categorical analogue of famous Papert–Papert–Isbell adjunction to a general adjunction $X \dashv C^{op}$ in which *C* is an abstract category and *X* is a suitable category of such counterparts. Also he formulated two main categorical theorems: Fundamental Categorical Adjunction Theorem (FCAT) and Fundamental Categorical Duality Theorem (FCDT).

In this paper we aim to introduce and study a more general adjunction between the category of semi-quantales [19] and the category of lattice-valued quasi-topological spaces [20]. Also, we aim to study some separation axioms for semiquantales with applications to lattice-valued quasi-topological spaces.

The present paper has been prepared in four sections. After this introductory section, the next section overviews the some useful concepts about semi-quantales, quantic nucleus and L-quasi-topologies. In Section 3, as one of the main contribution of this paper, we construct a dual adjunction between the category SQuant of semi-quantales and the category L-QTop of lattice-valued quasi-topological spaces. Also, by defining L-Qspatiality in the given category **SQuant** and L-Qsobriety in L-QTop, we show that the full subcategory of SQuant of all L-Qspatial objects and the full subcategory of L-QTop of all L-Qsober objects are dually equivalent. The results of this section can be obtained as applications of Fundamental Categorical Adjunction Theorem (FCAT) and Fundamental Categorical Duality Theorem (FCDT) [18]. Finally in Section 4, we will discuss the counterparts of the quantic regularity and normality axioms of objects in the category SQuant with applications to objects in the category L-QTop.

2. Preliminaries

By a \bigvee -semilattice we mean a partially ordered set (L, \leq) having arbitrary \bigvee . A \bigvee -semilattice homomorphism is a map preserving arbitrary \bigvee .

Definition 2.1 ([19]). (lattice structures and associated categories).

- A semi-quantale (L, ≤, ⊗), abbreviated as s-quantale, is a V-semilattice (L, ≤) equipped with a binary operation ⊗ : L × L → L, with no additional assumptions, called a tensor product. The category SQuant comprises all semi-quantales together with s-quantale morphisms (i.e., mappings preserving ⊗ and arbitrary V). By SSQuant [20], we mean a non-full subcategory of SQuant comprising all semi-quantales and all ss-quantale morphisms (i.e., mappings preserving ⊗, arbitrary V and ⊤). SSQuant and SQuant clearly share the same objects.
- (2) A quantale (L, ≤, ⊗) is an s-quantale whose multiplication is associative and distributes across ∨ from both sides [7]. Quant is the full subcategory of SQuant of all quantales.
- (3) An ordered semi-quantale (L, ≤, ⊗), abbreviated as osquantale, is an s-quantale in which ⊗ is isotone in both variables. OSQuant is the full subcategory of SQuant of all os-quantales.
- (4) A unital semi-quantale (L, ≤, ⊗), abbreviated as usquantale, is an s-quantale in which ⊗ has an identity element e ∈ L called the unit. USQuant comprises all usquantales together with all mappings preserving arbitrary V, ⊗, and e.

- (5) A commutative semi-quantale (L, ≤, ⊗), abbreviated as cs-quantale, is an s-quantale in which, ⊗ that is, q₁ ⊗ q₂ = q₂ ⊗ q₁ for every q₁, q₂ ∈ L. CSQuant is the full subcategory of SQuant of all commutative semi-quantales.
- (6) A complete quasi-monoidal lattice (L, ≤, ⊗), abbreviated as cqml, is an os-quantale having ⊤ idempotent i.e., ⊤ ⊗ ⊤ = ⊤. CQML comprises all cqml together with mappings preserving arbitrary ∨, ⊗, and ⊤ [21,22]. Note that CQML is a subcategory of OSQuant.
- (7) A semi-frame [22] is a us-quantale whose multiplication and unit are ∧ and ⊤ respectively. SFrm is the category of all semi-frames together with mappings preserving finite ∧ and arbitrary ∨. SFrm is a full subcategory of CQML.
- (8) A frame [23] is a unital quantale whose multiplication and unit are ∧ and ⊤ respectively. Frm is the subcategory of Quant of all frames and morphisms preserving finite ∧ and arbitrary V.

Definition 2.2 ([24]). An s-quantale is called distributive (dsquantale) provided that its multiplication distributes across finite \lor from both sides. **DSQuant** is the category of ds-quantales.

Definition 2.3 ([20]). Let $L = (L, \leq, \otimes)$ be an s-quantale. A subset $K \subseteq L$ is a subsemi-quantale of L iff it is closed under the tensor product \otimes and arbitrary \bigvee . A subsemi-quantale K of L is said to be strong iff \top belongs to K. If L is a us-quantale with the identity e, then a subsemi-quantale K of L is called a unital subsemi-quantale of L iff e belongs to K.

Definition 2.4 ([25]). Let *Q* be a semi-quantale. An element $\top \neq p \in Q$ is said to be prime if $a \otimes b \leq p$ implies $a \leq p$ or $b \leq p$ for all *a*, $b \in Q$. The set of all prime elements of *Q*, denoted by Pr(Q).

Definition 2.5 (see [7]). Let $Q \in |\mathbf{SQuant}|$. A quantic nucleus on Q is a closure operator $j: Q \to Q$ such that $j(a) \otimes j(b) \le j(a \otimes b)$ for all $a, b \in Q$.

A subset $S \subseteq Q$ is called a quantic quotient if $S = Q_j$ for some quantic nucleus j, where $Q_j = \{a \in Q : j(a) = a\}$.

Let X be a non-empty set and let L be a complete lattice or $L \in |\mathbf{SQuant}|$. An L-fuzzy subset (or L-set) of X is a mapping A: $X \to L$. The family of all L-fuzzy subsets on X will be denoted by L^X . The smallest element and the largest element in L^X are denoted by \perp and \top , respectively.

For an ordinary mapping $f: X \longrightarrow Y$, one can define the mappings

$$f_L^{\rightarrow}: L^X \rightarrow L^Y$$
 and $f_L^{\leftarrow}: L^Y \rightarrow L^X$

by

$$f_L^{\rightarrow}(A)(y) = \bigvee \{A(x) : x \in X, f(x) = y\} \text{and } f_L^{\leftarrow}(B) = B \circ f$$

respectively.

Theorem 2.6 ([19]). Let $L \in |\mathbf{SQuant}|$, X, Y be a nonempty ordinary sets and $f : X \longrightarrow Y$ be an ordinary mapping, then we have:

- (1) f_L^{\rightarrow} preserves arbitrary \bigvee ;
- (2) f_L^{\leftarrow} preserves arbitrary \bigvee , \otimes , and all constant maps;
- (4) f_L^{\leftarrow} preserves the unit if $L \in |\mathbf{USQuant}|$.

For a fixed $L \in |$ **SQuant**| and a set X, an L-quasi-topology on X [19] is a subs-quantale τ of $L^X = (L^X, \leq, \otimes)$, i.e., the following axioms are satisfied: An *L*-quasi-topology τ is said to be strong [20] iff it is strong as a subs-quantale of L^X , i.e., τ satisfies the additional axiom:

$$(T_3) \quad \underline{\top} \in \tau.$$

If L is a us-quantale with unit e, a subus-quantale τ of L^X is called an L-topology on X [19]; so, τ satisfies (T_1) , (T_2) and the following:

 $(T_4) \ \underline{e} \in \tau.$

If $\tau \subseteq L^X$ is an *L*-quasi-topology (resp. *L*-topology), then the pair (X, τ) is said to be an *L*-quasi-topological (resp. *L*topological) space. A mapping $f: (X, \tau) \to (Y, \sigma)$ is said to be *L*-continuous (resp., *L*-open) [22] if $(f_L^{\leftarrow})_{|\rho}: \tau \leftarrow \sigma$ (resp., $(f_L^{\rightarrow})_{|\tau}: \tau \to \sigma$). An *L*-continuous bijection $f: (X, \tau) \to (Y, \sigma)$ is an *L*-homeomorphism [22] if f^{-1} is *L*-continuous.

In an obvious way L-quasi-topological (resp.strong L-quasi-topological and L-topological) spaces and L-continuous maps form a category denoted by L-QTop (resp. L-SQTop and L-Top).

One can easily prove that each of *L*-**QTop** *L*-**SQTop** and *L*-**Top**) is topological category over the category **Set** of sets and set-morphisms.

3. Quantic spectrum adjunction

In this section we will introduce and study a more general adjunction between the category of semi-quantales and the category of lattice-valued quasi-topological spaces. Also we will generalize the concept of *L*-sober topological spaces of ([26]-[28]) for $L \in |\mathbf{SFrm}|$ to the more general case for $L \in |\mathbf{SQuant}|$. For $L \in |\mathbf{SQuant}|$ and $(X, \tau) \in |L-\mathbf{QTop}|$. The functor

$\Omega_L: L - \mathbf{QTop} \to \mathbf{SQuant}^{op}$

is defined as follows.

 $\Omega_L(X, \tau)$ is the *L*-quasi-topology of a space (X, τ) , i.e., the semi-quantale $\tau \subseteq L^X$, and $\Omega_L(f: (X, \tau) \to (Y, \sigma))$, for an *L*-continuous map f, is $[f_L^{\leftarrow}|_{\sigma}]^{op}: \tau \to \sigma$.

The standard spectrum construction for a semi-quantale Q may be summarized as follows:

$$Lpt(Q) = \{p : Q \to L : p \in |\mathbf{SQuant}|\}$$

$$\Phi_L: Q \to L^{Lpt(Q)}$$
 by $\Phi_L(q)(p) = p(q)$

Then it can be shown that Φ_L preserves \otimes and arbitrary \bigvee , where these are inherited by the codomain of Φ_L from *L*. It can now be shown that $\Phi_L^{\rightarrow}(Q)$ is closed under these operations and hence is an *L*-quasi-topology on Lpt(Q). Thus we have

 $Q \to (Lpt(Q), \Phi_L^{\to}(Q))$

where the latter is an L-quasi-topological space; so we put

$$LPT(Q) \equiv (Lpt(Q), \Phi_L^{\rightarrow}(Q)) \in |L - \mathbf{QTop}|$$

and given $f: Q_1 \to Q_2$ in **SQuant**, i.e. $f^{op}: Q_1 \leftarrow Q_2$ in **SQuant** op . We define

$$Lpt(f): Lpt(Q_1) \to Lpt(Q_2)$$

by

 $Lpt(f)(p) = p \circ f^{op}.$

Lemma 3.1. For a fixed $L \in |\mathbf{SQuant}|$ and $Q_1, Q_2 \in |\mathbf{SQuant}|$, the mapping

$$LPT(f): (Lpt(Q_1), \Phi_L^{\rightarrow}(Q_1)) \rightarrow (Lpt(Q_2), \Phi_L^{\rightarrow}(Q_2))$$

is L-continuous.

Proof. For all $q_2 \in Q_2$, $p \in Lpt(Q_1)$, we have

$$Lpt(f)^{\leftarrow}(\Phi_L(q_2)(p)) = \Phi_L(q_2)(Lpt(f)(p))$$
$$= \Phi_L(q_2)(p \circ f^{op})$$
$$= \Phi_L(f^{op}(q_2))(p).$$

hence $Lpt(f)^{\leftarrow}(\Phi_L(q_2)(p)) = \Phi_L(f^{op}(q_2))(p)$. Now the function LPT(f) is *L*-continuous iff $\forall \mu \in \Phi_L^{\rightarrow}(Q_2), \exists \nu \in \Phi_L^{\rightarrow}(Q_1)$ such that $Lpt(f)^{\leftarrow}(\nu) = \mu$. \Box

Then we have the spectrum or point functor

LPT : **SQuant**^{op} $\rightarrow L - \mathbf{QTop}$.

Now, we turn to study the adjunction between the functors

$$LPT$$
 : **SQuant**^{op} $\rightarrow L - \mathbf{QTop}$

and

$$\Omega_L: L - \mathbf{QTop} \to \mathbf{SQuant}^{op}$$

To this aim we give the following definitions

For $(X, \tau) \in |L - \mathbf{QTop}|$ and $L, Q \in |\mathbf{SQuant}|$ define the maps:

- $\eta_X : (X, \tau) \longrightarrow (Lpt(\tau), \Phi_L^{\rightarrow}(\tau))$, by setting, $\forall x \in X$ and $\mu \in \tau$, $\eta_X(x)(\mu) = \mu(x)$;
- $\varepsilon_Q^{op}: Q \longrightarrow \Omega_L(LPT(Q))$ by setting $\varepsilon_Q^{op} = \Phi_L \mid_{\Phi_L^{\rightarrow}(Q)}$.

It is clear that by definition ε_{o}^{op} always surjective.

As given in [27,28], we have the following easily established results:

Lemma 3.2. For $(X, \tau) \in |L - \mathbf{QTop}|$ and $L, Q \in |\mathbf{SQuant}|$,

- (1) The map $\eta_X : (X, \tau) \longrightarrow (Lpt(\tau), \Phi_L^{\rightarrow}(\tau))$ is *L*-continuous, and *L*-open w.r.t. its range in $(Lpt(\tau), \Phi_L^{\rightarrow}(\tau))$ and
- (2) The map $\varepsilon_{Q}^{op}: Q \longrightarrow \Omega_{L}(LPT(Q))$ is an s-quantale morphism.

From the definition of ε_{Q}^{op} one can easily have the following result:

Lemma 3.3. For every $Q \in |\mathbf{SQuant}|$, ε_Q^{op} is injective if and only if for any $a, b \in Q$ with $a \neq b$ there exists $p \in Lpt(Q)$ with $p(a) \neq p(b)$.

As a consequence of the above lemma, we have the following result

Corollary 3.4. Given $(X, \tau) \in |L - \mathbf{QTop}|$, The map $\varepsilon_{\Omega_L(x,\tau)}^{op}$ is injective.

Lemma 3.5. For $(X, \tau) \in |L - \mathbf{QTop}|$, we have $(\eta_X)_L^{\leftarrow} \circ \Phi_L^{\Omega(X,\tau)} = \mathbf{1}_{\Omega(X,\tau)}$, where $(\eta_X)_L^{\leftarrow} : L^{Lpt(\Omega(X,\tau))} \longrightarrow \Omega(X,\tau)$ and $\Phi_L^{\Omega(X,\tau)} : \Omega(X,\tau) \to L^{Lpt(\Omega(X,\tau))}$.

Proof. The proof is straightforward. \Box

As a consequence of the above, we have that:

LPT : **SQuant**^{op} $\rightarrow L - \mathbf{QTop}$

is a right adjoint to

$\Omega_L: L - \mathbf{QTop} \to \mathbf{SQuant}^{op}.$

This adjunction given in the form $L - \mathbf{QTop} \dashv \mathbf{SQuant}^{op}$.

For the case of the category **SSQuant** (resp., **USQuant**) of strong (resp., unital) semi-quantales and the category L -**SQTop** (resp., L -**Top**) of strong *L*-quasi-topological spaces (resp., *L*-topological spaces) one can similarly have the following dual adjunctions:

L -**SQTop** \dashv **SSQuant**^{op}.

and

 $L - \text{Top} \dashv \text{USQuant}^{op}$.

Definition 3.6. For $L, Q \in |\mathbf{SQuant}|$. A semi-quantale Q is said to be L-Qspatial iff the map ε_{Q}^{op} is injective.

Lemma 3.7. For fixed $L \in |\mathbf{SQuant}|$. An $Q \in |\mathbf{SQuant}|$ is L-Qspatial if and only if ε_o^{op} is isomorphism

Proof. The proof is straightforward. \Box

Corollary 3.8. For $(X, \tau) \in |L - \mathbf{QTop}|$, the L-quasi-topology $\Omega_L(X, \tau)$ is L-Qspatial.

Proof. Let $\mu, \nu \in \Omega(X, \tau)$ with $\mu \neq \nu$, then there exists an $x_0 \in X$ such that $\mu(x_0) \neq \nu(x_0)$. Putting $p = \eta_X(x_0) \in Lpt(\tau)$. Then

 $\begin{aligned} \varepsilon_{\Omega_{L}(X,\tau)}^{op}(\mu)(p) &= p(\mu) = \eta_{X}(x_{0})(\mu) = \mu(x_{0}) \neq \nu(x_{0}) = \\ \eta_{X}(x_{0})(\nu) &= p(\nu) = \varepsilon_{\Omega_{L}(X,\tau)}^{op}(\nu)(p) \\ \text{Thus } \varepsilon_{\Omega_{L}(X,\tau)}^{op}(\mu) \neq \varepsilon_{\Omega_{L}(X,\tau)}^{op}(\nu) \text{ on } Lpt(\tau), \text{ which means that} \end{aligned}$

$$\varepsilon^{op}_{_{\Omega_{L}(X,\tau)}}:\Omega_{L}(X,\tau)\to\Omega_{L}(LPT(\Omega_{L}(X,\tau))$$

is injective on $\Omega_L(X, \tau)$. So $\Omega_L(X, \tau)$ is *L*-Qspatial. \Box

Definition 3.9. An $(X, \tau) \in |L - \mathbf{QTop}|$ is called

- (1) $L QT_0$ if for every $x, y \in X$ with $x \neq y$ there exists $\mu \in \Omega_L(X, \tau)$ with $\mu(x) \neq \mu(y)$.
- (2) *L*-Qsober iff $\eta_X : (X, \tau) \longrightarrow (Lpt(\tau), \Phi_L^{\rightarrow}(\tau))$ is bijective.

The next two lemmas show a characterization of $L - QT_0$ as well as *L*-Qsober spaces.

Lemma 3.10. An $(X, \tau) \in |L - \mathbf{QTop}|$ is $L - QT_0$ iff η_X is injective.

Proof. Recall the definition η_x . \Box

Also, from the definition of η_x , we have the following result:

Lemma 3.11. An $(X, \tau) \in |L - \mathbf{QTop}|$ L-Qsober iff

$$\eta_{X}: (X, \tau) \longrightarrow (Lpt(\tau), \Phi_{I}^{\rightarrow}(\tau))$$

is *L*-homeomorphism.

Proof. Let $(X, \tau) \in |L - \mathbf{QTop}|$ be an *L*-Qsober, then $\eta_x : (X, \tau) \longrightarrow (Lpt(\tau), \Phi_L^{\rightarrow}(\tau))$ is bijective. Since $\eta_x : (X, \tau) \longrightarrow (Lpt(\tau), \Phi_L^{\rightarrow}(\tau))$ is continuous, then it remain to prove the continuity of $\eta_x^{-1} : (Lpt(\tau), \Phi_L^{\rightarrow}(\tau)) \longrightarrow (X, \tau)$. To this end, let $\mu \in \Omega(X, \tau)$, then by Lemma 3.5 we get $(\eta_x^{-1})_L^{\leftarrow}(\mu) = \mu \circ \eta_x^{-1} = (\eta_x)_L^{\leftarrow} \circ \Phi_L^{\Omega(X,\tau)}(\mu) \circ \eta_x^{-1} = \Phi_L^{\Omega(X,\tau)}(\mu) \circ \eta_x = \Phi_L^{\Omega(X,\tau)}(\mu)$. The converse is clear.

The converse is clear. \Box

Lemma 3.12. For all $Q \in |\mathbf{SQuant}|$, LPT(Q) is L-Qsober.

Proof. Show bijectivity of the map

$$\eta_{Lpt(Q)}: (Lpt(Q), \Phi_L^{\rightarrow}(Q)) \longrightarrow LPT(\Phi_L^{\rightarrow}(Q))$$

For injectivity, let $p_1, p_2 \in Lpt(Q)$ with $p_1 \neq p_2$. Then there is $a \in Q$ with $p_1(a) \neq p_2(a)$ i.e., there is $\Phi_L(a) \in \Phi_L^{\rightarrow}(Q)$ such that

 $\eta_{Lpt(Q)}(p_1)(\Phi_L(a)) = \Phi_L(a)(p_1) = p_1(a) \neq p_2(a)$ = $\Phi_L(a)(p_2) = \eta_{Lpt(Q)}(p_2)(\Phi_L(a))$

which shows that $\eta_{Lpt(Q)}(p_1) \neq \eta_{Lpt(Q)}(p_2)$. Thus $\eta_{Lpt(Q)}$ is injective.

To show the surjectivity of $\eta_{Lpt(Q)}$, let $q \in LPT(\Phi_L^{\rightarrow}(Q)) = (Lpt(\Phi_L^{\rightarrow}(Q), \Phi_L^{\rightarrow}(\Phi_L^{\rightarrow}(Q)))$ and put $p = q \circ \Phi_L$. Clearly $p \in Lpt(Q)$. Furthermore, for all $a \in Q$, we have

$$\eta_{Lpt(\underline{0})}(p)(a) = \Phi_L(a)(p) = p(a) = q \circ \Phi_L(a) = q(\Phi_L(a)).$$

So $\eta_{Lpt(Q)}(p) = q$, which means that $\eta_{Lpt(Q)}$ is surjective. \Box

Let *L*-Qsob (resp. *L*-Qspat) be the full subcategory of *L*-QTop (resp. SQuant) consisting of all *L*-Qsober spaces (resp. *L*-Qspatial semi-quantales).

By analogy with [22,23,27,28]), we prove the following theorem

Theorem 3.13. The categories L-Qsob and L-Qspat are equivalent.

Proof. By Corollary 3.8 and Corollary 3.12 the adjunction

$$\Omega_L \dashv LPT : \mathbf{SQuant}^{op} \to L - \mathbf{QTop}$$

restricts to the categories *L*-Qsob and *L*-Qspat. By Lemma 3.7 and Lemma 3.11 the restrictions of the unit η and counit ε to the aforesaid categories give natural isomorphisms. \Box

4. Quantic separation axioms

In this section we will discuss the counterparts of the separation axioms quantic regularity and normality of objects in the category **SQuant** with applications to objects in the category L - QTop.

Definition 4.1. Let $Q \in |\mathbf{SQuant}|$, $M \subseteq Q$, and $a, b \in M$. An element *a* is said to be well-inside of *b* (w.r.t *M*), denoted $a \leq b$, if

 $\exists c \in M \text{ with } a \otimes c = \bot \text{ and } c \lor b = \top.$

Equivalently $a \leq b \equiv a^* \lor b = \top$ where $a^* = \lor \{c \in Q : a \otimes c = \bot\}$.

Some time we say that $a \leq b$ via c.

Lemma 4.2. (see [23]) For $Q \in |\mathbf{SQuant}|$ and $a, b, c, d \in Q$, the following holds

(1) $a \leq b$ implies $a \leq b$, and (2) $a \leq b \leq c \leq d$ implies $a \leq d$.

Definition 4.3. An $Q \in |$ **SQuant**| is said to be T_2 if for any $a \in Pr(Q)$, we have $a = \bigvee \{x \in Q : x \le a\}$.

Definition 4.4. Let $(X, \tau) \in |L - \mathbf{QTop}|$ and $L, Q \in |\mathbf{SQuant}|$.

(1) Q is said to be regular, iff

$$\forall a \in Q, \exists D \subseteq \{b \in Q : b \leq a\}, a = \backslash D$$

If $Q \in |\mathbf{Quant}|$, then $Q \in |\mathbf{Frm}|$ ([29], Theorem 2.5).

(2) (X, τ) is quantic regular, or regular, iff τ is a regular subsemi-quantale of L^X .

Proposition 4.5. An $Q \in |\mathbf{DSQuant}|$ is regular if and only if

 $\forall a \in Q, a = \bigvee \{b \in Q : b \leq a\}$

Proof. Let $Q \in |\mathbf{DSQuant}|$. Distributivity and $b \leq a$ imply $a \leq b$. Let $D \subseteq \{b \in Q: b \leq a\}$, such that $a = \bigvee D$. Then,

$$\bigvee D \leq \bigvee \{b \in Q : b \leq a\} \leq \bigvee \{b \in Q : b \leq a\} = a = \bigvee D$$

This shows

$$a = \bigvee D = \bigvee \{b \in Q :, b \leq a\}$$

and from this follows the claims. \Box

By the definition of T_2 , one can easily have the following result:

Corollary 4.6. *Every quantic regular semi-quantale is* T_2 .

As a consequence of the above proposition, we have the following result:

Proposition 4.7. Let $L \in |\mathbf{DSQuant}|$. An $(X, \tau) \in |L - \mathbf{QTop}|$ is regular if and only if

$$\forall \, \mu \in \tau, \, \mu = \bigvee \{ \nu \in \tau : \nu \leq \mu \}$$

Proposition 4.8. A quantic quotient $S \subseteq Q$ of a regular semiquantale Q is regular.

Proof. Let $j: Q \longrightarrow Q$ be a quantic nucleus on Q and let $b \in S$ be an arbitrary element. For $a, b \in Q$ with $a \leq b$, there is $c \in Q$ with $a \otimes c = \bot$ and $b \lor c = \top$. With the quantic nucleus $j: Q \longrightarrow Q$, we have $j(a) \otimes j(c) \leq j(a \otimes c) = j(\bot)$ and $b \lor j(c) = j(b) \lor j(c) = j(b \lor c) = j(\top)$ which implies that $j(a) \leq b$ in Q_j .

Since Q is regular, then for all $b \in Q$, we have

$$b = \bigvee \{a \in Q : a \le b \text{ w.r.t } Q\}$$

$$\leq \bigvee \{j(a) \in Q_j : a \le b \text{ w.r.t } Q\}$$

$$< \bigvee \{a' \in Q_j : a' < b' \text{ w.r.t } Q_j\}$$

So quantic quotient $S \subseteq Q$ is regular. \Box

Definition 4.9. Let $Q \in |\mathbf{SQuant}|$, $S \subseteq Q$ and D be the dyadic rationales in [0, 1]. For $a, b \in Q$, a is said to be **really-inside** b (with respect to S), denoted $a \stackrel{=}{\leq} b$, iff $\exists \{a_q: q \in D\} \subseteq S$ such that

(1)
$$a \le a_0 \le a_1 \le b$$
 and
(2) $p < q \Rightarrow a_p \le a_q$.

This definition comes from [23].

Definition 4.10. Let $(X, \tau) \in |L - \mathbf{QTop}|$ and $L, Q \in |\mathbf{SQuant}|$.

(1) Q is said to be quantic completely regular, iff

$$\forall a \in Q, \exists D \subseteq \{b \in Q : b \stackrel{=}{<} a\}, a = \bigvee D.$$

(2) (X, τ) is quantic completely regular, iff τ is a quantic completely regular subsemi-quantale of L^X .

Proposition 4.11. An $Q \in |\mathbf{DSQuant}|$ is quantic completely regular if and only if

$$\forall a \in Q, a = \bigvee \{b \in Q : b \stackrel{=}{<} a\}$$

Proof. The proof is analogous to those of Proposition 4.5. \Box

As a consequence of the above proposition, we have the following result:

Proposition 4.12. Let $L \in |\mathbf{DSQuant}|$. An $(X, \tau) \in |L - \mathbf{QTop}|$ is quantic completely regular if and only if

$$\forall \, \mu \in \tau, \, \mu = \bigvee \{ \nu \in \tau : \nu \stackrel{=}{<} \mu \}$$

Definition 4.13. Let $(X, \tau) \in |L - \mathbf{QTop}|$ and $L, Q \in |\mathbf{SQuant}|$.

(1) Q is said to be quantic normal, iff

 $\forall a, b \in Q \text{ with } a \lor b = \top, \exists c, d \in Q \text{ with } c \otimes d = \bot, c \lor b = \top = a \lor d.$

This comes from [29]. (Equivalently, if $a \lor b = \top$, $\exists c \in Q$ with $c^* \lor b = \top = a \lor c$.)

(2) (X, τ) is quantic normal, iff τ is a quantic normal subsemi-quantale of L^X .

Proposition 4.14. Let $(X, \tau) \in |L - \mathbf{QTop}|$ and $L, Q \in |\mathbf{CSQuant}|$.

(1) A commutative semi-quantale Q is quantic normal, iff

$$\forall a, b \in Q \text{ with } a \lor b = \top, \exists c, d \\ \in Q \text{ with } c \preceq a \text{ via } d, d \preceq b \text{ via } c$$

If $Q \in |\mathbf{SFrm}|$, Q is localic normal iff Q is a normal semilocale in the sense of [27, 28].

(2) (X, τ) is quantic normal, iff

$$\forall \mu, \nu \in \tau \text{ with } \mu \lor \nu = \underline{\top}, \exists \lambda, \upsilon$$

$$\in \tau$$
 with $\lambda \leq \mu$ via $\upsilon, \ \upsilon \leq \nu$ via λ .

Proof. (1) Let $a, b \in Q$ with $a \lor b = \top$. Quantic normality of the commutative semi-quantale $Q \Leftrightarrow \exists c, d \in Q$ with $c \otimes d = \bot = d \otimes c, c \lor b = \top$ and $a \lor d = \top$. Then

- (i) $c \otimes d = \bot$ and $a \lor d = \top \Rightarrow c \preceq a$ via d.
- (ii) $d \otimes c = \bot$ and $b \lor c = \top \Rightarrow d \preceq b$ via c.
- (2) Follows from (1). \Box

Proposition 4.15. In any normal semi-quantale the relation \leq implies $\stackrel{=}{\leq}$ and quantic regularity implies quantic complete regularity.

Proof. Let *Q* be a quantic normal semi-quantale and $a \leq b$. Since $a \leq b \Leftrightarrow a^* \lor b = \top$, then there are $c, d \in Q$ such that $c \otimes d = \bot \Leftrightarrow c \leq d^*$ and $a^* \lor d = \top = b \lor c$. Then one have $a \leq d$ and $d^* \lor b \geq c \lor b = \top$ so that $d \leq b$ which implies $a \leq b$. \Box

Acknowledgment

The author would like to thank the referees for their useful comments and valuable suggestions given to this paper.

References

- [1] C.J. Mulvey, &, Suppl. Rend. Circ. Mat. Palermo Ser. 12 (1986) 99–104.
- [2] R.P. Dilworth, Noncommutative residuated lattices, Trans. Am. Math. Soc. 46 (1939) 426–444.
- [3] M. Ward, Structure residuation, Ann. Math. 39 (1938) 558-569.
- [4] M. Ward, R.P. Dilworth, Residuated lattices, Trans. Am. Math. Soc. 45 (1939) 335–354.
- [5] D. Kruml, Spatial quantales, Appl Categorical Struct. 10 (2002) 49–62.
- [6] D. Kruml, J.W. Pelletier, P. Resende, J. Rosicky, On quantales and spectra of c*-algebras, Appl. Categorical Struct. 11 (6) (2003) 543– 560.
- [7] K.I. Rosenthal, Quantales and Their Applications, Longman Scientific and Technical, London, 1990.

- [8] J. Rosicky, Characterizing spatial quantales, Algebra Universalis 34 (1995) 175–178.
- [9] M. Nawaz, Quantales: Quantale Sets (Ph.D. thesis), University of Sussex, 1985.
- [10] S.B. Niefield, K.I. Rosenthal, Strong de Morgan's law and the spectrum of a commutative ring, J. Algebra 93 (1985) 169–181.
- [11] J.Y. Girard, Linear logic, Theor. Comput. Sci. 50 (1987) 1–102.
- [12] Y.M. Li, Non-commutative linear logic and its quantale semantics, J. Shaanxi Normal Univ. 29 (2) (2001) 1–5. (in Chinese).
- [13] D.N. Yetter, Quantales and noncommutative linear logic, J. Symbolic Logic 55 (1990) 41–64.
- [14] F. Borceux, G. van den Bossche, An essay on noncommutative topology, Topol. Appl. 31 (1989) 203–223.
- [15] U. Höhle, Topological representation of right-sided and idempotent quantales, Semigroup Forum 90 (2015) 648–659.
- [16] D. Papert, S. Papert, Sur les treillis des ouverts et les paratopologies, Semin. Topol. Geom. Differ. Ch. Ehresmann 1 (1) (1959) 1– 9.(1957/58)
- [17] J.R. Isbell, Atomless parts of spaces, Math. Scand. 31 (1972) 5-32.
- [18] M. Demirci, Fundamental duality of abstract categories and its applications, Fuzzy Sets Syst. 256 (2014) 73–94.
- [19] S.E. Rodabaugh, Relationship of algebraic theories to powerset theories and fuzzy topological theories for lattice-valued mathematics, Int. J. Math. Math. Sci 2007 (2007) 71.
- [20] M. Demirci, Pointed semi-quantales and lattice-valued topological spaces, Fuzzy Sets Syst. 161 (2010) 1224–1241.
- [21] U. Höhle, A.P. Sostak, Axiomatic foundations of fixed-basis fuzzy topology, in: U. Höhle, S.E. Rodabaugh (Eds.), Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory, The Handbook Series, vol. 3, Kluwer Academic Publishers, Dordrecht, Boston, 1999, pp. 123–272.
- [22] S.E. Rodabaugh, Categorical foundations of variable-basis fuzzy topology, in: U. Höhle, S.E. Rodabaugh (Eds.), Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory, The Handbook Series, vol. 3, Kluwer Academic Publishers, Dordrecht, Boston, 1999, pp. 273–388.
- [23] P.T. Johnstone, Stone Spaces, Cambridge University Press, Cambridge, 1982.
- [24] S.A. Solovyov, Categorically-algebraic dualities, Acta Univ. Matthiae Belii ser. Math. 17 (2010) 57–100.
- [25] S.H. Liang, Ideal-convergence in quantales, in: S. Li (Ed.), Nonlinear Maths for Uncertainty and Its Appli., AISC 100, Springer-Verlag, Berlin, Heidelberg, 2011, pp. 691–698.
- [26] S.E. Rodabaugh, Point-set lattice-theoretic topology, Fuzzy Sets Syst. 40 (1991) 297–345.
- [27] S.E. Rodabaugh, Applications of localic separation axioms, compactness axioms, representations, and compactifications to poslat topological spaces, Fuzzy Sets Syst. 73 (1995) 55–87.
- [28] S.E. Rodabaugh, Separation axioms: representation theorems, compactness, and compactifications, in: U. Höhle, S.E. Rodabaugh (Eds.), Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory, The Handbook Series, vol. 3, Kluwer Academic Publishers, Dordrecht, Boston, 1999, pp. 481–552.
- [29] J. Paseka, Regular and normal quantales, Arch. Math. 22 (4) (1986) 203–210.