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1. Introduction

Quantales were first introduced in the eighties by Mulvey [1]
in the ambitious aim of providing a possible common lattice-
theoretic setting for constructive foundations for quantum me-
chanics, as well as a non-commutative analogue of the maximal
spectrum of a C*-algebra, and for non-commutative logics. The
study of such ordered algebraic structures goes back to a series
of papers by Ward and Dilworth [2-4] in the 1930s. They were
motivated by the ideal theory of commutative rings. Following
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Mulvey, various types and aspects of quantales have been con-
sidered by many authors [5-8].

Since quantale theory provides a powerful tool in studying
non-commutative structures, it has a wide applications, espe-
cially in studying non-commutative C*-algebra theory [6,9], the
ideal theory of commutative ring [10], linear logic [11] which
supports part of the foundation of theoretic computer science
[12,13] and so on.

In 1989 Borceux and van den Bossche [14] proposed a dual-
ity between spatial right-sided idempotent quantales and sober
quantum spaces. In 2015, Hohle [15] established two adjunc-
tions based on right-sided idempotent quantales. The first ad-
junction based on quantum spaces as an extension of the duality
between spatial right-sided idempotent quantales and sober
quantum spaces. The second adjunction between the category
of right-sided idempotent quantales and the category of three-
valued topological spaces. Both adjunctions restricts to the well
known Papert—Papert-Isbell adjunction [16,17] between topo-
logical spaces and locales. In 2014 Demirci [18] established an
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abstract categorical analogue of famous Papert—Papert—Isbell
adjunction to a general adjunction X-HC?” in which C is an
abstract category and X is a suitable category of such coun-
terparts. Also he formulated two main categorical theorems:
Fundamental Categorical Adjunction Theorem (FCAT) and
Fundamental Categorical Duality Theorem (FCDT).

In this paper we aim to introduce and study a more gen-
eral adjunction between the category of semi-quantales [19]
and the category of lattice-valued quasi-topological spaces
[20]. Also, we aim to study some separation axioms for semi-
quantales with applications to lattice-valued quasi-topological
spaces.

The present paper has been prepared in four sections. After
this introductory section, the next section overviews the some
useful concepts about semi-quantales, quantic nucleus and
L-quasi-topologies. In Section 3, as one of the main contribu-
tion of this paper, we construct a dual adjunction between the
category SQuant of semi-quantales and the category L-QTop
of lattice-valued quasi-topological spaces. Also, by defining
L-Qspatiality in the given category SQuant and L-Qsobriety
in L-QTop, we show that the full subcategory of SQuant of all
L-Qspatial objects and the full subcategory of L-QTop of all L-
Qsober objects are dually equivalent. The results of this section
can be obtained as applications of Fundamental Categorical
Adjunction Theorem (FCAT) and Fundamental Categorical
Duality Theorem (FCDT) [18]. Finally in Section 4, we will
discuss the counterparts of the quantic regularity and normal-
ity axioms of objects in the category SQuant with applications
to objects in the category L-QTop.

2. Preliminaries

By a \/-semilattice we mean a partially ordered set (L, <) having
arbitrary \/. A \/-semilattice homomorphism is a map preserv-
ing arbitrary \/.

Definition 2.1 ([19]). (lattice structures and associated cate-
gories).

(1) A semi-quantale (L, <, ®), abbreviated as s-quantale,
is a \/-semilattice (L, <) equipped with a binary op-
eration ® : L x L —> L, with no additional assump-
tions, called a tensor product. The category SQuant com-
prises all semi-quantales together with s-quantale mor-
phisms (i.e., mappings preserving ® and arbitrary \/). By
SSQuant [20], we mean a non-full subcategory of SQuant
comprising all semi-quantales and all ss-quantale mor-
phisms (i.e., mappings preserving ®, arbitrary \/ and T).
SSQuant and SQuant clearly share the same objects.

(2) A quantale (L, <, ®) is an s-quantale whose multipli-
cation is associative and distributes across \/ from both
sides [7]. Quant is the full subcategory of SQuant of all
quantales.

(3) An ordered semi-quantale (L, <, ®), abbreviated as os-
quantale, is an s-quantale in which ® is isotone in both
variables. OSQuant is the full subcategory of SQuant of
all os-quantales.

(4) A unital semi-quantale (L, <, ®), abbreviated as us-
quantale, is an s-quantale in which ® has an identity el-
ement e € L called the unit. USQuant comprises all us-
quantales together with all mappings preserving arbitrary
V., ®, and e.

(5) A commutative semi-quantale (L, <, ®), abbreviated as
cs-quantale, is an s-quantale in which, ® thatis, ¢; ® ¢» =
¢> ® q; for every ¢1, ¢ € L. CSQuant is the full subcate-
gory of SQuant of all commutative semi-quantales.

(6) A complete quasi-monoidal lattice (L, <, ®), abbrevi-
ated as cqml, is an os-quantale having T idempotent i.e.,
T®T=T. CQML comprises all cqml together with
mappings preserving arbitrary \/, ®, and T [21,22]. Note
that CQML is a subcategory of OSQuant.

(7) A semi-frame [22] is a us-quantale whose multiplication
and unit are A and T respectively. SFrm is the category of
all semi-frames together with mappings preserving finite
A and arbitrary \/. SFrm is a full subcategory of CQML.

(8) A frame [23]is a unital quantale whose multiplication and
unit are A and T respectively. Frm is the subcategory of
Quant of all frames and morphisms preserving finite A
and arbitrary \/.

Definition 2.2 ([24]). An s-quantale is called distributive (ds-
quantale) provided that its multiplication distributes across fi-
nite v from both sides. DSQuant is the category of ds-quantales.

Definition 2.3 ([20]). Let L = (L, <, ®) be an s-quantale. A sub-
set KC L is a subsemi-quantale of L iff it is closed under the ten-
sor product ® and arbitrary \/. A subsemi-quantale K of L is
said to be strong iff T belongs to K. If L is a us-quantale with
the identity e, then a subsemi-quantale K of L is called a unital
subsemi-quantale of L iff ¢ belongs to K.

Definition 2.4 ([25]). Let Q be a semi-quantale. An element T #
p € Qissaid to be prime if a®b < p implies a < p or b < p for all
a, b € Q. The set of all prime elements of O, denoted by Pr(Q).

Definition 2.5 (see [7]). Let Q € |SQuant|. A quantic nucleus on
Q is a closure operator j: @ — Q such that j(@)®j(b) < j(a®b)
foralla, b € Q.

A subset SCQ s called a quantic quotient if S = Q; for some
quantic nucleus j, where Q; = {a € Q: j(a) = a}.

Let X be a non-empty set and let L be a complete lattice or
L € |SQuant|. An L-fuzzy subset (or L-set) of X'is a mapping A:
X — L. The family of all L-fuzzy subsets on X will be denoted
by L*. The smallest element and the largest element in L* are
denoted by L and T, respectively.

For an ordinary mapping /' : X —> Y, one can define the
mappings

fi LY — L¥and f;7: L' — LY
by
S ) =\/{4(x): x € X, f(x) = yland /" (B) = Bo f

respectively.

Theorem 2.6 ([19]). Let L € |SQuant|, X, Y be a nonempty ordi-
nary setsand f 1 X —> Y be an ordinary mapping, then we have:

(1) f; preserves arbitrary \/;
(2) f preserves arbitrary \/, ®, and all constant maps;
(4) f preserves the unit if L € [USQuant|.

For a fixed L € [SQuant| and a set X, an L-quasi-topology
on X [19]is a subs-quantale t of L* = (L¥, <, ®) , i.e., the fol-
lowing axioms are satisfied:



570

K. El-Saady

(T)) Forall 4, Be L*, A, Be t=>A®B e 1.
(T») For all {4,:jeJ}CL* {4;:jeJ}Ct=V,;4,¢€
7.

An L-quasi-topology t is said to be strong [20] iff it is strong
as a subs-quantale of LY, i.e., T satisfies the additional axiom:

(T3) T er.

If L is a us-quantale with unit e, a subus-quantale T of LY is
called an L-topology on X [19]; so,t satisfies (77), (7>) and the
following:

(Ty) eer.

If tCL¥ is an L-quasi-topology (resp. L-topology), then
the pair (X, 1) is said to be an L-quasi-topological (resp. L-
topological) space. A mapping f: (X, ) — (Y, o) is said to
be L-continuous (resp., L-open) [22] if (f;7), : T <= o (resp.,
(f)r : T — o ). An L-continuous bijection f: (X, 7) — (¥,
o) is an L-homeomorphism [22] if f~!is L-continuous.

In an obvious way L-quasi-topological (resp.strong L-quasi-
topological and L-topological) spaces and L-continuous maps
form a category denoted by L-QTop (resp. L-SQTop and
L-Top).

One can easily prove that each of L-QTop L-SQTop and
L-Top)) is topological category over the category Set of sets and
set-morphisms.

3. Quantic spectrum adjunction

In this section we will introduce and study a more general ad-

junction between the category of semi-quantales and the cat-

egory of lattice-valued quasi-topological spaces. Also we will

generalize the concept of L-sober topological spaces of ([26]-

[28]) for L € |SFrm| to the more general case for L € |[SQuant|.
For L € |SQuant| and (X, t) € | L-QTop|. The functor

Q; : L — QTop — SQuant”

is defined as follows.

Q; (X, 7) is the L-quasi-topology of a space (X, 1), i.e., the
semi-quantale tCL%, and Q. (£ (X, ) — (Y, o)), for an L-
continuous map f, is [/, [,]” : T — o.

The standard spectrum construction for a semi-quantale Q
may be summarized as follows:

Lpt(Q) ={p: Q— L: p € [SQuant|}

@, :Q— L9 by &, (¢9)(p) = p(q)

Then it can be shown that ®; preserves ® and arbitrary \/,
where these are inherited by the codomain of ®; from L. It can
now be shown that ®;” (Q) is closed under these operations and
hence is an L-quasi-topology on Lpt(Q). Thus we have

0 — (Lpt(Q), @ (Q))
where the latter is an L-quasi-topological space; so we put

LPT(Q) = (Lpt(Q), ®,(Q)) € |L — QTop|

and given f: Q1 — O, in SQuant, i.e. /: Q1 < Q> in SQuant?”’.
We define

Lpt(f): Lpt(Q1) — Lpt(Q>)
by
Lpt(f)(p) =po f.

Lemma 3.1. For a fixed L € |SQuant| and Q, Q> € |SQuant|,
the mapping

LPT(f) : (Lpt(Q1), P (Q1)) — (Lpt(Q2), P17 (02))

is L-continuous.

Proof. For all ¢, € Q,, p € Lpt(Q)), we have

Lpt (/)" (Pr(q2)(p) = @r(q2) (Lpt(f)(p))
= ®(q)(po f7)
= QL7 (g2))(p).
hence Lpt(f)“(Pr(g2)(p)) = Pr(f(92))(p). Now the func-

tion LPT(f) is L-continuous iff Vu € &7 (0Q,), v € &7 (0Qy)
such that Lpt (/)< (v) = pn. O

Then we have the spectrum or point functor
LPT : SQuant” — L — QTop.
Now, we turn to study the adjunction between the functors
LPT : SQuant” — L — QTop.
and
Qr : L — QTop — SQuant®”

To this aim we give the following definitions
For (X, 1) € |[L—QTop| and L, Q € |SQuant| define the
maps:

eyt (X, 1) — (Lpt(v), P (1)), by setting, Vx € X and
€T, Ny () = plx);
. 821’ 0 — Q(LPT(Q)) by setting 82” =d, |“T‘Q)'
It is clear that by definition EZP always surjective.
As given in [27,28], we have the following easily established
results:

Lemma 3.2. For (X, t) € |L — QTop| and L, Q € |SQuant|,

(1) The map n, :(X,7) — (Lpt(r), P (1)) is L-
continuous, and L-open w.r.t. its range in (Lpt(t), ®7 (1))
and

(2) The map 8;1’ 1 Q —> Q(LPT(Q)) is an s-quantale mor-
phism.

From the definition of ag’ one can easily have the following
result:

Lemma 3.3. For every Q € |SQuant|, 8;‘” is injective if and only
if for any a, b € Q with a # b there exists p € Lpt(Q) with p(a) #
p(b).
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As a consequence of the above lemma, we have the following
result

Corollary 3.4. Given (X, 1) € |L — QTop|, The map sg’;m is in-
Jective.

Lemma 3.5. For (X,t)€|L—QTop|,we have (n,); o
d)f(X'” = lax.r), where

(ny)y o LOXO) — Q(X, 1) and o7V Q(X, 1) —
LLp QX))

Proof. The proof is straightforward. [

As a consequence of the above, we have that:
LPT : SQuant” — L — QTop
is a right adjoint to
Q : L — QTop — SQuant”.

This adjunction given in the form L — QTop - SQuant®.

For the case of the category SSQuant (resp., USQuant)
of strong (resp., unital) semi-quantales and the category L —
SQTop (resp., L — Top) of strong L-quasi-topological spaces
(resp., L-topological spaces) one can similarly have the follow-
ing dual adjunctions:

L — SQTop — SSQuant’ .

and

L — Top - USQuant®.

Definition 3.6. For L, Q € [SQuant|. A semi-quantale Q is said
to be L-Qspatial iff the map 82" is injective.

Lemma 3.7. For fixed L € |SQuant|. An Q € |SQuant| is L-
Ospatial if and only if ez)f’ is isomorphism

Proof. The proof is straightforward. O

Corollary 3.8. For (X, t) € |L — QTop|, the L-quasi-topology
Q; (X, 1) is L-Ospatial.

Proof. Let u, v € Q(X, t) with u # v, then there exists an xy €
X such that u(x) # v(xo). Putting p = n, (xo) € Lpt(r). Then
el (w(p) = p(r) =ny (xo) (1) = p(xo) # v(xg) =

Q7 (X,1)
Ny (K0 (0) = pv) = &2 | (V)(p)
Thus sg’;(m (n) # sgfz(h) (v) on Lpt(t), which means that

e QX 1) — QuLILPT(Q.(X, 1))

Q (X.1)

is injective on Q7 (X, 7). So Qr(X, 7) is L-Qspatial. [
Definition 3.9. An (X, t) € |L — QTop] is called

(1) L — QT if for every x, y € X with x # y there exists u €

Qu(X, 7) with p(x) # ().
(2) L-Qsober iff  n, : (X, 1) — (Lpt(r), P (r)) is
bijective.

The next two lemmas show a characterization of L — QTj as
well as L-Qsober spaces.

Lemma 3.10. 4n (X,7) e |L—QTop| is L—0Ty iff n,
is injective.

Proof. Recall the definition n,. O
Also, from the definition of 5, , we have the following result:

Lemma 3.11. An (X, 1) € |[L — QTop| L-Qsober iff
ny : (X, 1) — (Lpi(r), D (7))

is L-homeomorphism.

Proof. Let (X,7) € |L—QTop|] be an L-Qsober, then
n, (X, 1) — (Lpt(r), P7 (1)) is bijective. Since
Nyt (X, 1) — (Lpt(r), & (v)) is continuous, then it remain
to prove the continuity of n;l C(Lpt(T), 7 (1)) — (X, 7).
To this end, let u € Q(X, t), then by Lemma 3.5 we
get 5w =pon ! =) 0@ (wyon ! =
P (uyon, ont = @7 ().
The converse is clear. [

Lemma 3.12. For all Q € |SQuant|, LPT(Q) is L-Qsober.

Proof. Show bijectivity of the map

Mo - (LPHQ), @7 (Q)) —> LPT (P (Q)).

For injectivity, let p;, p, € Lpt(Q) with p; # p,. Then there is a
€ Q with pi(a) # p»(a) i.e., there is @, (a) € @7 (Q) such that

Ny PO(PL(@)) = Pr(a)(p1) = pi(a) # p2(a)
= P (@) (p2) =1y, (P2)(PL(@))

which shows that Moy (P1) F N0, (P2)- Thus Mo is injec-
tive.

To show the surjectivity of U let g € LPT (9, (0Q)) =
(Lpt(®7(Q), @7 (P (0Q))) and put p=go ®;. Clearly p €
Lpt(Q). Furthermore, for all a € Q, we have

Mo (P)(@) = @r(a)(p) = pla) = qo Pr(a) = g(Pr(a)).
So 1,0, (P) = ¢, which means that 7, is surjective. [

Let L-Qsob (resp. L-Qspat) be the full subcategory of L-
QTop (resp. SQuant) consisting of all L-Qsober spaces (resp.
L-Qspatial semi-quantales).

By analogy with [22,23,27.28]), we prove the following
theorem

Theorem 3.13. The categories L-Qsob and L-QOspat are
equivalent.

Proof. By Corollary 3.8 and Corollary 3.12 the adjunction
Q; - LPT : SQuant” — L — QTop

restricts to the categories L-Qsob and L-Qspat. By Lemma 3.7
and Lemma 3.11 the restrictions of the unit » and counit ¢ to
the aforesaid categories give natural isomorphisms. [
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4. Quantic separation axioms

In this section we will discuss the counterparts of the separa-
tion axioms quantic regularity and normality of objects in the
category SQuant with applications to objects in the category
L — QTop.

Definition 4.1. Let Q € |SQuant|, MCQ, and a, b € M. An ¢l-
ement « is said to be well-inside of b ( w.r.t M), denoted a < b,
if

dce Mwitha®c= Landecvb=T.

Equivalently a <b=a*vb=T where a* =Vv{ce Q:a®
c=1}.
Some time we say that « < b via c.

Lemma 4.2. (see [23]) For Q € |SQuant| and a, b, ¢, d € Q, the
following holds

(1) a < bimpliesa < b, and
2) a<b=xc=<dimpliesa<d.

Definition 4.3. An Q € |SQuant]| is said to be 75 if for any «a €
Pr(Q), we have a = \/{x € Q: x < a}.

Definition 4.4. Let (X, t) € |[L — QTop| and L, Q € |SQuant]|.
(1) Qs said to be regular, iff

Vae Q. 3DC{beQ:b=a}a=\/D

If QO € |Quant|, then Q € |Frm| ( [29], Theorem 2.5).
(2) (X, 7) is quantic regular, or regular, iff 7 is a regular
subsemi-quantale of L¥.

Proposition 4.5. An Q € |DSQuant| is regular if and only if

VaeQ,a:\/{beQ:bja}

Proof. Let Q € [DSQuant|. Distributivity and b < a imply a <
b.Let DC{b € Q: b < a}, such thata = \/ D. Then,

\/D<\/theQ:b=a)<\/theQ:b<a)=a=\/D
This shows
a=\/D=\/1beQ: b=a)

and from this follows the claims. [

By the definition of 75, one can easily have the following
result:

Corollary 4.6. Every quantic regular semi-quantale is T).

As a consequence of the above proposition, we have the fol-
lowing result:

Proposition4.7. Let L € |DSQuant|. An (X, t) € |L — QTop| is
regular if and only if

‘v’,uer,u:\/{ver:vﬁu}

Proposition 4.8. 4 quantic quotient SCQ of a regular semi-
quantale Q is regular.

Proof. Let j: Q —> Q be a quantic nucleus on Q and let b €
S be an arbitrary element. For a, b € Q with a < b, there is ¢
€ Qwitha®c= 1 and bV ¢ = T. With the quantic nucleus
j: O — Q, we have j(a) ® j(¢) < j(a®c¢) = j(L) and bV
jle) = jb) Vv j(c) = j(bVv c) = j(T) which implies that j(a) <
bin Q.

Since Q is regular, then for all b € Q, we have

b= \/{ae Q:a=<bwrtQ}
<\/l@eQ:axbwrtQ)
<\/ldeQ:d <bwrtQ)

So quantic quotient SCQ is regular. [J

Definition 4.9. Let Q € |SQuant|, S € Q and D be the dyadic
rationales in [0, 1]. For a, b € Q, a is said to be really-inside b (
with respect to S), denoted a < b, iff 3 {a,: ¢ € D}CS such that

(1) a<ay<a; <band
() p < g=a, < a,.

This definition comes from [23].
Definition 4.10. Let (X, t) € |[L — QTop| and L, Q € |SQuant|.

(1) Qs said to be quantic completely regular, iff
Vae Q. 3DC(beQ:b<a), a=\/D.

(2) (X, 1) is quantic completely regular, iff 7 is a quantic com-
pletely regular subsemi-quantale of L.
Proposition 4.11. An Q € |DSQuant| is quantic completely reg-
ular if and only if

Vae Q.a=\/{beQ:b<a}

Proof. The proof is analogous to those of Proposition 4.5. [

As a consequence of the above proposition, we have the fol-
lowing result:

Proposition 4.12. Let L € |[DSQuant|. An (X, 1) € |L — QTop|
is quantic completely regular if and only if

V,uer,u:\/{ver:vz,u}

Definition 4.13. Let (X, 7) € |L — QTop| and L, Q € |SQuant|.

(1) Qs said to be quantic normal, iff

VYa,be Qwithavb=T,3c¢,de Qwithcd=1,cvb=T=avd.

This comes from [29]. (Equivalently, ifav b =T, 3c € Q
withc*vb=T=avc.)

(2) (X, 7) is quantic normal, iff v is a quantic normal
subsemi-quantale of L*.
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Proposition 4.14. Let

|CSQuant|.

(X,t)e|L—QTop| and L,Q¢€

(1) A commutative semi-quantale Q is quantic normal, iff

Ya, b€ Qwithavb=T, 3¢,d

€ Qwithc <aviad, d < bviac.

I Q € |SFrm|, Q is localic normal iff Q is a normal semilo-
cale in the sense of [27, 28].
(2) (X, 1) is quantic normal, iff

Yu,verwithuvv=T,3xrv

€ T with A < uviav, v <vviah.

Proof. (1) Let a, b € Q with a v b = T. Quantic normality of
the commutative semi-quantale Q< 3¢, d € Q with c® d =
1l=d®ccvb=Tandavd=T. Then

(i) c®d=1lLandavd=T = c=<aviad.
(i) d®@c=Llandbve=T=d<bviac.

(2) Follows from (1). O

Proposition 4.15. In any normal semi-quantale the relation < im-
plies < and quantic regularity implies quantic complete regularity.

Proof. Let Q be a quantic normal semi-quantale and a < b.
Since a < b < a* v b =T, then there are ¢, d € Q such that c ®
d=1&c<d anda*Vvd=T=>bVc Thenonehavea < d
andd* v b > cVvb=T sothat d < b which impliesa <b. [
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