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. Introduction 

uantales were first introduced in the eighties by Mulvey [1] 
n the ambitious aim of providing a possible common lattice- 
heoretic setting for constructive foundations for quantum me- 
hanics, as well as a non-commutative analogue of the maximal 
pectrum of a C 

∗-algebra, and for non-commutative logics. The 
tudy of such ordered algebraic structures goes back to a series 
f papers by Ward and Dilworth [2–4] in the 1930s. They were 
otivated by the ideal theory of commutative rings. Following 
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ulvey, various types and aspects of quantales have been con- 
idered by many authors [5–8] . 

Since quantale theory provides a powerful tool in studying 
on-commutative structures, it has a wide applications, espe- 
ially in studying non-commutative C 

∗-algebra theory [6,9] , the 
deal theory of commutative ring [10] , linear logic [11] which
upports part of the foundation of theoretic computer science 
12,13] and so on. 

In 1989 Borceux and van den Bossche [14] proposed a dual-
ty between spatial right-sided idempotent quantales and sober 
uantum spaces. In 2015, Höhle [15] established two adjunc- 
ions based on right-sided idempotent quantales. The first ad- 
unction based on quantum spaces as an extension of the duality
etween spatial right-sided idempotent quantales and sober 
uantum spaces. The second adjunction between the category 
f right-sided idempotent quantales and the category of three- 
alued topological spaces. Both adjunctions restricts to the well 
nown Papert–Papert–Isbell adjunction [16,17] between topo- 

ogical spaces and locales. In 2014 Demirci [18] established an 
oduction and hosting by Elsevier B.V. This is an open access article 
nc-nd/4.0/ ). 
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abstract categorical analogue of famous Papert–Papert–Isbell
adjunction to a general adjunction X � C 

op in which C is an
abstract category and X is a suitable category of such coun-
terparts. Also he formulated two main categorical theorems:
Fundamental Categorical Adjunction Theorem (FCAT) and
Fundamental Categorical Duality Theorem (FCDT). 

In this paper we aim to introduce and study a more gen-
eral adjunction between the category of semi-quantales [19]
and the category of lattice-valued quasi-topological spaces
[20] . Also, we aim to study some separation axioms for semi-
quantales with applications to lattice-valued quasi-topological
spaces. 

The present paper has been prepared in four sections. After
this introductory section, the next section overviews the some
useful concepts about semi-quantales, quantic nucleus and
L -quasi-topologies. In Section 3 , as one of the main contribu-
tion of this paper, we construct a dual adjunction between the
category SQuant of semi-quantales and the category L -QTop
of lattice-valued quasi-topological spaces. Also, by defining
L -Qspatiality in the given category SQuant and L -Qsobriety
in L -QTop , we show that the full subcategory of SQuant of all
L -Qspatial objects and the full subcategory of L -QTop of all L -
Qsober objects are dually equivalent. The results of this section
can be obtained as applications of Fundamental Categorical
Adjunction Theorem (FCAT) and Fundamental Categorical
Duality Theorem (FCDT) [18] . Finally in Section 4 , we will
discuss the counterparts of the quantic regularity and normal-
ity axioms of objects in the category SQuant with applications
to objects in the category L - QTop . 

2. Preliminaries 

By a 
∨ 

-semilattice we mean a partially ordered set ( L , ≤) having
arbitrary 

∨ 

. A 

∨ 

-semilattice homomorphism is a map preserv-
ing arbitrary 

∨ 

. 

Definition 2.1 ( [19] ) . (lattice structures and associated cate-
gories). 

(1) A semi-quantale ( L , ≤, ⊗), abbreviated as s-quantale,
is a 

∨ 

-semilattice ( L , ≤) equipped with a binary op-
eration ⊗ : L × L −→ L, with no additional assump-
tions, called a tensor product. The category SQuant com-
prises all semi-quantales together with s-quantale mor-
phisms (i.e., mappings preserving ⊗ and arbitrary 

∨ 

) . By
SSQuant [20] , we mean a non-full subcategory of SQuant
comprising all semi-quantales and all ss-quantale mor-
phisms (i.e., mappings preserving ⊗, arbitrary 

∨ 

and � ).
SSQuant and SQuant clearly share the same objects. 

(2) A quantale ( L , ≤, ⊗) is an s-quantale whose multipli-
cation is associative and distributes across 

∨ 

from both
sides [7] . Quant is the full subcategory of SQuant of all
quantales. 

(3) An ordered semi-quantale ( L , ≤, ⊗), abbreviated as os-
quantale, is an s-quantale in which ⊗ is isotone in both
variables. OSQuant is the full subcategory of SQuant of
all os-quantales. 

(4) A unital semi-quantale ( L , ≤, ⊗), abbreviated as us-
quantale, is an s-quantale in which ⊗ has an identity el-
ement e ∈ L called the unit. USQuant comprises all us-
quantales together with all mappings preserving arbitrary∨ 

, ⊗, and e . 
(5) A commutative semi-quantale ( L , ≤, ⊗), abbreviated as
cs-quantale, is an s-quantale in which, ⊗ that is, q 1 ⊗ q 2 =
q 2 ⊗ q 1 for every q 1 , q 2 ∈ L . CSQuant is the full subcate-
gory of SQuant of all commutative semi-quantales. 

(6) A complete quasi-monoidal lattice ( L , ≤, ⊗), abbrevi-
ated as cqml, is an os-quantale having � idempotent i.e.,
� ⊗ � = � . CQML comprises all cqml together with
mappings preserving arbitrary 

∨ 

, ⊗, and � [21,22] . Note
that CQML is a subcategory of OSQuant . 

(7) A semi-frame [22] is a us-quantale whose multiplication
and unit are ∧ and � respectively. SFrm is the category of
all semi-frames together with mappings preserving finite
∧ and arbitrary 

∨ 

. SFrm is a full subcategory of CQML .
(8) A frame [23] is a unital quantale whose multiplication and

unit are ∧ and � respectively. Frm is the subcategory of
Quant of all frames and morphisms preserving finite ∧
and arbitrary 

∨ 

. 

Definition 2.2 ( [24] ) . An s-quantale is called distributive (ds-
quantale) provided that its multiplication distributes across fi-
nite ∨ from both sides. DSQuant is the category of ds-quantales.

Definition 2.3 ( [20] ) . Let L = (L, ≤, ⊗) be an s-quantale. A sub-
set K ⊆L is a subsemi-quantale of L iff it is closed under the ten-
sor product ⊗ and arbitrary 

∨ 

. A subsemi-quantale K of L is
said to be strong iff � belongs to K . If L is a us-quantale with
the identity e , then a subsemi-quantale K of L is called a unital
subsemi-quantale of L iff e belongs to K . 

Definition 2.4 ( [25] ) . Let Q be a semi-quantale. An element � � =
p ∈ Q is said to be prime if a ⊗b ≤ p implies a ≤ p or b ≤ p for all
a , b ∈ Q . The set of all prime elements of Q , denoted by Pr ( Q ). 

Definition 2.5 (see [7] ) . Let Q ∈ | SQuant | . A quantic nucleus on
Q is a closure operator j : Q → Q such that j ( a ) ⊗j ( b ) ≤ j ( a ⊗b )
for all a , b ∈ Q . 

A subset S ⊆Q is called a quantic quotient if S = Q j for some
quantic nucleus j , where Q j = { a ∈ Q : j(a ) = a } . 

Let X be a non-empty set and let L be a complete lattice or
L ∈ | SQuant | . An L -fuzzy subset (or L -set) of X is a mapping A :
X → L . The family of all L -fuzzy subsets on X will be denoted
by L 

X . The smallest element and the largest element in L 

X are
denoted by ⊥ and � , respectively. 

For an ordinary mapping f : X −→ Y , one can define the
mappings 

f → 

L : L 

X → L 

Y and f ← 

L : L 

Y → L 

X 

by 

f → 

L (A )(y ) = 

∨ 

{ A (x ) : x ∈ X , f (x ) = y } and f ← 

L (B) = B ◦ f 

respectively. 

Theorem 2.6 ( [19] ) . Let L ∈ | SQuant | , X , Y be a nonempty ordi-
nary sets and f : X −→ Y be an ordinary mapping, then we have:

(1) f → 

L preserves arbitrary 
∨ 

; 
(2) f ← 

L preserves arbitrary 
∨ 

, ⊗, and all constant maps; 
(4) f ← 

L preserves the unit if L ∈ | USQuant | . 
For a fixed L ∈ | SQuant | and a set X , an L-quasi-topology

on X [19] is a subs-quantale τ of L 

X = (L 

X , ≤, ⊗) , i.e., the fol-
lowing axioms are satisfied: 
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( T 1 ) For all A , B ∈ L 

X , A , B ∈ τ⇒ A ⊗B ∈ τ . 
( T 2 ) For all { A j : j ∈ J} ⊆ L 

X , { A j : j ∈ J} ⊆ τ ⇒ 

∨ 

j A j ∈
τ . 

An L -quasi-topology τ is said to be strong [20] iff it is strong
s a subs-quantale of L 

X , i.e., τ satisfies the additional axiom: 

( T 3 ) � ∈ τ . 

If L is a us-quantale with unit e , a subus-quantale τ of L 

X is
alled an L -topology on X [19] ; so, τ satisfies ( T 1 ), ( T 2 ) and the
ollowing: 

( T 4 ) e ∈ τ . 

If τ⊆L 

X is an L -quasi-topology (resp. L -topology), then 

he pair ( X , τ ) is said to be an L -quasi-topological (resp. L -
opological) space. A mapping f : ( X , τ ) → ( Y , σ ) is said to
e L - continuous (resp., L - open ) [22] if ( f ← 

L ) | ρ : τ ← σ (resp.,
f → 

L ) | τ : τ → σ ). An L -continuous bijection f : ( X , τ ) → ( Y ,
) is an L - homeomorphism [22] if f −1 is L -continuous. 

In an obvious way L -quasi-topological (resp.strong L -quasi- 
opological and L -topological) spaces and L -continuous maps 
orm a category denoted by L -QTop (resp. L -SQTop and 

 -Top ). 
One can easily prove that each of L -QTop L -SQTop and

 -Top )) is topological category over the category Set of sets and
et-morphisms. 

. Quantic spectrum adjunction 

n this section we will introduce and study a more general ad-
unction between the category of semi-quantales and the cat- 
gory of lattice-valued quasi-topological spaces. Also we will 
eneralize the concept of L -sober topological spaces of ( [26] -
28] ) for L ∈ | SFrm | to the more general case for L ∈ | SQuant | . 

For L ∈ | SQuant | and ( X , τ ) ∈ | L - QTop |. The functor 

L : L − QTop → SQuant op 

s defined as follows. 
�L ( X , τ ) is the L -quasi-topology of a space ( X , τ ), i.e., the

emi-quantale τ⊆L 

X , and �L ( f : ( X , τ ) → ( Y , σ )), for an L -
ontinuous map f , is [ f ← 

L | σ ] op : τ → σ . 
The standard spectrum construction for a semi-quantale Q 

ay be summarized as follows: 

pt(Q ) = { p : Q → L : p ∈ | SQuant |} 

L : Q → L 

Lpt(Q ) by �L (q )(p) = p(q ) 

hen it can be shown that �L preserves ⊗ and arbitrary 
∨ 

, 

here these are inherited by the codomain of �L from L . It can
ow be shown that �→ 

L (Q ) is closed under these operations and
ence is an L -quasi-topology on Lpt ( Q ). Thus we have 

 → (Lpt(Q ) , �→ 

L (Q )) 

here the latter is an L -quasi-topological space; so we put 

PT (Q ) ≡ (Lpt(Q ) , �→ (Q )) ∈ | L − QTop | 
L 
nd given f : Q 1 → Q 2 in SQuant , i.e. f op : Q 1 ← Q 2 in SQuant op .
e define 

pt( f ) : Lpt(Q 1 ) → Lpt(Q 2 ) 

y 

pt( f )(p) = p ◦ f op . 

emma 3.1. For a fixed L ∈ | SQuant | and Q 1 , Q 2 ∈ | SQuant | ,
he mapping 

PT ( f ) : (Lpt(Q 1 ) , �
→ 

L (Q 1 )) → (Lpt(Q 2 ) , �
→ 

L (Q 2 )) 

s L-continuous. 

roof. For all q 2 ∈ Q 2 , p ∈ Lpt ( Q 1 ), we have 

pt( f ) ← (�L (q 2 )(p)) = �L (q 2 )(Lpt( f )(p)) 

= �L (q 2 )(p ◦ f op ) 

= �L ( f op (q 2 ))(p) . 

ence Lpt( f ) ← (�L (q 2 )(p)) = �L ( f op (q 2 ))(p) . Now the func-
ion LPT ( f ) is L -continuous iff ∀ μ ∈ �→ 

L (Q 2 ) , ∃ ν ∈ �→ 

L (Q 1 )

uch that Lpt( f ) ← (ν) = μ. �

Then we have the spectrum or point functor 

PT : SQuant op → L − QTop . 

Now, we turn to study the adjunction between the functors 

PT : SQuant op → L − QTop . 

nd 

L : L − QTop → SQuant op 

o this aim we give the following definitions 
For (X , τ ) ∈ | L − QTop | and L, Q ∈ | SQuant | define the

aps: 

• ηX : (X , τ ) −→ (Lpt(τ ) , �→ 

L (τ )) , by setting, ∀ x ∈ X and μ

∈ τ , ηX (x )(μ) = μ(x ) ; 
• ε op 

Q 
: Q −→ �L (LPT (Q )) by setting ε op 

Q 
= �L | �→ 

L (Q ) 
. 

It is clear that by definition ε op 
Q 

always surjective. 
As given in [27,28] , we have the following easily established

esults: 

emma 3.2. For (X , τ ) ∈ | L − QTop | and L, Q ∈ | SQuant | , 
(1) The map ηX : (X , τ ) −→ (Lpt(τ ) , �→ 

L (τ )) is L-
continuous, and L-open w.r.t. its range in (Lpt(τ ) , �→ 

L (τ ))

and 
(2) The map ε op 

Q 
: Q −→ �L (LPT (Q )) is an s-quantale mor-

phism. 

From the definition of ε op 
Q 

one can easily have the following
esult: 

emma 3.3. For every Q ∈ | SQuant | , ε op 
Q 

is injective if and only
f for any a , b ∈ Q with a � = b there exists p ∈ Lpt ( Q ) with p ( a ) � =
 ( b ) . 
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As a consequence of the above lemma, we have the following
result 

Corollary 3.4. Given (X , τ ) ∈ | L − QTop | , The map ε op 
�L (x,τ ) 

is in-
jective. 

Lemma 3.5. For (X , τ ) ∈ | L − QTop | , we have (ηX ) 
← 

L ◦
�

�(X,τ ) 
L = 1 �(X,τ ) , where 
(ηX ) 

← 

L : L 

Lpt(�(X,τ )) −→ �(X , τ ) and �
�(X,τ ) 
L : �(X , τ ) →

L 

Lpt(�(X,τ )) . 

Proof. The proof is straightforward. �

As a consequence of the above, we have that: 

LPT : SQuant op → L − QTop 

is a right adjoint to 

�L : L − QTop → SQuant op 
. 

This adjunction given in the form L − QTop � SQuant op . 
For the case of the category SSQuant (resp., USQuant )

of strong (resp., unital) semi-quantales and the category L −
SQTop (resp., L − Top ) of strong L -quasi-topological spaces
(resp., L -topological spaces) one can similarly have the follow-
ing dual adjunctions: 

L − SQTop � SSQuant op 
. 

and 

L − Top � USQuant op 
. 

Definition 3.6. For L, Q ∈ | SQuant | . A semi-quantale Q is said
to be L -Qspatial iff the map ε op 

Q 
is injective. 

Lemma 3.7. For fixed L ∈ | SQuant | . An Q ∈ | SQuant | is L-
Qspatial if and only if ε op 

Q 
is isomorphism 

Proof. The proof is straightforward. �

Corollary 3.8. For (X , τ ) ∈ | L − QTop | , the L-quasi-topology
�L ( X , τ ) is L-Qspatial. 

Proof. Let μ, ν ∈ �( X , τ ) with μ � = ν, then there exists an x 0 ∈
X such that μ( x 0 ) � = ν( x 0 ). Putting p = ηX (x 0 ) ∈ Lpt(τ ) . Then 

ε op 
�L (X,τ ) 

(μ)(p) = p(μ) = ηX (x 0 )(μ) = μ(x 0 ) � = ν(x 0 ) = 

ηX (x 0 )(ν) = p(ν) = ε op 
�L (X,τ ) 

(ν)(p) 

Thus ε op 
�L (X,τ ) 

(μ) � = ε op 
�L (X,τ ) 

(ν) on Lpt ( τ ), which means that 

ε op 
�L (X,τ ) 

: �L (X , τ ) → �L (LPT (�L (X , τ )) 

is injective on �L ( X , τ ). So �L ( X , τ ) is L -Qspatial. �

Definition 3.9. An (X , τ ) ∈ | L − QTop | is called 

(1) L − QT 0 if for every x , y ∈ X with x � = y there exists μ ∈
�L ( X , τ ) with μ( x ) � = μ( y ). 

(2) L -Qsober iff ηX : (X , τ ) −→ (Lpt(τ ) , �→ 

L (τ )) is
bijective. 

The next two lemmas show a characterization of L − QT 0 as
well as L -Qsober spaces. 
Lemma 3.10. An (X , τ ) ∈ | L − QTop | is L − QT 0 iff ηX 

is injective. 

Proof. Recall the definition ηX . �

Also, from the definition of ηX , we have the following result:

Lemma 3.11. An (X , τ ) ∈ | L − QTop | L -Qsober iff

ηX : (X , τ ) −→ (Lpt(τ ) , �→ 

L (τ )) 

is L -homeomorphism. 

Proof. Let (X , τ ) ∈ | L − QTop | be an L -Qsober, then
ηX : (X , τ ) −→ (Lpt(τ ) , �→ 

L (τ )) is bijective. Since
ηX : (X , τ ) −→ (Lpt(τ ) , �→ 

L (τ )) is continuous, then it remain
to prove the continuity of η−1 

X 
: (Lpt(τ ) , �→ 

L (τ )) −→ (X , τ ) .
To this end, let μ ∈ �( X , τ ), then by Lemma 3.5 we
get (η−1 

X 
) ← 

L (μ) = μ ◦ η−1 
X 

= (ηX ) 
← 

L ◦ �
�(X,τ ) 
L (μ) ◦ η−1 

X 
=

�
�(X,τ ) 
L (μ) ◦ ηX ◦ η−1 

X 
= �

�(X,τ ) 
L (μ) . 

The converse is clear. �

Lemma 3.12. For all Q ∈ | SQuant | , LPT ( Q ) is L-Qsober. 

Proof. Show bijectivity of the map 

ηLpt(Q ) : (Lpt(Q ) , �→ 

L (Q )) −→ LPT (�→ 

L (Q )) . 

For injectivity, let p 1 , p 2 ∈ Lpt ( Q ) with p 1 � = p 2 . Then there is a
∈ Q with p 1 ( a ) � = p 2 ( a ) i.e., there is �L (a ) ∈ �→ 

L (Q ) such that 

ηLpt(Q ) (p 1 )(�L (a )) = �L (a )(p 1 ) = p 1 (a ) � = p 2 (a ) 

= �L (a )(p 2 ) = ηLpt(Q ) (p 2 )(�L (a )) 

which shows that ηLpt(Q ) (p 1 ) � = ηLpt(Q ) (p 2 ) . Thus ηLpt(Q ) is injec-
tive. 

To show the surjectivity of ηLpt(Q ) , let q ∈ LPT (�→ 

L (Q )) =
(Lpt(�→ 

L (Q ) , �→ 

L (�
→ 

L (Q ))) and put p = q ◦ �L . Clearly p ∈
Lpt ( Q ). Furthermore, for all a ∈ Q , we have 

ηLpt(Q ) (p)(a ) = �L (a )(p) = p(a ) = q ◦ �L (a ) = q (�L (a )) . 

So ηLpt(Q ) (p) = q, which means that ηLpt ( Q ) is surjective. �

Let L - Qsob (resp. L - Qspat ) be the full subcategory of L -
QTop (resp. SQuant ) consisting of all L -Qsober spaces (resp.
L -Qspatial semi-quantales). 

By analogy with [22,23,27,28] ), we prove the following
theorem 

Theorem 3.13. The categories L- Qsob and L- Qspat are
equivalent. 

Proof. By Corollary 3.8 and Corollary 3.12 the adjunction 

�L � LPT : SQuant op → L − QTop 

restricts to the categories L - Qsob and L - Qspat . By Lemma 3.7
and Lemma 3.11 the restrictions of the unit η and counit ε to
the aforesaid categories give natural isomorphisms. �
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. Quantic separation axioms 

n this section we will discuss the counterparts of the separa- 
ion axioms quantic regularity and normality of objects in the 
ategory SQuant with applications to objects in the category 
 − QTop . 

efinition 4.1. Let Q ∈ | SQuant | , M ⊆Q , and a , b ∈ M . An el-
ment a is said to be well-inside of b ( w.r.t M ), denoted a � b ,
f 

 c ∈ M with a ⊗ c = ⊥ and c ∨ b = � . 

Equivalently a � b ≡ a ∗ ∨ b = � where a ∗ = ∨{ c ∈ Q : a ⊗
 = ⊥} . 

Some time we say that a � b via c . 

emma 4.2. ( see [23] ) For Q ∈ | SQuant | and a , b , c , d ∈ Q , the
ollowing holds 

(1) a � b implies a ≤ b , and 
(2) a ≤ b � c ≤ d implies a � d. 

efinition 4.3. An Q ∈ | SQuant | is said to be T 2 if for any a ∈
r ( Q ), we have a = 

∨ { x ∈ Q : x � a } . 
efinition 4.4. Let (X , τ ) ∈ | L − QTop | and L, Q ∈ | SQuant | . 
(1) Q is said to be regular, iff

∀ a ∈ Q, ∃ D ⊆ { b ∈ Q : b � a } , a = 

∨ 

D 

If Q ∈ | Quant | , then Q ∈ | Frm | ( [29] , Theorem 2.5). 
(2) ( X , τ ) is quantic regular, or regular, iff τ is a regular

subsemi-quantale of L 

X . 

roposition 4.5. An Q ∈ | DSQuant | is regular if and only if 

 a ∈ Q, a = 

∨ 

{ b ∈ Q : b � a } 

roof. Let Q ∈ | DSQuant | . Distributivity and b � a imply a ≤
 . Let D ⊆{ b ∈ Q : b � a }, such that a = 

∨ 

D . Then, 

 

D ≤
∨ 

{ b ∈ Q : b � a } ≤
∨ 

{ b ∈ Q : b ≤ a } = a = 

∨ 

D 

This shows 

 = 

∨ 

D = 

∨ 

{ b ∈ Q : , b � a } 

nd from this follows the claims. �

By the definition of T 2 , one can easily have the following 
esult: 

orollary 4.6. Every quantic regular semi-quantale is T 2 . 

As a consequence of the above proposition, we have the fol- 
owing result: 

roposition 4.7. Let L ∈ | DSQuant | . An (X , τ ) ∈ | L − QTop | is
egular if and only if 

 μ ∈ τ, μ = 

∨ 

{ ν ∈ τ : ν � μ} 
roposition 4.8. A quantic quotient S ⊆Q of a regular semi-
uantale Q is regular. 

roof. Let j : Q −→ Q be a quantic nucleus on Q and let b ∈
 be an arbitrary element. For a , b ∈ Q with a � b , there is c
 Q with a ⊗ c = ⊥ and b ∨ c = � . With the quantic nucleus

j : Q −→ Q, we have j(a ) ⊗ j(c ) ≤ j(a ⊗ c ) = j(⊥ ) and b ∨
j(c ) = j(b) ∨ j(c ) = j(b ∨ c ) = j(� ) which implies that j ( a ) �
 in Q j . 

Since Q is regular, then for all b ∈ Q , we have 

 = 

∨ 

{ a ∈ Q : a � b w . r . t Q } 
≤

∨ 

{ j(a ) ∈ Q j : a � b w . r . t Q } 
≤

∨ 

{ a ′ ∈ Q j : a 
′ � b 

′ 
w . r . t Q j } 

o quantic quotient S ⊆Q is regular. �

efinition 4.9. Let Q ∈ | SQuant | , S ⊆ Q and D be the dyadic
ationales in [0, 1]. For a , b ∈ Q , a is said to be really-inside b (
ith respect to S ), denoted a 

= 
< b, iff ∃ { a q : q ∈ D } ⊆S such that 

(1) a ≤ a 0 � a 1 ≤ b and 

(2) p < q ⇒ a p � a q . 

This definition comes from [23] . 

efinition 4.10. Let (X , τ ) ∈ | L − QTop | and L, Q ∈ | SQuant | .
(1) Q is said to be quantic completely regular, iff

∀ a ∈ Q, ∃ D ⊆ { b ∈ Q : b 
= 
< a } , a = 

∨ 

D. 

(2) ( X , τ ) is quantic completely regular, iff τ is a quantic com-
pletely regular subsemi-quantale of L 

X . 

roposition 4.11. An Q ∈ | DSQuant | is quantic completely reg-
lar if and only if 

 a ∈ Q, a = 

∨ 

{ b ∈ Q : b 
= 
< a } 

roof. The proof is analogous to those of Proposition 4.5 . �

As a consequence of the above proposition, we have the fol-
owing result: 

roposition 4.12. Let L ∈ | DSQuant | . An (X , τ ) ∈ | L − QTop |
s quantic completely regular if and only if 

 μ ∈ τ, μ = 

∨ 

{ ν ∈ τ : ν
= 
< μ} 

efinition 4.13. Let (X , τ ) ∈ | L − QTop | and L, Q ∈ | SQuant | .
(1) Q is said to be quantic normal, iff

 a, b ∈ Q with a ∨ b = � , ∃ c, d ∈ Q with c ⊗ d = ⊥ , c ∨ b = �

This comes from [29] . (Equivalently, if a ∨ b = � , ∃ c ∈ Q
with c ∗ ∨ b = � = a ∨ c .) 

(2) ( X , τ ) is quantic normal, iff τ is a quantic normal
subsemi-quantale of L 

X . 
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Proposition 4.14. Let (X , τ ) ∈ | L − QTop | and L, Q ∈
| CSQuant | . 

(1) A commutative semi-quantale Q is quantic normal, iff

∀ a, b ∈ Q with a ∨ b = � , ∃ c, d 
∈ Q with c � a via d, d � b via c. 

If Q ∈ | SFrm | , Q is localic normal iff Q is a normal semilo-
cale in the sense of [27 , 28] . 

(2) ( X , τ ) is quantic normal, iff

∀ μ, ν ∈ τ with μ ∨ ν = � , ∃ λ, υ

∈ τ with λ � μ via υ, υ � ν via λ. 

Proof. (1) Let a , b ∈ Q with a ∨ b = � . Quantic normality of
the commutative semi-quantale Q ⇔ ∃ c , d ∈ Q with c ⊗ d =
⊥ = d ⊗ c, c ∨ b = � and a ∨ d = � . Then 

(i) c ⊗ d = ⊥ and a ∨ d = � ⇒ c � a via d . 
(ii) d ⊗ c = ⊥ and b ∨ c = � ⇒ d � b via c . 

(2) Follows from (1). �

Proposition 4.15. In any normal semi-quantale the relation � im-
plies 

= 
< and quantic regularity implies quantic complete regularity.

Proof. Let Q be a quantic normal semi-quantale and a � b .
Since a � b ⇔ a ∗ ∨ b = � , then there are c , d ∈ Q such that c ⊗
d = ⊥ ⇔ c ≤ d ∗ and a ∗ ∨ d = � = b ∨ c . Then one have a � d
and d ∗ ∨ b ≥ c ∨ b = � so that d � b which implies a 

= 
< b. �
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