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. Introduction 

lassical set theory is a basic concept to represent various sit- 
ations in mathematical notation where repeated occurrences 
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f elements are not allowed. If repeated occurrences of any ob-
ect is allowed in a set, then a mathematical structure, that is
nown as multiset (mset [1] or bag [2] , for short). Actually, vari-
us circumstances repetition of elements become mandatory to 

he system. For example, a graph with loops, there are many
ydrogen atoms, many water molecules, many strands of iden- 
ical DNA etc. This leads to effectively three possible relations 
etween any two physical objects; they are different, they are 
he same but separate, or they are coinciding and identical. For
xample, ammonia NH 3 , with three hydrogen atoms, say H , H
nd H , and one nitrogen atom, say N . Clearly H and N are dif-
erent. However H , H and H are the same but separate, while
 and H are coinciding and identical. There are many other ex-

mples, for instance, carbon dioxide CO 2 , sulfuric acid H 2 SO 4 ,
nd water H 2 O etc. 
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This paper is an attempt to generalize the notions of com-
pact, proximity relation and proximal neighborhood in the mul-
tiset context. Section 2 has a collection of all basic definitions
and notions for further study. In Section 3 , new multiset topolo-
gies, compact multiset topology and some identities involving
the concept of multiset are mentioned. A multiset proximity re-
lations and an integral examples of multiset proximity are ob-
tained in Section 4 . In Section 5 , a multiset topology induced
by a multiset proximity relation on a multiset M is presented. In
addition to this point, the essential properties of this new mul-
tiset topology via multiset proximity are mentioned. 

2. Preliminaries and basic definitions 

In this section, a brief survey of the notion of msets as intro-
duced by Yager [2] , Blizard [1,3] and Jena et al. [4] have been
collected. Furthermore, the different types of collections in mset
context introduced by Girish and John [5] are presented. 

Definition 2.1. A collection of elements containing duplicates
is called an mset. Formally, if X is a set of elements, an mset
M drawn from the set X is represented by a function count M
or C M 

defined as C M 

: X → N , where N represents the set of
nonnegative integers. 

Let M be an mset from the set X = { x 1 , x 2 , . . . , x n } with
x appearing n times in M . It is denoted by x ∈ 

n M . The
mset M drawn from the set X is denoted by M = { k 1 /x 1 , k 2 /

x 2 , . . . , k n /x n } where M is an mset with x 1 appearing k 1 times,
x 2 appearing k 2 times and so on. In Definition 2.1 , C M 

( x ) is the
number of occurrences of the element x in the mset M . However
those elements which are not included in the mset M have zero
count. An mset M is a set if C M 

(x ) = 0 or 1 ∀ x ∈ X . 

Definition 2.2. A domain X , is defined as a set of elements from
which msets are constructed. The mset space [ X ] m is the set of all
msets whose elements are in X such that no element in the mset
occurs more than m times. The set [ X ] ∞ is the set of all msets
over a domain X such that there is no limit on the number of
occurrences of an element in an mset. 

Let M , N ∈ [ X ] m . Then, the following are defined: 

(1) M is a submset of N denoted by ( M ⊆ N ) if C M 

( x ) ≤
C N 

( x ) ∀ x ∈ X . 
(2) M = N if M ⊆ N and N ⊆ M . 
(3) M is a proper submset of N denoted by ( M ⊂ N ) if C M 

( x )
≤ C N 

( x ) ∀ x ∈ X and there exists at least one element x ∈
X such that C M 

( x ) < C N 

( x ). 
(4) P = M ∪ N if C P (x ) = max { C M 

(x ) , C N (x ) } for all x ∈ X .
(5) P = M ∩ N if C P (x ) = min { C M 

(x ) , C N (x ) } for all x ∈ X .
(6) Subtraction of M and N results in a new mset P = M �

N such that C P (x ) = max { C M 

(x ) − C N (x ) , 0 } for all x ∈
X , where ⊕ and � represent mset addition and mset sub-
traction, respectively. 

(7) An mset M is empty if C M 

(x ) = 0 ∀ x ∈ X . 
(8) The support set of M denoted by M 

∗ is a subset of X and
M 

∗ = { x ∈ X : C M 

(x ) > 0 } ; that is, M 

∗ is an ordinary set
and it is also called root set. 

(9) The cardinality of an mset M drawn from a set X is
Card( M ) = 

∑ 

x ∈ X C M 

(x ) . 
(10) M and N are said to be equivalent if and only if

Card( M ) = Card( N ). 
Axioms of multiset theory 2.3. [1] 

1) If x ∈ 

k 1 M and x ∈ 

k 2 M then k 1 = k 2 . In other words, the
multiplicity with which an element belongs to an mset is
unique. 

2) If x ∈ 

k M iff x ∈ 

k N for all x , then M = N. If two msets have
exactly the same elements occurring with exactly the same
multiplicities, then they are equal. 

3) There exists mset M such that x �∈ 

k M for all x ∈ X , k ∈ N . It
asserts the existence of at least one mset that does not con-
tain any element. Indeed, the mset M is unique by Axiom
−2 . This unique mset M is denoted by the symbol φ. 

4) For any mset M and any number n , there is a unique (by Ax-
iom 2) mset N containing exactly n copies of M and nothing
else. 

5) For any two distinct msets M and N and any numbers n and
m , there exists a unique (by Axiom 2) mset P containing ex-
actly n copies of M , m copies of N, and nothing else. 

Definition 2.4. Let N ∈ [ X ] m . Then the complement N 

c of N in
[ X ] m is an element of [ X ] m such that 

 N c (x ) = m − C N (x ) ∀ x ∈ X . 

Definition 2.5. A submset N of M is a whole submset of M
with each element in N having full multiplicity as in M ; that
is, C N (x ) = C M 

(x ) for every x ∈ N 

∗. 

Definition 2.6. Let M ∈ [ X ] m . The power whole mset of M de-
noted by PW ( M ) is defined as the set of all whole submsets of
M . 

Definition 2.7. Let M ∈ [ X ] m . The power mset P ( M ) of M is
the set of all submsets of M . We have N ∈ P ( M ) if and only
if N ⊆ M . If N = φ, then N ∈ 

1 P ( M ); and if N � = φ, then

N ∈ 

k P ( M ) such that k = 

∏ 

z ( 
| [ M] z | 
| [ N] z | ) , the product 

∏ 

z is taken

over distinct elements of the mset N and | [ M] z | = m iff z ∈ 

m M ,
| [ N] z | = n i f f z ∈ 

n N, then 

(| [ M] z | 
| [ N] z | 

)
= 

(
m 

n 

)
= 

m ! 
n !(m − n )! 

. 

The power set of an mset is the support set of the power
mset and is denoted by P 

∗( M ). The following theorem shows
the cardinality of the power set of an mset. 

Definition 2.8. Let M ∈ [ X ] m and τ ⊆ P 

∗( M ). Then τ is called
an mset topology if τ satisfies the following properties. 

(1) φ and M are in τ , 
(2) The union of the elements of any sub-collection of τ is in

τ , 
(3) The intersection of the elements of any finite sub-

collection of τ is in τ . 

An mset topological space is a pair ( M , τ ) consisting of an
mset M and an mset topology τ on M . Note that τ is an or-
dinary set whose elements are msets and the mset topology is
abbreviated as an M -topology. Also, a submset U of M is an
open mset of M if U belongs to the collection τ . Moreover, a
submset N of M is closed mset if M �N is open mset. 

Definition 2.9. Let ( M , τ ) be an M -topological space and N be

a submset of M . Then the interior of N is defined as the mset 
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nion of all open msets contained in N and is denoted by N 

o ;
hat is, 

N 

o = ∪{ V ⊆ M : V is an open mset and V ⊆ N} and 

 N o (x ) = max { C V (x ) : V ⊆ N} . 
efinition 2.10. Let ( M , τ ) be an M -topological space and N be
 submset of M . Then the closure of N is defined as the mset
ntersection of all closed msets containing N and is denoted by 
 ; that is, 

N = ∩{ K ⊆ M : K is a closed mset and N ⊆ K} and 

 N (x ) = min { C K (x ) : N ⊆ K} . 
emark 2.11. The symbol ∈ + was first introduced by Singh 

t al. [6] . For x ∈ M 

∗, x ∈ + N means that x belongs to N at
east one time. Thus, C N (x ) = 0 implies x �∈ N, and x ∈ 

k 
+ N im-

lies x belongs to N at least k times, however x ∈ 

k N means x
elongs k times to N . 

efinition 2.12. An mset M is called simple if all its elements
re the same. For example, {3/ x } is simple mset. 

efinition 2.13. Let M be a nonempty mset. Two submsets N 1 

nd N 2 are called similar, denoted by N 1 
∼= 

N 2 , if N 

∗
1 = N 

∗
2 . 

. On multiset topologies 

heorem 3.1. Let N 1 and N 2 be two submsets of an mset M. Then

(1) If C (N 1 ∩ N 2 ) (x ) = 0 for all x ∈ M 

∗, then C N 1 (x ) ≤
C (M�N 2 ) (x ) for all x ∈ M 

∗, 
(2) C N 1 (x ) ≤ C N 2 (x ) ⇔ C (M�N 2 ) (x ) ≤ C (M�N 1 ) (x ) for all x ∈

M 

∗. 

roof. 

(1) Let C (N 1 ∩ N 2 ) (x ) = 0 for all x ∈ M 

∗. Since C (N 1 ∩ N 2 ) (x ) =
min { C N 1 (x ) , C N 2 (x ) } , then C N 1 (x ) = 0 or C N 2 (x ) = 0 for
all x ∈ M 

∗. It follows that C N 1 (x ) + C N 2 (x ) ≤ C M 

(x )

for all x ∈ M 

∗, and hence C N 1 (x ) ≤ C M 

(x ) − C N 2 (x ) =
C (M�N 2 ) (x ) for all x ∈ M 

∗. Hence the result. 
(2) C N 1 (x ) ≤ C N 2 (x ) ⇔ −C N 2 (x ) ≤ −C N 1 (x ) ⇔ C M 

(x ) −
C N 2 (x ) ≤ C M 

(x ) − C N 1 (x ) ⇔ C (M�N 2 ) (x ) ≤ C (M�N 1 ) (x )

for all x ∈ M 

∗. �

The following example shows that the converse of 
heorem 3.1 part (1) is not true in general. 

xample 3.2. Let M = { 2 /a, 4 /b, 5 /c } , N 1 = { 1 /a, 1 /b, 2 /c }
nd N 2 = { 1 /a, 1 /b} . Hence M � N 2 = { 1 /a, 3 /b, 5 /c } . It’s clear
hat C N 1 (x ) ≤ C M�N 2 (x ) for all x ∈ M 

∗, but C (N 1 ∩ N 2 ) (x ) > 0 for
ome x ∈ M 

∗. 

The following example shows that N 1 �N 2 � = N 1 ∩ ( M �N 2 )
n general. 

xample 3.3. Let M = { 3 /x, 4 /y } , N 1 = { 2 /x, 3 /y } and N 2 =
 1 /x, 2 /y } . Hence M � N 2 = { 2 /x, 2 /y } , N 1 � N 2 = { 1 /x, 1 /y } ,
nd N 1 ∩ (M � N 2 ) = { 2 /x, 2 /y } . 
efinition 3.4. Let X be an infinite set. Then M = { k α/x α : α ∈
} be an infinite mset drawn from X . That is, the infinite mset
 drawn from X is denoted by M = { k 1 /x 1 , k 2 /x 2 , k 3 /x 3 , ...... } .
otation 3.5. The mset space [ X ] m 

∞ 

is the set of all infinite msets
hose elements are in X such that no element in the mset occurs

ore than m times. o
It may be noted that the following examples of mset topolo-
ies are not tackled before. 

xample 3.6. Let M ∈ [ X ] m 

∞ 

and { k 0 / x 0 } be a simple submset
f M . Then the collection 

(k 0 /x 0 ) = { V ⊆ M : C V (x 0 ) ≥ k 0 } ∪ {∅} 

s an M-topology on M called the particular point M-topology. 

xample 3.7. Let M ∈ [ X ] m 

∞ 

and { k 0 / x 0 } be a simple submset
f M . Then the collection 

k 0 /x 0 = { V ⊆ M : C V (x 0 ) < k 0 } ∪ { M} 

s an M-topology on M called the excluded point M-topology. 

xample 3.8. Let M ∈ [ X ] m 

∞ 

. Then the collection 

= { V ⊆ M : M � V is finite } ∪ {∅} 

s an M-topology on M called the cofinite M-topology. 

xample 3.9. Let M ∈ [ X ] m 

∞ 

and N be a submset of M . Then
he collection 

(N) = { V ⊆ M : C N (x ) ≤ C V (x ) for all x ∈ M 

∗} ∪ {∅} 

s M-topology on M . 

xample 3.10. Let M ∈ [ X ] m 

∞ 

and N be a submset of M . Then
he collection 

N = { V ⊆ M : C N (x ) ≥ C V (x ) for all x ∈ M 

∗} ∪ { M} 

s M-topology on M . 

efinition 3.11. Let ( M , τ ) be an M -topological space and N be
 nonempty submset of M . Then the collection { V i : i ∈ I } of
ubmsets of M is called cover of N if 

 [ N∩ (∩ i∈ I (M�V i ))] (x ) = 0 for all x ∈ M 

∗. 

It should be noted that the cover is called open mset cover if
ts elements are open msets. 

efinition 3.12. Let ( M , τ ) be an M -topological space. A
onempty submset N of M is called compact mset if every open
set cover of N reduced to finite subcover of N ; that is, if { V i :

 ∈ I } is a collection of open msets cover for N , then there exist
 1 , V 2 , . . . , V n ∈ τ such that 

 [ N∩ (∩ n i=1 (M�V i ))] (x ) = 0 for all x ∈ M 

∗. 

It may be noted that an M -topological space ( M , τ ) is called
ompact M -topological space if M is compact mset. 

xample 3.13. Every finite M-topological space ( M , τ ) is com-
act M-topological space. Since the number of possible subm- 
ets of M are also finite. Consequently, ( M , τ ) is compact M-
opological space. 

xample 3.14. The indiscrete M-topological space ( M , τ ) is
ompact M-topological space. Since the only open mset cover 
f M is M , therefore ( M , τ ) is compact M-topological space. 
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Example 3.15. Let M ∈ [ X ] m 

∞ 

and τ = P 

∗(M) . Then ( M , τ )
is not compact M-topological space. Since the collection A =
{{ k/x } : x ∈ 

k M} is an open mset cover of M , but can’t select a
finite subcover from A to cover M . 

Theorem 3.16. Let ( M , τ ) be a compact M - topological space and
N be a closed submset of M. Then N is compact mset. 

Proof. Let { V i : i ∈ I } be a collection of open mset cover of
N . It follows that C [ N∩ (∩ i∈ I (M�V i ))] (x ) = 0 for all x ∈ M 

∗. Also,
 [ M∩ (N∩ (∩ i∈ I (M�V i )))] (x ) = 0 for all x ∈ M 

∗. Therefore, M �N and
{ V i : i ∈ I } are open mset cover of M , and hence there exists finite
subcover of open msets to cover M , say M �N , V 1 , V 2 , . . . , V n

such that C [ M∩ (N∩ (∩ n i=1 (M�V i )))] (x ) = 0 for all x ∈ M 

∗. Since C M 

( x )
≥ C N 

( x ) for all x ∈ M 

∗. Consequently, C [ N∩ (∩ n i=1 (M�V i ))] (x ) = 0
for all x ∈ M 

∗. Hence N is compact mset. �

4. Multiset proximity relations 

Definition 4.1. Let M ∈ [ X ] m 

∞ 

. A binary relation δ on P 

∗( M ) is
called an mset proximity if it satisfies the following conditions:-

( MP 1 ) N 1 δ N 2 ⇒ N 2 δ N 1 , 
( MP 2 ) N 1 δ( N 2 ∪ N 3 ) ⇔ N 1 δ N 2 or N 1 δ N 3 , 
( MP 3 ) N 1 δN 2 ⇒ C N 1 (x ) > 0 and C N 2 (x ) > 0 for some x ∈ M 

∗,
( MP 4 ) N 1 �δ N 2 ⇒ there exists N 3 ⊆ M such that N 1 �δ N 3 and

(M � N 3 ) �δ N 2 , 

( MP 5 ) C (N 1 ∩ N 2 ) (x ) > 0 for some x ∈ M 

∗⇒ N 1 δ N 2 . 
An mset proximity space ( M , δ) consisting of an mset
M and an mset proximity relation on M . We shall write
N 1 δ N 2 if the submsets N 1 and N 2 of M are δ-related,
otherwise we shall write N 1 �δ N 2 . An mset proximity is
abbreviated as an M -proximity. 

An M -proximity relation δ on an mset M is said to be
separated if it satisfies: 

( MP 6 ) (k/x ) δ(n/y ) ⇒ k/x = n/y . 

Remark 4.2. An M -proximity relation δ on an mset M is a prox-
imity relation if C M 

(x ) = 0 or 1 ∀ x ∈ M 

∗. 

Example 4.3. Let M ∈ [ X ] m 

∞ 

and δ be a binary relation on
P 

∗( M ) defined as 

N 1 δ N 2 iff C N 1 (x ) > 0 and C N 2 (x ) > 0 for some x ∈ M 

∗. 

Then δ is an M -proximity relation. It’s clear that δ satisfies
( MP 1 ). To prove that δ satisfies ( MP 2 ) ∀ N 1 , N 2 , N 3 ∈ P 

∗( M ),
N 1 δ(N 2 ∪ N 3 ) ⇔ C N 1 (x ) > 0 and C (N 2 ∪ N 3 ) (x ) > 0 for some x
∈ M 

∗ ⇔ (C N 1 (x ) > 0 and C N 2 (x ) > 0) for some x ∈ M 

∗ or
(C N 1 (x ) > 0 and C N 3 (x ) > 0) for some x ∈ M 

∗ ⇔ N 1 δ N 2 or
N 1 δ N 3 . ( MP 3 ) is a direct consequence from the definition of δ.
For ( MP 4 ), let N 1 �δ N 2 . Hence C N 1 (x ) = 0 or C N 2 (x ) = 0 for all
x ∈ M 

∗. If C N 1 (x ) = 0 for all x ∈ M 

∗, then C (M�N 1 ) (x ) > 0 for
all x ∈ M 

∗. By taking N 3 = M � N 1 . It follows that N 1 �δ N 3

and (M � N 3 ) �δ N 2 . Similarly, if C N 2 (x ) = 0 for all x ∈ M 

∗.
For ( MP 5 ), Let N 1 , N 2 ∈ P 

∗( M ) such that C (N 1 ∩ N 2 ) (x ) > 0 for
some x ∈ M 

∗. If C (N 1 ∩ N 2 ) (x ) = C N 1 (x ) > 0 for some x ∈ M 

∗,
then C N 2 (x ) > 0 for some x ∈ M 

∗. It follows that N 1 δ N 2 . Sim-
ilarly if C (N 1 ∩ N 2 ) (x ) = C N 2 (x ) > 0 for some x ∈ M 

∗, and hence
 N 1 (x ) > 0 for some x ∈ M 

∗. Then the result. 

Lemma 4.4. If N 1 δ N 2 and C N 2 (x ) ≤ C N 3 (x ) for all x ∈ M 

∗, then
N 1 δ N 3 . 

Proof. Since C N 2 (x ) ≤ C N 3 (x ) for all x ∈ M 

∗, then
 (N 2 ∪ N 3 ) (x ) = C N 3 (x ) for all x ∈ M 

∗. That is, N 2 ∪ N 3 = N 3 .
This result, combined with ( MP 2 ), implies N 1 δ N 3 . �
Definition 4.5. An M -topological space ( M , τ ) is a T 1 -mset
space if every simple submset of M is closed mset. 

Example 4.6. Let M ∈ [ X ] m 

∞ 

. Then P 

∗( M ) is T 1 -mset space. 

Example 4.7. Let M ∈ [ X ] m 

∞ 

. Then the cofinite M -topological
space is T 1 -mset space. 

Theorem 4.8. If ( M , τ ) is a T 1 -mset space, then for any two sim-
ple submsets { k / x }, { n / y } of M with x � = y there exist two open
msets V and W with C V ( x ) ≥ k , C W 

( y ) ≥ n , C V (y ) = 0 , and
 W 

(x ) = 0 . 

Proof. Straightforward. �

The following example shows that the converse of
Theorem 4.8 is not true in general. 

Example 4.9. Let M be a nonempty mset. Then PW ( M ) ∪ { φ}
satisfies that for any two simple submsets { k / x }, { n / y } of M
with x � = y there exist two open msets V and W with C V ( x ) ≥
k , C W 

( y ) ≥ n , C V (y ) = 0 , and C W 

(x ) = 0 , but it is not T 1 -mset
space. 

Definition 4.10. An M -topological space ( M , τ ) is a normal
mset space if whenever any two closed msets N 1 and N 2 such
that C (N 1 ∩ N 2 ) (x ) = 0 for all x ∈ M 

∗, then there are two open
msets V and W such that C (V ∩ W ) (x ) = 0 , C [ N 1 ∩ (M�V )] (x ) = 0
and C [ N 2 ∩ (M�W )] (x ) = 0 for all x ∈ M 

∗. 

Definition 4.11. An M -topological space ( M , τ ) is a T 4 -mset
space if it is normal and T 1 -mset space. 

Example 4.12. Let ( M , τ ) be a normal mset space and δ be a
binary relation on P 

∗( M ) defined as: 

f or all N 1 , N 2 ⊆ M, N 1 δN 2 ⇐⇒ C ( N 1 ∩ N 2 ) (x ) 

> 0 for some x ∈ M 

∗. (1)

Then δ is an M -proximity relation on M . It’s clear that δ sat-
isfies ( MP 1 ). To prove that δ satisfies ( MP 2 ) ∀ N 1 , N 2 , N 3 ∈
P 

∗( M ) N 1 δ(N 2 ∪ N 3 ) ⇔ C [ N 1 ∩ ( N 2 ∪ N 3 )] (x ) > 0 for some x ∈ M 

∗⇔
 [( N 1 ∩ N 2 ) ∪ ( N 1 ∩ N 3 )] (x ) > 0 for some x ∈ M 

∗ ⇔ C ( N 1 ∩ N 2 ) (x ) > 0 for
some x ∈ M 

∗ or C ( N 1 ∩ N 3 ) (x ) > 0 for some x ∈ M 

∗⇔ N 1 δ N 2

or N 1 δ N 3 . For ( MP 3 ), let N 1 δ N 2 . Then C ( N 1 ∩ N 2 ) (x ) > 0 for
some x ∈ M 

∗. It follows that C N 1 
(x ) > 0 for some x ∈ M 

∗ and
 N 2 

(x ) > 0 for some x ∈ M 

∗, which implies that C N 1 (x ) > 0 and
 N 2 (x ) > 0 for some x ∈ M 

∗. For ( MP 4 ), let N 1 �δ N 2 . Hence
 ( N 1 ∩ N 2 ) (x ) = 0 for all x ∈ M 

∗. It follows that there are two open
msets V and W such that C (V ∩ W ) (x ) = 0 , C [ N 1 ∩ (M�V )] (x ) = 0
and C [ N 2 ∩ (M�W )] = 0 for all x ∈ M 

∗. Since M �V and M �W are
closed msets, then N 1 �δ (M � V ) and (M � W ) �δ N 2 . This re-
sult, combined with C (V ∩ W ) (x ) = 0 , Theorem 3.1 part (1) and
Lemma 4.4 , implies N 1 �δ (M � V ) and V �δ N 2 . For ( MP 5 ), Let
N 1 , N 2 ∈ P 

∗( M ) such that C (N 1 ∩ N 2 ) (x ) > 0 for some x ∈ M 

∗.
Since C ( N 1 ∩ N 2 ) (x ) ≥ C (N 1 ∩ N 2 ) (x ) for all x ∈ M 

∗. It follows that
 ( N 1 ∩ N 2 ) (x ) > 0 for some x ∈ M 

∗. Hence N 1 δ N 2 . 

5. Multiset topology induced by a multiset proximity 

Lemma 5.1. Let N be a submset of an M-proximity space ( M , δ) .
Then the δ-operator 

δ : P 

∗(M) −→ P 

∗(M) 

defined by 

N 

δ = { x ∈ 

k M : (k/x ) δN} (2)
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p  
atisfies the following property 

 1 �δ N 2 i mpli es C (N δ2 ∩ N 1 ) (x ) = 0 f or all x ∈ M 

∗. 

roof. Straightforward. �

heorem 5.2. Let ( M , δ) be an M-proximity space. Then the δ-
perator, defined in (2) , satisfies Kuratwski’s axioms and induces 
n M-topology on M denoted by τ δ and given by: 

δ = { N ⊆ M : (M � N) δ = M � N} . 

roof. 

(1) ( MP 3 ) implies that φδ = φ. 
(2) Let x ∈ 

k N . Hence ( MP 5 ) implies that ( k / x ) δ N . So
x ∈ 

k N 

δ , and hence N ⊆ N 

δ . 
(3) By ( MP 2 ), x ∈ 

k ( N 1 ∪ N 2 ) δ ⇐⇒ ( k / x ) δ( N 1 ∪ N 2 ) ⇐⇒
( k / x ) δ N 1 or (k/x ) δN 2 ⇐⇒ x ∈ 

k N 

δ
1 or x ∈ 

k N 

δ
2 ⇐⇒

x ∈ 

k (N 

δ
1 ∪ N 

δ
2 ) . Consequently, (N 1 ∪ N 2 ) 

δ = N 

δ
1 ∪ N 

δ
2 . 

(4) To prove that ( N 

δ) δ ⊆ N 

δ , let (k/x ) �∈ N 

δ . Then
(k/x ) �δ N, and hence ( MP 4 ) implies that there exists
N 3 ∈ P 

∗( M ) such that (k/x ) �δ N 3 and (M � N 3 ) �δ N.
Lemma 5.1 and Theorem 3.1 part (1) imply that N 

δ ⊆ N 3 .
This result, combined with (k/x ) �δ N 3 and Lemma 4.4 , 
implies (k/x ) �δ N 

δ . Then (k/x ) �∈ (N 

δ ) δ . It follows that
( N 

δ) δ ⊆ N 

δ . �

emma 5.3. For any two submsets N 1 and N 2 of an M-proximity
pace ( M , δ), 

 1 � δ N 2 i f f Cl (N 1 ) � δ Cl (N 2 ) , 

here the closure is taken with respect to τ δ . 

roof. Necessity is a trivial consequence of Lemma 4.4 . To 

rove sufficiency, suppose N 1 �δ N 2 . Then ( MP 4 ) implies there
xists N 3 ∈ P 

∗( M ) such that N 1 �δ N 3 and (M � N 3 ) �δ N 2 . This
esult, combined with Lemma 5.1 and Theorem 3.1 part (1), im- 
lies N 

δ
2 ⊆ N 3 ; that is Cl ( N 2 ) ⊆ N 3 . It then follows from N 1 �δ N 3 

nd Lemma 4.4 that N 1 �δ Cl (N 2 ) . This result, combined with
 MP 1 ), completes the proof of the theorem. �

heorem 5.4. Let ( M , τ ) be a normal mset space and δ is the
ormula (1) . Then τ δ ⊆ τ . 

roof. To prove the theorem, it suffices to show that N ⊆
l (N) for all N ⊆ M . Let k/x �∈ Cl (N) . It follows that

k/x ) �δ N. Hence formula (1) implies { k/x } ∩ N = φ. Hence 
/x �∈ N . Then the result �

efinition 5.5. An M -topological space ( M , τ ) is compatible
ith an M -proximity relation δ on M , denoted by τ ∼ δ, if
= τδ . 

The following example shows that a normal M -topological 
pace ( M , τ ) is not necessary to be compatible with τ δ . 

xample 5.6. Let M = { 2 /x, 3 /y } , τ = { M, φ, { 1 /x } , { 2 /x } ,
 1 /y } , { 3 /y } , { 1 /x, 1 /y } , { 1 /x, 3 /y } , { 2 /x, 1 /y }} is a normal M -
opology, δ is the formula (1) , and N = { 1 /y } . Then N = { 2 /y }
nd Cl (N) = { 3 /y } . So τ � = τ δ . 

The following example shows that a T 4 -mset space ( M , τ ) is
ot necessary to be compatible with τ δ . 
xample 5.7. Let M = { 2 /x, 3 /y } , τ = P 

∗(M) is a T 4 -mset
pace, δ is the formula (1) , and N = { 1 /x } . Then N = { 1 /x } and
l (N) = { 2 /x } . So τ � = τ δ . 

efinition 5.8. The two M -topologies τ 1 , τ 2 on M are called
imilar, denoted by τ 1 

∼= 

τ 2 , if for all N ⊆ M, N 

1 ∼= 

N 

2 
. 

efinition 5.9. An M -topological space ( M , τ ) is semi-
ompatible with an M -proximity relation δ on M , denoted by
� δ, if τ ∼= 

τ δ . 

heorem 5.10. Let ( M , τ ) be a T 4 -mset space and δ is the formula
1) . Then τ � δ. 

roof. To prove the theorem, it suffices to show that for all N ⊆
, N 

∼= 

Cl (N) ; that is, ( N ) ∗ = (Cl (N)) ∗. Let x ∈ ( Cl ( N )) ∗.
ence C Cl ( N ) ( x ) > 0. Suppose that C Cl (N) (x ) = k such that k
 0, which implies that ( k / x ) δ N . Hence formula (1) implies
 [ { k/x } ∩ N ] (x ) > 0 for some x ∈ M 

∗. Since ( M , τ ) be a T 1 -mset
pace, then C [ { k/x } ∩ N ] (x ) > 0 for some x ∈ M 

∗. This result implies
hat x ∈ + N . Hence x ∈ ( N ) ∗. It follows that (Cl (N)) ∗ ⊆ ( N ) ∗.
he other inclusion is a direct consequence of Theorem 5.4 . �

efinition 5.11. A submset N 1 of an M -proximity space ( M , δ)
s called an mset δ-neighborhood of N 2 , denoted by N 2 � N 1 , if
 2 �δ (M � N 1 ) . 

emma 5.12. Let ( M , δ) be an M-proximity space and let Cl ( N )
nd Int ( N ) denote, respectively, the closure and interior of N in τ δ .
hen 

(1) N 1 � N 2 implies Cl ( N 1 ) � N 2 , 
(2) N 1 � N 2 implies N 1 � Int ( N 2 ) . 

Consequently N 1 ⊆ Int ( N 2 ), showing that an mset δ-
neighborhood is an M-topological neighborhood. 

roof. 

(1) Let N 1 � N 2 , then N 1 �δ (M � N 2 ) . Hence Lemma 5.3
implies Cl (N 1 ) �δ (M � N 2 ) ; that is, Cl ( N 1 ) � N 2 . 

(2) N 1 �δ (M � N 2 ) implies N 1 �δ Cl (M � N 2 ) . Equivalently,
N 1 �δ (M � Int(N 2 )) , i.e. N 1 � Int ( N 2 ). �

heorem 5.13. Let N 1 and N 2 be two submsets of an M-proximity
pace ( M , δ) . Then ( MP 4 ) is equivalent to 

 1 �δ N 2 ⇒ ∃ N 3 , N 4 ⊆ M such that N 1 �δ (M � N 3 ) , 

(M � N 4 ) � δ N 2 and N 3 � δ N 4 . (3) 

roof. Let ( MP 4 ) holds. Then N 1 �δ N 2 ⇒ there exists an mset
 3 such that N 1 �δ N 3 and (M � N 3 ) �δ N 2 . Furthermore, there

xists a submset N 4 such that N 1 �δ (M � N 4 ) and N 4 �δ N 3 . On
he other hand, let (3) holds. Then N 3 �δ N 4 and ( MP 5 ) imply
 N 3 ∩ N 4 (x ) = 0 for all x ∈ M 

∗. Hence Theorem 3.1 part (1) im-
lies N 3 ⊆ ( M �N 4 ). Setting N = M � N 3 , we have N 1 �δ N and
M � N) �δ N 2 . �

heorem 5.14. Let δ be a semi-compatible M-proximity relation 
nd ( M , τ ) be a T 4 -mset space. If N compact mset, V is closed
set, and C (N∩ V ) (x ) = 0 for all x ∈ M 

∗, then N �δ V . 

roof. For all x ∈ 

k N , C V (x ) = 0 . Then x �∈ V 

∗. Since V is
losed mset and δ be a semi-compatible M -proximity relation 

n M . It follows that x �∈ V 

∗ = (Cl (V )) ∗; that is, C Cl (V ) (x ) = 0 ,
o (k/x ) �δ V . This result implies there exists H ⊆ M such that
k/x ) �δ (M � H ) and H �δV ; that is, k / x � H and H �
 M �V ). This result, combined with ( MP 5 ) and Theorem 3.1
art (1), implies x ∈ 

k M �V which is open submset of M .
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Lemma 5.12 (2) implies k / x � Int ( H ) ⊆ H � ( M �V ). Let
O k/x = Int(H ) . Hence O k/x �δ V . Now { O k / x : x ∈ 

k N } is an open
msets in τ δ cover of N . Theorem 5.4 implies that { O k / x : x ∈ 

k N }
is an open msets in τ cover of N . Since N is compact mset. It fol-
lows that there is finite subcover { O k 1 /x 1 , O k 2 /x 2 , . . . , O k n /x n } of
N . Thus C [ N∩ (∩ n i=1 (M�O k i /x i 

))] (x ) = 0 for all x ∈ M 

∗. It follows that
C N 

( x ) ≤ C O 

( x ) for all x ∈ M 

∗ such that O = ∪ 

n 
i=1 O k i /x i . More-

over, ( MP 2 ) implies O �δ V . Hence Lemma 4.4 implies N �δ V .
Hence the result. �

Lemma 5.15. Let ( M , τ ) be a normal mset space and δ is the
formula (1) . Then for any two submsets N 1 and N 2 of an M-
proximity space ( M , δ), 

N 1 � δ N 2 i f f N 1 � δ N 2 , 

where the closure is taken with respect to τ . 

Proof. Let N 1 �δ N 2 . Then Lemma 4.4 implies N 1 �δ N 2 . On the
other hand, let N 1 �δ N 2 . It follows that there exists N ⊆ M
such that N 1 �δ N and (M � N) �δ N 2 . Hence Lemma 5.1 implies
 [(M�N) ∩ Cl (N 2 )] (x ) = 0 for all x ∈ M 

∗. Then Theorem 3.1 part (1)
implies C Cl (N 2 ) (x ) ≤ C N (x ) for all x ∈ M 

∗ and by Theorem 5.4 ,
 N 2 

(x ) ≤ C Cl (N 2 ) (x ) ≤ C N (x ) for all x ∈ M 

∗. This result, com-
bined with N 1 �δ N and Lemma 4.4 , implies N 1 �δ N 2 . Then it
follows from ( MP 1 ) that N 1 �δ N 2 . �

Theorem 5.16. Every compact M-topological space which is T 4 

has a unique M-proximity relation, defined in formula (1) , satis-
fies τ δ

∼= 

τ . 

Proof. Let γ be any semi-compatible M -proximity relation on
M and N 1 δ N 2 ; that is, C ( N 1 ∩ N 2 ) (x ) > 0 for some x ∈ M 

∗. Hence
( MP 5 ) implies N 1 γ N 2 . Then Lemma 5.15 implies N 1 γ N 2 . Hence
δ ≤ γ . On the other hand, let N 1 �δ N 2 . Hence C ( N 1 ∩ N 2 ) (x ) = 0
for all x ∈ M 

∗. Since N 2 is closed submset of a compact mset M .
Then Theorem 5.14 implies N 1 �γ N 2 , and hence Lemma 5.15
implies N 1 �γ N 2 . So γ ≤ δ. Then δ is a unique M -proximity
relation, formula (1) , satisfies τ δ

∼= 

τ . �

6. Conclusion 

Proximity relations are helpful in solving problems based on hu-
man perception [7] that arise in areas such as image analysis [8]
and face recognition [9] . In addition, best proximity point [10] is
among the popular topic in the fixed point theory. Kandil et al.
[11–13] introduced new approaches of proximity relations based
on ideals and soft set notions. For further results and applica-
tions of proximity relations (See [14–16] ). 
A multiset is a collection of objects in which repetition of el-
ements is essential. The main goal of this paper is to introduce
new approach of proximity relations in the multiset context.
Many properties of this new approach have been mentioned. In
addition, a multiset topology induced by a multiset proximity
relation on a multiset M is presented. Finally, many properties
of this new multiset topology are studies. 
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