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1. Introduction

Recently, many authors [1-14] have studied the representations
for the parameter derivatives of the classical orthogonal poly-
nomials and various special functions which have many ap-
plications in applied mathematics, mathematical and theoreti-
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cal physics and many branches of mathematics. In [9,10] , the
derivative of the Legendre function of the first kind, with re-
spect to its degree v, [0 P,(z)/dv],—,(n € N), and its some rep-
resentations have been examined by Szmytkowski, which are
seen in some engineering and physical problems such as in the
general theory of relativity and in solving some boundary value
problems of potential theory, of electromagnetism and of heat
conduction in solids. In [11], explicit expressions of second-
order derivative [82P,(z)/8v*],—o and of third-order derivative
[83P,(2)/8v%],—o have been derived. In [12-14], the author has
presented the derivatives of the associated Legendre function of
the first kind with respect to its order and its degree and also a
relationship between these derivatives. Such derivatives of the
associated Legendre function are met in solutions of various
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problems of theoretical acoustics, heat conduction and other
branches of theoretical physics. In [3-8,15] , the representations
of parametric derivatives in the form

OP (s x) ¢

= gcn,k(wk(x, x) (1
for orthogonal polynomials in one variable, A being a parame-
ter, have been studied. For instance, the representations of para-
metric derivatives have been obtained by Wulkow [15] for dis-
crete Laguerre polynomials, by Froehlich [3] for Jacobi polyno-
mials P.*# (x), by Koepf [4] for generalized Laguerre polyno-
mials L (x) and Gegenbauer polynomials C* (x), by Koepf
and Schmersau [5] for all the continuous and discrete classical
orthogonal polynomials. In [8], Szmytkowski has derived again
the expansions in the form of (1) for Jacobi polynomials, Gegen-
bauer polynomials and the generalized Laguerre polynomials
by means of a method which is different from the methods given
by Froehlich [3] and Koepf [4]. In [7], Ronveaux et al. have pre-
sented the recurrence relations for coefficients in the expansion

% =D an(m P Gsx)  (meN)
k=0

which is more general than the expansion form of (1). More-
over, Lewanowicz [6] has given a method to obtain iteratively ex-
plicit parameter derivative representations of orderm =1, 2, ...
for almost all the classical orthogonal polynomial families, i.e.,
continuous classical orthogonal polynomials, classical orthogo-
nal polynomials of a discrete variable or g-classical orthogonal
polynomials of the Hahn’s class.

The classical Jacobi polynomials P.*# (x) are defined by the
Rodrigues formula

(=D"

n
2"n! "

1-x)"1+x)"* d

PP (x) = y
X

{(1 _ x)n+ot(l + x)l1+ﬁ}
and they satisfy the following orthogonality relation

1
/ PP (x) PP (x)(1 — x)* (1 + x)Pdx
-1

22+ n+ DB +n+1)
Tnll@+B+2n+ D@+ B+n+1)

8n,m = d,ga’ﬁ)‘sn,m (2)

where §,, ,, denotes Kronecker’s delta [16]. The generalized La-
guerre polynomials defined by

X %X dn

Lff)(x): n!  dx"

{efxxrﬂroz}

hold
S LY (LY (ve*xtdx = Nettls,

The representations of parametric derivatives obtained for the
Jacobi polynomials P*# ([3]) and generalized Laguerre poly-
nomials L (x) ([4]) are as follows

1

GP) () = 1 B+1
n _ P@B) W e
da —ntkt+tat+p+1" (‘C)+(Ol+/3+1)n
n—1
3 Qk+a+p+ D@+ B+ 1) PP (x) 3)

—n—kn+k+tat+p+DEB+ D"

and
(at,B) n=1

0P () _ 1 P () 4 @D
B k=0n+k+a+,8+1 (a+B+1),
=l ntk
Z( 1 (2k+a+/3+1)(a+ﬁ+1)kPk(’a,ﬁ)(x) @
= =tk +at+p+ D@+ i

fora, B > —1 and

EAEIN SR 5)
du _kzon—k ko

for « > —1 where the Pochhammer symbol is defined by

@o=1 (@i=a(@+1...(a+k—=—1),k=1,2,...

With motivation from the expansion (1) for orthogonal polyno-
mials in one variable, we consider similar expansion in the form
of

n—1 m k

0P, (X; x,y)
TR ) SN P s . ) +

YN Oen,j.kPn,j()‘; X, ¥) (6)

m=0 j=0 Jj=

for orthogonal polynomials of variables x and y, with A be-
ing a parameter and 0 <k <m;n=0,1,2,.... In the recent pa-
pers [1,2], parametric derivative representations in the form of
(6) for Jacobi polynomials on the triangle and a family of or-
thogonal polynomials with two variables on the unit disc have
been studied. The present paper is devoted to obtain paramet-
ric derivatives for the polynomials on the parabolic biangle, on
the square and some new examples of Koornwinder polyno-
mials introduced in [17] (see also [18]). Although the parame-
ter derivatives of these polynomials with respect to their some
parameters are in the form of (6), there exist some other pa-
rameters such that derivatives with respect to them are not
in the form of (6). Because, some of the coefficients d, j
and e, ;. depend on the variable x. The set up of this pa-
per is summarized as follows. In Section 2, we remind the
method given by Koornwinder [19] and some examples of this
method. Section 3 contains parametric derivatives of Koorn-
winder polynomials on the parabolic biangle, orthogonal poly-
nomials on the square, Laguerre-Jacobi Koornwinder poly-
nomials and Laguerre-Laguerre Koornwinder polynomials. In
Section 4, some orthogonality relations for the derivatives of
these polynomials are studied.

2. Preliminaries

First we recall some basic properties of orthogonal polynomials
in two variables [20]. Let IT be the set of all polynomials in two
variables and let IT, denote the linear space of polynomials in
two variables of total degree at most n. A polynomial p € II,
is called an orthogonal polynomial with respect to the weight
function w(x, y) if

(p, q> = /Qp(x, Nax, y)o(x, y)dxdy =0

for all ¢ € I1,_;. Let ¥, denote the space of orthogonal polyno-
mials of degree n with respect to (, ). In 1975, Koornwinder [19]
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constructed the following method to derive orthogonal poly-
nomials in two variables from orthogonal polynomials in one
variable. Let w;(x) and w,(y) be univariate weight functions de-
fined on the intervals (a4, b) and (c, d), respectively. Let p(x)
be a positive function on (a, b) which is either a polynomial
of degree r, r =0, 1,...) or the square root of a polynomial
of degree 2r (r= % 1, %, ...). If p(x) is not a polynomial,
¢=—d < 0 and w,(y) is an even function on (—d, d). For k
>0, let p,(x;k),n=0,1,...be orthogonal polynomial respect
to the weight function p**!(x)w, (x) and let ¢,(y), n > 0 be or-
thogonal polynomial with respect to the weight function w,(y).
Then, the family of polynomials

&AM”=W¢WM#@M(4L>,OSk§n
p(x)

are orthogonal with respect to the Koornwinder weight func-

tion w(x, y) = o (x)ws( p%w) over the domain

(if)

Orthogonal polynomials on the square: For «, 8, v, 8 > —1,
the polynomials defined by

PPy = BEP OB ()., 0<k<n (10)
n,k n—k k

are orthogonal with respect to the weight function
o(x,y)=0-x)0+x)?(1 —y)’(1 +y)° on the square
Q={(x,y):—1<x=<1,—-1=<y<1} Infact,

(P o B O o) = [ BBl
Q

X (x, p) (1= )" (142 (1 = )" (1 + )’ dxdy
= dr(,oi,/‘/,g)dl‘(,%a)an,mak.j (1 1)

where d.* is given by (2).

Some new examples of Koornwinder polynomials were in-
troduced in [17] by using Koornwinder construction. These
cases are as follows:

(iii) Laguerre-Jacobi Koornwinder polynomials: The case of
Q={(x,y):a<x=bcpx) <y=<dpx)}
wi(x) =x%", 0<x< o0,
with respect to the inner product
o(M=>10-yFf -1=y=l,
<f ) g) = / S g, yo(x, y)dxdy. p(x) = x
Q
leads to the polynomials
Some examples of Koornwinder’s method are as follows:
(1) Orthogonal polynomials on the parabolic biangle: For Pfk’ﬁ (x,y) = L;‘f,fk“)(x)ka,f’s ’0)(X), 0<k<n (12)
a, B > —1, Koornwinder polynomials on the parabolic X
; - o .
biangle € = {(x, ) 1 )” = x = 1} correspond with which are orthogonal with respect to the weight func-
s tion w(x,y) = x*Pe™¥(x — )P, (a, B > —1) over the do-
() =1 =x)%"  0<x<1, main Q = {(x,y) : —x <y < x, x > 0}. The following rela-
tion holds
o) =1-p), —1<y<l, (Pl v, P (e )
= [ PP (x, ) PEP (x, p)xaPe ™ (x — y)Pdxdy
p(x) = VK. L* !
, = 5380 mbi s
These polynomials can be defined as k. OnmOk.j
where
(@) (@, B+k+3) B8, Y
Pn,kﬁ (X,y) = Pnfk : (ZX_ I)Xk/zpkﬁ 5)(ﬁ)’ 0 Skin (a.f) __ 2ﬂ+lr(a+n+k+2) (13)
o) kT = kNB+2k+ 1)
and they are orthogonal with respect to the weight function (iv) Laguerrclszaguerre Ko.ornwi.nder polynomials: From the
Koornwinder construction with
o(x,y) = (1 —x)*(x —»*)~. w(x) =x% ", 0<x<oo, «a>-1
In fact, w@) =)y, 0<y<oo, B>-1
(Pl v, B (e 0) P =% a—f> -1,
— /S;Prf,[;{ﬁ)(xs y)P,;”f}ﬁ)(x, (1 = ) (x — y2)Pdxdy g;e Laguerre-Laguerre Koornwinder polynomials defined
_ p(@p) .
= hn,k 871,1718](,] (8) Pn(i’ﬁ)(x’ y) = L;ﬁ;2k+l)(x)xkl‘](cﬁ)(z), 0< k <n (14)
where *
s 208402 (B+k+ DN +n—k+ DI (B+n+3)

M =K+ 2k + DT QB+ k+ Dl (@ +B+n+3)(+B+2n—k+3)

©)
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are orthogonal with respect to the weight function w(x, y) =
X PP e~ H/%) over the domain

Q={(x,):0<x<00,0<y< o0}

It follows that
(B e B e )
= / PP (x, ) PSP (x, y)x* P yP e Ot M dxdy
o ‘
18,

where

J@p) _ FrB+k+DI(a+n+k+2)
i = kl(n—k)! ‘

(15)

3. Parametric derivatives of some Koornwinder polynomials

In [1,2], parametric derivative representations in the form of
(6) for Jacobi polynomials on the triangle and a family of or-
thogonal polynomials with two variables on the unit disc have
been studied. In this section, we derive parameter derivatives
of Koornwinder polynomials on the parabolic biangle, on the
square and some new examples of Koornwinder polynomials
introduced in [17] (see also [18]). Since variable x is included in
some of the coeflicients, there exist some parameter derivatives
such that they are not in the form (6). Now, we consider such
representations of parameter derivatives.

Theorem 1. For the Koornwinder polynomials over the parabolic
biangle Pf"‘ P (x, v) defined by (7), the parameter derivative with
respect to the parameter « is as follows

n 1 1 n—k—1

. k

L -

b =3 s+ Y
5=0 a+f3+l’l+f+§ s=0

<a+/3+2n7k72sfl)<ﬂ+nfs+l)
2 2) e

(s+1)(a+ﬂ+2n—k—s+%)<a+,3+n_s+%)

X Pfﬂlk(\ y)

s+1

(16)
fornz=k+1,k=0and PP (x,y) =0 forn=k = 0.

Proof. If we differentiate the both side of (7) with respect to the
parameter o, we get

pep

0 (@.prk+)
o nk Xk/zP(ﬂ ﬂ)( y— P( ~ﬂ+/+2)(2x_ D
o

f da n—k
By using (3), it concludes that forn > k+ 1, k>0

(x,y) =

n

9 —k—1 1 n—k—1
—P )= )
n,k ’

da =y

s hl e+ Y

atptntsts 5=0

1 1
(a+/3+2n—k 2?—7><ﬂ+n—v+ )
2 s+1

1 1
(s+1)<a+ﬁ+2n—k—s+7><a+ﬁ+n—s+7>
2 2 s+1

x PP ).

It is obvious from (7) that for n =k >0, ZA%" (x,y) =0. O

Theorem 2. For o, B, y,8 > —1, the polynomials on the square
defined by (10) satisfy

(o, B,7.9) —k—1
P ) :"Z 1 PEBYD ()
do = n—k+s+a+p+1 mk ’
+”i1 (@+B+2m—2k—2s— 1)(B+n—k—s)
= S+ D@+B+2n—-2k—s)(@+B+n—k—s)1
x BEPTY (p), an
(e, B,7,8) n—k—1
aF, ) (x, ) Z 1 PBTI (¢ )
B “on—ktstatpr1l ok '
+”*zk:*‘ (=1)" k=S (o + B+ 2n — 2k — 25 — D) (o + 1 — k — $)g41
= +D@+B+2n—2k—s)(a+B+n—k—=5)s1
X B (e ) (18)
Jorn>k+1,k>0and
IPSTT (x,y) ARSI (x,y) 0
o ap
Jorn=k > 0. Also,
ap(aﬁ}/‘s)(,c y) k—1 @B

s:o}’+5+k+v+1 n.k (x.7)

(y+0+2k 25— 1@+ k—5)ss1

(a.B.y.8)
+
; S+ Dy +84+2k—s)(y +8+k—5)541

P)l—s—],k—s—l (X, y)’

(19)
and
(a,B,7.8) k—1
aPnk " (" ») Z (D) (y »)
= y+8+k+s+l mk '
k—1
Dy + 842k =25 — 1)(y + k= si1 Jwpys)
+ PP (X, ),
2 D 1312k =G + 6Tk )y itk (900
(20)

forn>k>1and

ARGy ARG ()
dy - 98

=0

forn>0,k=0.
Proof. In view of equalities (3) and (4), the proofis clear. O

Now, we can get similar results for Laguerre—Jacobi Koorn-
winder and Laguerre-Laguerre Koornwinder polynomials.

Theorem 3. The representations of parameter derivatives with
respect to the parameters a and B for Laguerre—Jacobi Koorn-
winder polynomials P,f";c’g )(x, v) defined by (12) are given by
v
n—k—

5=0

a o, o
b () = PR ) @n

a
forn=k+1,k>0and % P(a’g)(x,y) =0forn=k>0. Simi-
larly,

k-1

1
P(Otﬁ) , E: (Otﬁ)
ap w0 7) = B+k+s+1 Bk ()

(B+2k =25 — 1)(k — $)g41
0 e Y7 T T

s+1P(tX+ZS+2 .B) (x, y)
—1
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forn=>k=>1 and P(“ﬁ)(x,y) =0forn>0,k=0. It is seen
that the parametric derzvatzve with respect to the parameter B is
not in the form of (6) since the coefficients include variable x.

Theorem 4. For Laguerre—Laguerre Koornwinder polynomials
defined by ( 14), we have

n—k—1

1 o,
D m (D) (22)

?
=P (x,y) =
k
s=0

oo

Jorn>k+1,k>0and
larly, forn >k > 1

P(Ot .B) (X, y) — ()for n=k > 0. Simi-

k—
0 P(a B

Y (a+25+2,8)
8,3 n,k P

n—s—1,k—s— l(x’y)

(x.7) =
=0

which is different from the form of (6) since the coefficients in-

clude variable x. Also, 3 ny“o‘g)(x, y)=0forn>0,k=0.

4. Orthogonality properties of parametric derivatives

Now, we consider orthogonality properties for the paramet-
ric derivatives of the polynomials on the parabolic biangle,
the polynomials on the square, Laguerre—Jacobi and Laguerre—
Laguerre Koornwinder polynomials.

Theorem 5. For Koornwinder polynomials on the parabolic bian-
gle given by (7) and their derivative with respect to the parameter
a, we have forn > k+1,k>0,0< j <m;n,me N

0, k#j
0, k=jm>n
a
@p 9 pap) _
(P 5 ") = Y ass, momz k=
B,(l‘"kﬁ), k=jn=m
and forn =k >0
P(Otﬁ) 9 P(a’ﬂ) =0
m,j ’aa nn -
where
_ 3 3
(o(];ﬁ): ((x+ﬁ k+2m+2)<l3+m+ z)n—m }1(0‘}:3)
n m
. _ —k 3 3
(n m)(oz-i—ﬁ—i—n +m+2)(a+ﬂ+m+2)n_m
and
n—k—1
B(ﬂﬁ) h(aﬂ)
; a+ﬂ+n+s+3 mk
oo (@ ﬂ)
where h is given by (9).

Proof. We will divide the proof into two cases.
Case 1. We consider the case n = k > 0. It is seen that

ad
(e, ) a,
<ij , @p( ﬁ)) 0

A peay y)y=0forn=k>0.

da” n,n

since 2

Case 2. We assume that n > k+ 1,k > 0. From (16), we can
write

n—k—1

k-
<P’§?/m’ 71)'50;‘}8)) X(; a+ﬁ+n+v+3<P’£’a/ﬂ)’P’§aﬂ)>
§=
+n_fl (w+p+om—k—25—L)(B+n—s+} )+1
=0 (s+l)<a+/3+2n—k—s+§>(a+ﬂ+n—s+7)

(a,8) pla.p)
(ij ’Pn —s— lk)

s+1

(23)

For this case, we consider three subcases.
Case 2.1. Let consider the case k # j or k = j, m > n. It fol-
lows from (8) that

0
<P';ajﬁ>, ZTP(& ﬁ)) 0.

Case 2.2. Assume that k = j, n > m. Since the first inner
product in the right-hand side of the equality (23) from (8) is
zero, we get

n 1

P(" ﬁ)) XA:

5s=0
5 (0+B+2m—k=25=3)(B+n—s+3),,
+D(@+B+2n—k—s+ ) a+p+n—s+1)

X h;,a \ﬁ>1 kan—x—l,mv

(o, )
<Pm,k ’

s+1

which contains only one non-vanishing term with s =n —m —
1 for m > k. One may deduce that

(“+/5—k+2m+%)<ﬂ+m+%)

(aléﬂ) _ n—m h(ot,kﬁ)

n m m

i _ —k 3 3 ’
n=m)(a+prn—tktm+3)(a+rprm+3)

where h("‘ #) is given by (9).

Case 23 Let k= j,m
have

= n. Then, from the relation (8) we

n—k—1
pl ﬁ)’ip(aﬁ)> <P<aﬂ)’P(u ﬂ))
(nk nk ;a—f—ﬁ—f—n—i—s—f—z nk nk

n—k—1

k—
Z (a.p)
— a+ﬂ+n+s+3 mk

which completes the proof. [

By using the parameter derivatives given in Theorem 2 and
the relation (11), the next theorem is readily verified.

Theorem 6. For Koornwinder polynomials on the square defined
by (10), we have for 0 < j <m;n,meNy,n>k+1,k>0

0, k#j
0, k=jm=>n
d
@prs) 9 peprs\ _
<P’”*f " da P > B Cn(“kﬁmy Vonsmz=k=j
DEFTO, k= jin=m
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0, k#j
0, k=jm>n
ad
(@.B,y.8) (@.B.7.6)\ _
(ﬂu ’EE&k >_ Eﬂﬁ”, n>m>k=j
DD, k=jin=m
and forn =k >0
(pwmwﬁdmﬁm»_@wmm_iyw%w_o
m,j ’80[ nn - m,j ’ 8/3 nn -
where
(o, B.y.8)
Cnka,my

_ (@+B+2m—2k+ 1B —k+m+1),_,
T m—m)a+BH+n+m—=2k+D(a+B—k+m+1),_n
<

n—k—1

1
pebrd _ (a,ﬂ)d(y.é),
nk Zn—k+s+a+,3—|—1 ok Tk

5s=0

E(a,ﬁ,yﬁ)

nk.m

=) a4 B4 2m =2k 4+ D@ —k4+m+ 1),y

T i—m)a+BHAn+m—=2k+1D(a+B—k+m+1),_n
x d R d?

where d\*?) is defined as in (2).

Similarly, using the results in Theorems 3 and 4, one can
easily obtain the next results.

Theorem 7. For Laguerre-Jacobi Koornwinder polynomials
PP (x, y) defined by (12), nym e Ny, 0 < j <m, we get for
n>k+1,k>0

0, k+j
d 0 k=jm=>n
(a,B) (,B)\ __ s 5 =
<Pm,j ) apn,k ) -
G,(f,;fi:l, n>m>k=j

and forn =k > 0

(B, L p) =0
where

T

where s,(,‘j’,f ) is given by (13).

Theorem 8. For Laguerre—Laguerre Koornwinder polynomials
Pn(f);(”s)(x, ), n,m € Ny, 0 < j < m, the following results hold for
n>k+1,k>0

0, k#j
d 0 k=jm=>n
(o, ) (e.p)\ _ ’ ’
<Pm,j ) apn,k ) -
Hrfoj{’:, n>m>k=j

and forn =k >0

a
(@) (@.p)\ —
(Rm/’5535ﬁ>_0
where
1
(a.p) _ (a,B)
Hn,k,m - n— mtm,k

where t,gf”,c’ﬂ ) is defined by (15).
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